Research article

Local existence of solutions to the 2D MHD boundary layer equations without monotonicity in Sobolev space

  • Received: 15 November 2023 Revised: 19 January 2024 Accepted: 19 January 2024 Published: 26 January 2024
  • MSC : 35M33, 35Q35, 76D03, 76D10, 76W05

  • In this work, we investigated the local existence of the solutions to the 2D magnetohy-drodynamic (MHD) boundary layer equations on the half plane by energy methods in weighted Sobolev space. Compared to the existence of solutions to the classical Prandtl equations where the monotonicity condition of the tangential velocity plays an important role, we used the initial tangential magnetic field with a lower bound $ \delta > 0 $ instead of the monotonicity condition of the tangential velocity.

    Citation: Xiaolei Dong. Local existence of solutions to the 2D MHD boundary layer equations without monotonicity in Sobolev space[J]. AIMS Mathematics, 2024, 9(3): 5294-5329. doi: 10.3934/math.2024256

    Related Papers:

  • In this work, we investigated the local existence of the solutions to the 2D magnetohy-drodynamic (MHD) boundary layer equations on the half plane by energy methods in weighted Sobolev space. Compared to the existence of solutions to the classical Prandtl equations where the monotonicity condition of the tangential velocity plays an important role, we used the initial tangential magnetic field with a lower bound $ \delta > 0 $ instead of the monotonicity condition of the tangential velocity.



    加载中


    [1] R. A. Adams, J. J. F. Fournier, Sobolev Spaces, New York-London: Academic Press, 2003.
    [2] R. Alexandre, Y. G. Wang, C. J. Xu, T. Yang, Well-posedness of the Prandtl equation in Sobolev spaces, J. Am. Math. Soc., 28 (2015), 745–784. http://doi.org/10.1090/S0894-0347-2014-00813-4 doi: 10.1090/S0894-0347-2014-00813-4
    [3] T. G. Cowling, Magnetohydrodynamics, New York: Interscience Publishers Inc., 1957.
    [4] D. X. Chen, X. L. Li, Long time well-posedness of two dimensional Magnetohydrodynamic boundary layer equation without resistivity, Math. Method. Appl. Sci., 46 (2023), 10186–10202. http://doi.org/10.1002/mma.9110 doi: 10.1002/mma.9110
    [5] P. A. Davidson, An introduction to magnetohydrodynamics, Cambridge: Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511626333
    [6] P. G. Drasin, Stability of parallel flow in a parallel magnetic field at small magnetic Reynolds number, J. Fluid Mech., 8 (1960), 130–142. http://doi.org/10.1017/S0022112060000475 doi: 10.1017/S0022112060000475
    [7] J. C. Gao, D. E. Huang, Z. A. Yao, Boundary layer problems for the two-dimensional inhomogeneous incompressible magnetohydrodynamics equations, Calc. Var., 60 (2021), 67. http://doi.org/10.1007/s00526-021-01958-y doi: 10.1007/s00526-021-01958-y
    [8] D. G$\acute{e}$rard-Varet, E. Dormy, On the ill-posedness of the Prandtl equations, J. Am. Math. Soc., 23 (2010), 591–609.
    [9] D. G$\acute{e}$rard-Varet, M. Prestipino, Formal derivation and stability analysis of boundary layer models in MHD, Z. Angew. Math. Phys., 68 (2016), 76. http://doi.org/10.1007/s00033-017-0820-x doi: 10.1007/s00033-017-0820-x
    [10] Y. T. Huang, C. J. Liu, T. Yang, Local-in-time well-posedness for compressible MHD boundary layer, J. Differ. Equations, 266 (2019), 2978–3013. http://doi.org/10.1016/j.jde.2018.08.052 doi: 10.1016/j.jde.2018.08.052
    [11] W. X. Li, R. Xu, Well-posedness in sobolev spaces of the two-dimensional MHD boundary layer equations without viscosity, Electron. Res. Arch., 29 (2021), 4243–4255. http://doi.org/10.3934/era.2021082 doi: 10.3934/era.2021082
    [12] C. J. Liu, D. H. Wang, F. Xie, T. Yang, Magnetic effects on the solvability of 2D MHD boundary layer equations without resistivity in Sobolev spaces, J. Funct. Anal., 279 (2020), 108637. http://doi.org/10.1016/j.jfa.2020.108637 doi: 10.1016/j.jfa.2020.108637
    [13] C. J. Liu, F. Xie, T. Yang, A note on the ill-posedness of shear flow for the MHD boundary layer equations, Sci. China Math., 61 (2018), 2065–2078. http://doi.org/10.1007/s11425-017-9306-0 doi: 10.1007/s11425-017-9306-0
    [14] C. J. Liu, F. Xie, T. Yang, MHD Boundary layers theory in Sobolev spaces without monotonicity Ⅰ: well-posedness theory, Commun. Pur. Appl. Math., 72 (2019), 63–121. http://doi.org/10.1002/cpa.21763 doi: 10.1002/cpa.21763
    [15] C. J. Liu, F. Xie, T. Yang, MHD boundary layers in Sobolev spaces without monotonicity Ⅱ: convergence theory, 2017, arXiv: 1704.00523.
    [16] N. Liu, P. Zhang, Global small analytic solutions of MHD boundary layer equations, J. Differ. Equations, 281 (2021), 199–257. http://doi.org/10.1016/j.jde.2021.02.003 doi: 10.1016/j.jde.2021.02.003
    [17] N. Masmoudi, T. K. Wong, Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods, Commun. Pur. Appl. Math., 68 (2015), 1683–1741. http://doi.org/10.1002/cpa.21595 doi: 10.1002/cpa.21595
    [18] D. S. Mitrinovi$\acute{c}$, J. E. P$\check{e}$cari$\acute{c}$, A. M. Fink, Inequalities involving functions and their integrals and derivatives, Dordrecht: Springer, 1991. https://doi.org/10.1007/978-94-011-3562-7
    [19] O. A. Oleinik, The Prandtl system of equations in boundary layer theory, Dokl. Acad. Nauk. SSSR, 150 (1963), 28–32.
    [20] O. A. Oleinik, V. N. Samokhin, Mathematical models in boundary layer theory, New York: Routledge, 1999. https://doi.org/10.1201/9780203749364
    [21] L. Prandtl, $\ddot{u}$ber Fl$\ddot{u}$ssigkeitsbewegung bei sehr kleiner reibung, The International Mathematical Congress, Heidelberg, Germany, 1904,484–491.
    [22] V. J. Rossow, Boundary layer stability diagrams for electrically conducting fluids in the presence of a magnetic field, NACA Technical Note, 1958 (1958), 4282.
    [23] M. Sermange, R. Temam, Some mathematical questions related to the MHD equations, Commun. Pur. Appl. Math., 36 (1983), 635–664. http://doi.org/10.1002/cpa.3160360506 doi: 10.1002/cpa.3160360506
    [24] H. Triebel, Theory of function spaces, Basel: Birkhäuser, 1983. https://doi.org/10.1007/978-3-0346-0416-1
    [25] S. Wang, N. Wang, Boundary layer problem of MHD system with non-characteristic perfect conducting wall, Appl. Anal., 98 (2017), 1–20. http://doi.org/10.1080/00036811.2017.1395867 doi: 10.1080/00036811.2017.1395867
    [26] S. Wang, Z. P. Xin, Boundary layer problems in the viscosity diffusion vanishing limits for the incompressible MHD systems, Scientia Sinica Mathematica, 47 (2017), 1303–1326. http://doi.org/10.1360/N012016-00211 doi: 10.1360/N012016-00211
    [27] S. Wang, B. Y. Wang, C. D. Liu, N. Wang, Boundary layer problem and zero viscosity-diffusion limit of the incompressible magnetohydrodynamic system with no-slip boundary conditions, J. Differ. Equations, 263 (2017), 4723–4749. http://doi.org/10.1016/j.jde.2017.05.025 doi: 10.1016/j.jde.2017.05.025
    [28] F. Xie, T. Yang, Global-in-time stability of 2D MHD boundary layer in the Prandtl-Hartmann regime, SIAM J. Math. Anal., 50 (2018), 5749–5760. http://doi.org/10.1137/18M1174969 doi: 10.1137/18M1174969
    [29] F. Xie, T. Yang, Lifespan of solutions to MHD Boundary layer equations with analytic perturbation of general shear flow, Acta Math. Appl. Sin. Engl. Ser., 35 (2019), 209–229. http://doi.org/10.1007/s10255-019-0805-y doi: 10.1007/s10255-019-0805-y
    [30] Z. P. Xin, L. Q. Zhang, On the global existence of solutions to the Prandtl's system, Adv. Math., 181 (2004), 88–133. https://doi.org/10.1016/S0001-8708(03)00046-X doi: 10.1016/S0001-8708(03)00046-X
    [31] C. J. Xu, X. Zhang, Long time well-posedness of Prandtl equations in Sobolev space, J. Differ. Equations, 263 (2017), 8749–8803. http://doi.org/10.1016/j.jde.2017.08.046 doi: 10.1016/j.jde.2017.08.046
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(825) PDF downloads(90) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog