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Abstract: We studied Toeplitz operators acting on certain poly-Bergman-type spaces of the Siegel
domain D2 ⊂ C

2. Using continuous nilpotent symbols, we described the C∗-algebras generated by
such Toeplitz operators. Bounded measurable functions of the form c̃(ζ) = c(Im ζ1, Im ζ2 − |ζ1|

2)
are called nilpotent symbols. In this work, we considered symbols of the form ã(ζ) = a(Im ζ1) and
b̃(ζ) = b(Im ζ2− |ζ1|

2), where both limits lim
s→0+

b(s) and lim
s→+∞

b(s) exist, and a belongs to the set of piece-

wise continuous functions on R = [−∞,+∞] and with one-sided limits at 0. We described certain
C∗-algebras generated by such Toeplitz operators that turned out to be isomorphic to subalgebras of
Mn(C) ⊗C(Π), where Π = R × R+ and R+ = [0,+∞].
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1. Introduction

In recent years, the theory of Toeplitz operators has been generalized from Bergman spaces of
square-integrable holomorphic functions to poly-Bergman spaces of square-integrable polyanalytic
functions [1, 2]. Bianalytic functions emerged in the mathematical theory of elasticity, but the
mathematical relevance of more general polyanalytic functions was soon realized [3].

Similar to the study of Toeplitz operators on spaces of analytic functions, we select a set of symbols
E ⊂ L∞ in such a way that the C∗-algebra generated by Toeplitz operators with symbols in E can be
explicitly described up to isomorphism, that is, as an algebra of matrix-valued functions. For the unit
disk D and the Siegel domain Dn ⊂ C

n, in [4–6] the authors considered the set EG of symbols invariant
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under the action of a maximal Abelian subgroup G of biholomorphisms, they found that the C∗-algebra
TG generated by Toeplitz operators acting on the Bergman spaces with symbols in EG is commutative.
The authors also proved thatTG is isomorphic and isometric to a C∗-subalgebra of continuous functions
on a locally compact Hausdorff space X. Of course, TG is isomorphic to C(σ(TG)), where σ(TG) is
the spectrum of TG. Unfortunately, X is far away to be σ(TG). In this sense, we can note that the full
description of a commutative C∗-algebra depends on the spectrum of the algebra. It makes sense to
select a smaller class E ⊂ EG in order to fully describe the C∗-algebra TE generated by the Toeplitz
operators with symbols in E. For the case of the Siegel domain D2, in [7] the authors choose a family
E of piece-wise continuous symbols invariant under a nilpotent group and prove that the spectrum of
the C∗-algebra TE is a compactification of the upper half-plane Π = {z = x + iy ∈ C | y > 0}. In this
work, we extend the results in [7] by studying the noncommutative C∗-algebra generated by Toeplitz
operators acting on two type-poly-Bergman spaces of the Siegel domain D2, where it is possible to
identify the space of all irreducible representation of such algebra. In general, the spectrum of a
commutative C∗-algebra generated by Toeplitz operators is too large, and it is impossible to have a full
description of it. In [8–12], we can find outstanding contributions about the spectrum of commutative
algebras and the spectrum of operators acting on Hilbert spaces with reproducing kernel, where the
Berezin transform play a significant role.

In the case of the upper half-plane Π, a vertical symbol is a bounded measurable function a(z)
depending only on y = Re z. Taking vertical symbols, in [13–15] the authors studied Toeplitz operators
acting on the true-poly-Bergman space A2

(n)(Π) from the point of view of wavelet spaces. Toeplitz
operators with vertical symbols acting on poly-Bergman-type spaces have also be studied. Taking
vertical symbols with limits at y = 0 and y = ∞, in [13, 16] the authors described the C∗-algebra
generated by all Toeplitz operators on the poly-Bergman space A2

n(Π); this algebra is isomorphic to
a subalgebra of Mn(C) ⊗ C[0,+∞]. Similar research has studied Toeplitz operators on poly-Bergman
spaces with homogeneous symbols ( [17, 18]). Taking horizontal symbols having one-sided limits
at x = ±∞, in [19, 20] the authors studied Toeplitz operators acting on poly-Fock spaces F2

k (C) and
they proved that the C∗-algebra generated by such Toeplitz operators is isomorphic to a subalgebra of
Mn(C) ⊗ C[−∞,+∞]. In [21–24], the authors studied the decomposition of the von Neumann algebra
of radial operators acting on the poly-Fock spaces F2

k (C) and weighted poly-Bergman spacesA2
n(D).

In [4, 5], the authors found all classes of bounded measurable symbols associated to commutative
algebras generated by Toeplitz operators acting on the Bergman space of the Siegel domain Dn ⊂

Cn. In particular, they studied the C∗-algebra TNn generated by all Toeplitz operators with bounded
nilpotent symbols, which are functions of the form c̃(ζ) = c(Im ζ1, ..., Im ζn−1, Im ζn − |ζ

′|2), where
ζ′ = (ζ1, ..., ζn−1). Furthermore, in [7] the authors studied Toeplitz operators on the true-poly-Bergman-
type space A2

(L)(D2), with nilpotent symbols of the form ã(ζ) = a(Im ζ1) and b̃(z) = b(Im ζ2 − |ζ1|
2).

In this paper, we consider two poly-Bergman-type spaces of the Siegel domain D2 ⊂ C
2, in which

Toeplitz operators with continuous nilpotent symbols are studied. The main purpose of this work is
to describe the C∗-algebra generated by all the Toeplitz operators acting on the poly-Bergman-type
spaces A2

(1,n)(D2) and A2
(n,1)(D2). We take nilpotent symbols of the form ã(ζ) = a(Im ζ1) and b̃(ζ) =

b(Im ζ2 − |ζ1|
2).

In Section 2, we introduce poly-Bergman-type spaces for the Siegel domain and discuss how
they are identified through a Bargmann-type transform. In Section 3, we define Toeplitz operators
acting on A2

(1,n)(D2) with nilpotent symbols; such Toeplitz operators are unitarily equivalent to
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multiplication operators.
In Section 3.1, we take symbols of the form b̃(ζ) = b(Im ζ2 − |ζ1|

2) for which both limits lim
s→0+

b(s)
and lim

s→+∞
b(s) exist; the C∗-algebra generated by all Toeplitz operators Tb is isomorphic to C = {M ∈

Mn(C) ⊗ C[0,∞] : M(0),M(+∞) ∈ CI}. Let PC(R, {0}) denote the set of all functions continuous
on R \ {0} and having one-side limit values at 0, where R is the two-point compactification of R. In
Section 3.2, we take nilpotent symbols of the form ã(ζ) = a(Im ζ1), where a ∈ PC(R, {0}); the C∗-
algebra generated by all Toeplitz operators Ta is isomorphic to C(Π), where Π = R × R+.

In Section 4, we introduce Toeplitz operators acting on A2
(n,1)(D2) with nilpotent symbols c̃ and

we show that such Toeplitz operators are unitarily equivalent to multiplication operators γcI acting on
L2(R×R+), where γc is a continuous matrix-valued function on Π. In this work, we take symbols of the
form ã(ζ) = a(Im ζ1), where a ∈ PC(R, {0}). In Section 4.1, we prove that the matrix-valued function
γa can be continuously extended to Π under a change of variable, which is one of our main results.
In Section 4.3, we prove that the C∗-algebra generated by all Toeplitz operators Ta is isomorphic to a
C∗-subalgebra of Mn(C) ⊗C(Π), thus the spectrum of such algebra is fully described.

2. Poly-Bergman type spaces of the Siegel domain

In this section, we recall some results obtained in [25] that are needed in this paper. We recall
how the poly-Bergman-type spaces are defined and how they are identified with a tensor product of
L2-spaces. This allows us to study Toeplitz operators with nilpotent symbols through a Bargmann-type
transform. We clarify that if X is any positive-measure subset of a Euclidean space, then L2(X) refers
to L2(X, dµ), where dµ is Lebesgue measure restricted to X. We will study Toeplitz operators acting on
certain poly-Bergman-type subspaces of L2(D2), where D2 is the two-dimensional Siegel domain

D2 = {ζ = (ζ1, ζ2) ∈ C2 : Im ζ2 − |ζ1|
2 > 0}.

For each pair L = ( j, k) ∈ N2, the poly-Bergman-type spaceA2
L(D2) is the closed subspace of L2(D2)

consisting of all L-analytic functions, that is, all functions f ∈ C∞(D2) satisfying the equations ∂

∂ζ1

− 2iζ1
∂

∂ζ2

 j

f = 0,
 ∂

∂ζ2

k

f = 0.

Note that A2
L(D2) is just the Bergman space when L = (1, 1). The anti-poly-Bergman type space

Ã2
L(D2) is defined to be the complex conjugate of A2

L(D2). Now, true-poly-Bergman-type spaces are
defined as follows:

A2
(L)(D2) = A2

L(D2) 	

 2∑
m=1

A2
L−em

(D2)

 ,
Ã2

(L)(D2) = Ã2
L(D2) 	

 2∑
m=1

Ã2
L−em

(D2)

 ,
where e1 = (1, 0) and e2 = (0, 1). We assume that A2

L(D2) = {0} whenever L ∈ Z2 \ N2. The
Hilbert space L2(D2) is the direct sum of all the true-poly-Bergman-type spaces and the true-anti-poly-
Bergman-type spaces; see [25] for details. Let us briefly recall how the authors also constructed a
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unitary map fromA2
(L)(Dn) to the tensor product L2(R) ⊗H j−1 ⊗ L2(R+) ⊗ Lk−1, whereHm and Lm are

the one-dimensional spaces generated by the Hermite and Laguerre functions, respectively, which are
given by

hm(y) =
1

(2m
√
πm!)1/2

Hm(y)e−y2/2

and
`m(y) = (−1)mLm(y)e−y/2χ+(y)

for m = 0, 1, 2, ... As usual, R+ = {x ∈ R : x > 0}, and χ+ denotes the indicator function of R+. The
Hermite and Laguerre polynomials are defined by the Rodrigues formulae as follows:

Hm(y) := (−1)mey2 dm

dym (e−y2
), Lm(y) := ey 1

m!
dm

dym (e−yym).

It is well known that {hm}
∞
m=0 and {`m}

∞
m=0 are orthonormal bases for L2(R) and L2(R+), respectively.

Finally,Hm = span{hm} and Lm = span{`m}.
Consider the flat domain D = C × Π, where Π = R × R+ ⊂ C, then D can be identified with D2

under the mapping κ : D → D2 given by the rule

ζ = κ(w1,w2) = (w1,w2 + i|w1|
2).

Thus we have the unitary operator U0 : L2(D2) −→ L2(D) given by

(U0h)(w) = h(κ(w)).

Take w = (w1,w2) ∈ C × Π, with wm = um + ivm and m = 1, 2. We identify w = (u1 + iv1, u2 + iv2)
with (u1, v1, u2, v2), then

L2(D) = L2(R, du1) ⊗ L2(R, dv1) ⊗ L2(R, du2) ⊗ L2(R+, dv2).

Introduce the unitary operator U1 = F ⊗ I ⊗ F ⊗ I : L2(D)→ L2(D), where F is the Fourier transform
acting on L2(R) by the rule

(Fg)(t) =
1
√

2π

∫ ∞

−∞

g(x)e−itxdx.

Consider now the following two mappings ψ1, ψ2 : D → D defined by

ψ1(ξ1, ξ2) = (ξ1, t2 + i
s2

2|t2|
)

and

ψ2(z1, z2) =

(√
|x2|(x1 + y1) + i

1
2
√
|x2|

(−x1 + y1), z2

)
,

where ξm = tm + ism and zm = xm + iym. Both functions ψ1 and ψ2 induce the unitary operators acting
on L2(D) by

(V1g)(ξ) =
1

(2|t2|)1/2 g(ψ1(ξ)), (V2 f )(z) = f (ψ2(z)).
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Theorem 2.1. [25] The operator U = V2V1U1U0 is unitary and maps L2(D2) onto the space

L2(D) = L2(R, dx1) ⊗ L2(R, dy1) ⊗ L2(R, dx2) ⊗ L2(R+, dy2).

For each L = ( j, k) ∈ N2, the operator U maps the true-Bergman-type spaceA2
(L)(D2) onto the space

H+
(L) = L2(R) ⊗ Ch j−1 ⊗ L2(R+) ⊗ C`k−1.

We will study Toeplitz operators with nilpotent symbols acting on A2
L(D2) in the cases L = (1, n)

and L = (n, 1). In both cases, the poly-Bergman-type space can be identified with (L2(R×R+))n through
a Bargmann type transform [25]. Since A2

(1,n)(D2) =
⊕n

k=1A
2
((1,k))(D2), the operator U isometrically

mapsA2
(1,n)(D2) onto the space

H+
(1,n) = L2(R) ⊗ Ch0 ⊗ L2(R+) ⊗ span{`0, ...., `n−1}.

Analogously, the operator U restricted toA2
(n,1)(D2) is an isometric isomorphism onto the space

H+
(n,1) = L2(R) ⊗ span{h0, ..., hn−1} ⊗ L2(R+) ⊗ C`0.

We introduce the following linear isometric embeddings

R0(1,n), R0(n,1) : (L2(R × R+))n −→ L2(D)

defined by

(R0(1,n)g)(x1, y1, x2, y2) = χ+(x2) h0(y1)[N(y2)]T g(x1, x2),
(R0(n,1)g)(x1, y1, x2, y2) = χ+(x2) `0(y2)[H(y1)]T g(x1, x2),

where g = (g1, ...., gn)T ∈ (L2(R × R+))n and

H(y1) = (h0(y1), ..., hn−1(y1))T and N(y2) = (`0(y2), ..., `n−1(y2)T .

Clearly, H+
(1,n) and H+

(n,1) are the images of R0(1,n) and R0(n,1), respectively. Consequently, the
operators

R(1,n) := R∗0(1,n)U, R(n,1) := R∗0(n,1)U : L2(D2) −→ (L2(R × R+))n,

isometrically map the poly-Bergman-type spaces A2
(1,n)(D2) and A2

(n,1)(D2) onto (L2(R × R+))n.
Therefore,

R(1,n)R∗(1,n) = I = R(n,1)R∗(n,1),

R∗(1,n)R(1,n) = B(1,n) and R∗(n,1)R(n,1) = B(n,1),

where B(1,n) and B(n,1) are the orthogonal projections from L2(D2) onto A2
(1,n)(D2) and A2

(n,1)(D2),
respectively. Thus, R∗(1,n) and R∗(n,1) play the role of the Segal-Bargmann transform for the poly-
Bergman-type spacesA2

(1,n)(D2) andA2
(n,1)(D2), where the adjoint operators R∗0(1,n) and R∗0(n,1) are given

by

(R∗0(1,n) f )(x1, x2) =

∫
R

∫
R+

f (x1, y1, x2, y2)h0(y1)N(y2)dy2dy1,

(R∗0(n,1) f )(x1, x2) =

∫
R

∫
R+

f (x1, y1, x2, y2)`0(y2)H(y1)dy2dy1,

where (x1, x2) ∈ R × R+.
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3. Toeplitz operators on the poly-Bergman spaceA2
(1,n)(D2)

Toeplitz operators with nilpotent symbols acting on the poly-Bergman-type space A2
(1,n)(D2) are

studied in this section. The Vasilevski’s techniques, as in [6], allow us to identify Toeplitz operators
with multiplication operators. Recall that c̃ ∈ L∞(D2, dµ) is said to be a nilpotent symbol if it has the
form c̃(ζ1, ζ2) = c(Im ζ1, Im ζ2 − |ζ1|

2), where c : R × R+ → C, then the Toeplitz operator acting on
A2

(1,n)(D2) with nilpotent symbol c̃ is defined by

(Tc f )(ζ) = (B(1,n)(c̃ f ))(ζ),

where B(1,n) is the orthogonal projection from L2(D2) ontoA2
(1,n)(D2). If we define

M f : L2(D2)→ L2(D2)
g 7→ f g,

then Tc is equal to B(1,n)Mc̃ restricted toA2
(1,n)(D2).

The Bargmann-type operator R(1,n) identifies the space A2
(1,n)(D2) with (L2(R × R+))n, and it fits

properly in the study of the Toeplitz operators Tc̃.

Theorem 3.1. Let c̃ be a nilpotent symbol, then the Toeplitz operator Tc is unitary equivalent to the
multiplication operator Mγc and, in fact, Mγc = R(1,n)TcR∗(1,n), where the matrix-valued function γc :
R × R+ → Mn(C) is given by

γc(x1, x2) =

∫
R

∫
R+

c
(
−x1 + y1

2
√

x2
,

y2

2x2

)
(h0(y1))2N(y2)[N(y2)]T dy2dy1. (3.1)

Proof. We have

R(1,n)TcR∗(1,n) = R(1,n)B(1,n)Mc̃R∗(1,n)

= R(1,n)R∗(1,n)R(1,n)Mc̃R∗(1,n)

= R(1,n)Mc̃R∗(1,n)

= R∗0(1,n)V2V1U1U0(Mc̃)U−1
0 U−1

1 V−1
1 V−1

2 R0(1,n).

Recall that ζ = κ(w) = (w1,w2 + i|w1|
2), where w = (w1,w2) ∈ D and wm = um + ivm. For f ∈ L2(D),

(U0Mc̃U−1
0 f )(w) = c̃(κ(w))(U−1

0 f )(κ(w)) = c̃(κ(w)) f (w).

That is, U0Mc̃U−1
0 = Mc̃◦κ. It is easy to see that U1Mc̃◦κU−1

1 = Mc̃◦κ. Furthermore,

V1Mc̃◦κV−1
1 = Mc̃◦κ◦ψ1

and
V2V1Mc̃◦κV−1

1 V−1
2 = Mc̃◦κ◦ψ1◦ψ2 .

Denote c̃ ◦ κ ◦ ψ1 ◦ ψ2 by C. It is easy see that

C(z) = c
(
−x1 + y1

2
√
|x2|

,
y2

2|x2|

)
(3.2)
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where z = (x1 + iy1, x2 + iy2) ∈ D. Finally, let g = (g1, ..., gn)T ∈ (L2(R × R+))n and A =

(R(1,n)TcR∗(1,n)g)(x1, x2), then

A = (R∗0(1,n)MCR0(1,n)g)(x1, x2)

=

∫
R

∫
R+

C(z)(R0(1,n)g)(x1, y1, x2, y2)h0(y1)N(y2)dy2dy1

=

∫
R

∫
R+

C(z)h0(y1)[N(y2)]T g(x1, x2)h0(y1)N(y2)dy2dy1

=

∫
R

∫
R+

C(z)(h0(y1))2N(y2)[N(y2)]T g(x1, x2)dy2dy1.

Thus, R(1,n)TcR∗(1,n) = Mγc , where γc(x1, x2) is given in (3.1). �

Studying the full C∗-algebra generated by all Toeplitz operators with nilpotent symbols is a difficult
task due to the fact that its spectrum is too large. For this reason, we study Toeplitz operators in special
cases. In particular, we consider two specific cases of nilpotent symbols. First, we study the Toeplitz
operators with symbols of the form b̃(ζ) = b(Im ζ2 − |ζ1|

2), for which

γb(x1, x2) = γb(x2) =

∫
R+

b
(

y2

2x2

)
N(y2)[N(y2)]T dy2. (3.3)

Second, we analyze Toeplitz operators with symbols of the form ã(ζ) = a(Im ζ1), for which

γa(x1, x2) =

∫
R

a
(
−x1 + y1

2
√

x2

)
(h0(y1))2dy1In×n. (3.4)

3.1. Toeplitz operators with symbols b̃(ζ) = b(Im ζ2 − |ζ1|
2)

In this section, we study the C∗-algebra generated by all Toeplitz operators Tb with symbols of the
form b̃(ζ) = b(Im ζ2−|ζ1|

2), where b : R+ → C has limits at 0 and +∞. Under this continuity condition,
we will see that γb is continuous on Π := R × R+, where R = [−∞,+∞] and R+ = [0,+∞] are the
two-point compactification of R = (−∞,+∞) and R+ = (0,+∞), respectively. The spectral function
γb = (γb

jk) : R × R+ → Mn(C) is continuous if all of its matrix entries are continuous. These matrix
entries are given by

γb
jk(x1, x2) =

∫
R+

b
(

y2

2x2

)
` j−1(y2)`k−1(y2)dy2, j, k = 1, ..., n. (3.5)

Let L∞
{0,+∞}(R+) denote the subspace of L∞(R+) consisting of all functions having limit values at 0

and +∞. For b ∈ L∞
{0,+∞}(R+), define

b0 := lim
y→0+

b(y), b∞ := lim
y→+∞

b(y).

We sometimes think of γb
jk as a function from R+ to C, as it depends only on the variable x2.

The form of the matrix-valued function γb was obtained in [16] as the spectral function of a Toeplitz
operator acting on poly-Bergman spaces of the upper half-plane with vertical symbols, i.e., symbols
depending only on the imaginary part of z. Thus, we have at least two scenarios in which γb appears
as a spectral matrix-valued function.
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Lemma 3.2. [16] Let b ∈ L∞
{0,+∞}(R+), then the spectral matrix-valued function γb : R+ → Mn(C) is

continuous and satisfies
b∞I = lim

x2→0+
γb(x2), b0I = lim

x2→+∞
γb(x2).

Obviously, in this context, the spectral matrix-valued function γb is defined and continuous on Π,
but it is constant along each horizontal straight line. Thus, γb is identified with a continuous function
on R+.

Let Mn(C([0,∞])) = Mn(C) ⊗ C([0,∞]), where Mn(C) is the algebra of all n × n matrices with
complex entries. Let C be the C∗-subalgebra of Mn(C([0,∞])) given by

C = {M ∈ Mn(C([0,∞])) : M(0),M(+∞) ∈ CI}.

By Lemma 3.2 and Theorem 4.8 in [16], we have the following

Theorem 3.3. For all b ∈ L∞
{0,+∞}(R+), the spectral matrix-valued function γb belongs to the C∗-algebra

C. Moreover, the C∗-algebra generated by all the matrix-valued functions γb : Π → Mn(C), with
b ∈ L∞

{0,+∞}(R+), is equal to C. That is, the C∗-algebra generated by all the Toeplitz operators Tb, with
b ∈ L∞

{0,+∞}(R+), is isomorphic to C, where the isomorphism is defined on the generators by

Tb 7−→ γb.

3.2. Toeplitz operators with continuous symbols a(Im ζ1)

Our next stage is the study of the C∗-algebra generated by all Toeplitz operators Ta acting on the
poly-Bergman spaceA2

(1,n)(D2), with symbols of the form ã(ζ) = a(Im ζ1). Recall that γa is given by

γa(x1, x2) =

∫
R

a
(
−x1 + y1

2
√

x2

)
(h0(y1))2dy1In×n

for all (x1, x2) ∈ Π = R × R+. It is easy to see that γa is continuous on Π.
Based on the results obtained in [7], we have the following theorem.

Theorem 3.4. The C∗-algebra generated by all Toeplitz operators of the form Ta, where ã(ζ) = a(Im ζ1)
with a ∈ C(R), is isomorphic and isometric to the C∗-algebra C(4), where the quotient space 4 =

Π/(R × {+∞}) is defined by the identification of R × {∞} to a point. Furthermore, the C∗-algebra
generated by all Toeplitz operators Ta with a ∈ PC(R, {0}) is isomorphic to the C∗-algebra C(Π),
where PC(R, {0}) consists of all functions continuous on R \ {0} and have one-sided limits at 0.

Proof. Note that γa can be identified with the scalar function

Π→ C

(x1, x2) 7→
∫
R

a
(
−x1 + y1

2
√

x2

)
(h0(y1))2dy1.

This function was obtained in [7] as the spectral function of the Toeplitz operator acting on the Bergman
spaceA2(D2) with symbol ã(ζ) = a(Im ζ1). Theorems 10 and 14 of [7] complete the proof. �
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4. Toeplitz operators on the poly-Bergman spaceA2
(n,1)(D2)

In this section, we study certain C∗-algebras generated by Toeplitz operators with nilpotent symbols
acting on the poly-Bergman-type space A2

(n,1)(D2). We apply techniques as in Section 3. A Toeplitz
operator acting onA2

(n,1)(D2) with nilpotent symbol c̃(ζ1, ζ2) = c(Im ζ1, Im ζ2 − |ζ1|
2) is defined by

(Tc f )(ζ) = (B(n,1)(c̃ f ))(ζ),

where B(n,1) is the orthogonal projection from L2(D2) onto A2
(n,1)(D2). The Bargmann-type operator

R(n,1) identifies the spaceA2
(n,1)(D2) with (L2(R × R+))n.

Theorem 4.1. Let c̃ be a nilpotent symbol, then the Toeplitz operator Tc is unitary equivalent to the
multiplication operator γcI = R(n,1)TcR∗(n,1), where the matrix-valued function γc : R × R+ → Mn(C) is
given by

γc(x1, x2) =

∫
R

∫
R+

c
(
−x1 + y1

2
√

x2
,

y2

2x2

)
(`0(y2))2H(y1)[H(y1)]T dy2dy1. (4.1)

Proof. We have

R(n,1)TcR∗(n,1) = R(n,1)B(n,1)(Mc̃)R∗(n,1)

= R(n,1)R∗(n,1)R(n,1)Mc̃R∗(n,1)

= R(n,1)Mc̃R∗(n,1)

= R∗0(n,1)V2V1U1U0Mc̃U−1
0 U−1

1 V−1
1 V−1

2 R0(n,1),

where
V2V1U1U0(Mc̃)U∗0U∗1V−1

1 V−1
2 = MC,

z = (x1 + iy1, x2 + iy2) ∈ D, and C is given in (3.2).
Finally, let g = (g1, ..., gn)T ∈ (L2(R × R+))n and B = (R(n,1)TcR∗(n,1)g)(x1, x2), then

B = (R∗0(n,1)MCR0(n,1)g)(x1, x2)

=

∫
R

∫
R+

C(z)(R0(n,1)g)(x1, y1, x2, y2)`0(y2)H(y1)dy2dy1

=

∫
R

∫
R+

C(z)`0(y2)[H(y1)]T g(x1, x2)`0(y2)H(y1)dy2dy1

=

∫
R

∫
R+

C(z)(`0(y2))2H(y1)[H(y1)]T g(x1, x2)dy2dy1.

Thus, R(n,1)TcR∗(n,1) = γcI, where γc(x1, x2) is given in (4.1). �

As in Section 3, we consider two specific cases of nilpotent symbols. First, we will take Toeplitz
operators with symbols of the form b̃(ζ) = b(Im ζ2 − |ζ1|

2), for which

γb(x1, x2) = γb(x2) =

∫
R+

b
(

y2

2x2

)
(`0(y2))2dy2In×n. (4.2)
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This spectral function can be identified with the scalar function

R+ → C

x2 7→

∫
R+

b
(

y2

2x2

)
(`0(y2))2dy2,

which was studied in [16]. Thus, the algebra generated by Toeplitz operators of the form Tb, where
b ∈ L∞

{0,+∞}(R+), has been completely described.
Second, we analyze Toeplitz operators with symbols of the form ã(ζ) = a(Im ζ1); in this case, we

have

γa(x1, x2) =

∫
R

a
(
−x1 + y1

2
√

x2

)
H(y1)[H(y1)]T dy1. (4.3)

From this point on, we focus on describing the C∗-algebra generated by matrix-valued functions of
this type.

4.1. Continuity of the spectral function γa

In order to describe the C∗-algebra generated by Toeplitz operators acting on A2
(n,1)(D2) with

nilpotent symbols of the form ã(ζ) = a(Im ζ1), first we will analyze the continuous extension of
γa = (γa

jk) to the compactification Π := R × R+. Make the change of variable y1 7→ 2
√

x2y1 + x1

in the integral representation of γa
jk, then

γa
jk(x1, x2) = 2

√
x2

∫
R

a(y1)h j−1(2
√

x2y1 + x1)hk−1(2
√

x2y1 + x1)dy1.

The function γa
jk is continuous at each point (x1, x2) ∈ Π by the continuity of h j−1hk−1 and the

Lebesgue dominated convergence theorem. Next, we will prove that γa
jk has a one-sided limit at each

point of R × {0}. For a ∈ L∞(R), we introduce the notation

a− = lim
y→−∞

a(y) and a+ = lim
y→+∞

a(y) (4.4)

if such limits exist.

Lemma 4.2. Let a ∈ L∞(R) and suppose that a has limits at ±∞, then for each x0 ∈ R, the spectral
matrix-valued function γa : Π→ Mn(C) satisfies

lim
(x1,x2)→(x0,0)

γa(x1, x2) = a−

∫ x0

−∞

H(y1)[H(y1)]T dy1

+ a+

∫ +∞

x0

H(y1)[H(y1)]T dy1.

(4.5)

Proof. Let A denote the ( j, k)-entry of the righthand side of (4.5). Take ε > 0. We will prove that
there exists δ > 0 such that |γa(x1, x2) − A| < ε whenever |x1 − x0| < δ and 0 < x2 < δ. Note that
|a−|, |a+| ≤ ‖a‖∞. Since C jk =

∫ ∞
−∞
|h j−1(y1)hk−1(y1)|dy1 > 0, there exists δ1 > 0 such that

‖a‖∞

∫ δ1+x0

−δ1+x0

|h j−1(y1)hk−1(y1)|dy1 <
ε

5
.
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Then

I := |γa
jk(x1, x2) − A|

=

∣∣∣∣∣ ∫ ∞

−∞

a
(
−x1 + y1

2
√

x2

)
h j−1(y1)hk−1(y1)dy1

−a−

∫ x0

−∞

h j−1(y1)hk−1(y1)dy1 − a+

∫ ∞

x0

h j−1(y1)hk−1(y1)dy1

∣∣∣∣∣
≤

∫ −δ1+x0

−∞

∣∣∣∣∣∣a
(
−x1 + y1

2
√

x2

)
− a−

∣∣∣∣∣∣ |h j−1(y1)hk−1(y1)|dy1

+|a−|
∫ x0

−δ1+x0

|h j−1(y1)hk−1(y1)|dy1

+|a+|

∫ δ1+x0

x0

|h j−1(y1)hk−1(y1)|dy1

+

∫ δ1+x0

−δ1+x0

∣∣∣∣∣∣a
(
−x1 + y1

2
√

x2

)
h j−1(y1)hk−1(y1)

∣∣∣∣∣∣ dy1

+

∫ ∞

δ1+x0

∣∣∣∣∣∣a
(
−x1 + y1

2
√

x2

)
− a+

∣∣∣∣∣∣ |h j−1(y1)hk−1(y1)|dy1

≤ C jk max
−∞<y1<−δ1+x0

∣∣∣∣∣∣a
(
−x1 + y1

2
√

x2

)
− a−

∣∣∣∣∣∣ +
3ε
5

+C jk max
δ1+x0<y1<∞

∣∣∣∣∣∣a
(
−x1 + y1

2
√

x2

)
− a+

∣∣∣∣∣∣ .
We have assumed that a converges at ±∞. Thus, there exists N > 0 such that |a(y) − a−| < ε/(5C jk)

and |a(y) − a+| < ε/(5C jk) for |y| > N. Let δ = min{δ1/2, δ2
1/(16N2)}, then we have 1

2
√

x2
| − x1 + y1| > N

if |x1 − x0| < δ, 0 < x2 < δ and |y1 − x0| ≥ δ1. Thus,

max
−∞<y1<−δ1+x0

∣∣∣∣∣∣a
(
−x1 + y1

2
√

x2

)
− a−

∣∣∣∣∣∣ < ε

5C jk

and

max
δ1+x0<y1<∞

∣∣∣∣∣∣a
(
−x1 + y1

2
√

x2

)
− a+

∣∣∣∣∣∣ < ε

5C jk
.

Finally, we conclude that |γa
jk(x1, x2) − A| < ε whenever |x1 − x0| < δ and 0 < x2 < δ. �

In general, the matrix-valued function γa does not converge at the points (±∞,+∞) ∈ Π; however,
γa has limit values along the parabolas x2 = α(x2

1 + 1), with α > 0. For this reason, we introduce the
mapping Φ : Π −→ Π given by

Φ(x1, x2) =

(
x1,

x2

x2
1 + 1

)
.

We will prove that φa = γa ◦ Φ−1 : Π → Mn(C) has a continuous extension to Π = R × R+ with the
usual topology. It is easy to see that Φ−1(t1, t2) = (t1, (t2

1 + 1)t2). Concerning the spectral properties of
Ta, the matrix-valued function φa contains the same information as γa, but φa behaves much better than
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γa, at least for a continuous on R. From now on, we take φa as the spectral matrix-valued function for
the Toeplitz operator Ta. A direct computation shows that

φa(t1, t2) =

∫ ∞

−∞

a

 −t1 + s1

2
√

t2(t2
1 + 1)

 H(s1)[H(s1)]T ds1.

Note that both Φ and Φ−1 are continuous on R × [0,+∞). In addition, the spectral function φa =

γa ◦Φ−1 is continuous on R × [0,+∞) because γa is. Since Φ−1(t1, 0) = (t1, 0), we have that φa(t1, 0) =

γa(t1, 0) for all t1 ∈ C.

Theorem 4.3. For a ∈ C(R), the spectral matrix-valued function φa : Π → Mn(C) can be extended
continuously to Π = R × R+. Furthermore, φa is constant along R × {+∞}.

Proof. The result follows from Lemmas 4.2 and 4.4–4.6 below. �

Lemma 4.4. Let a ∈ L∞(R) and suppose that a converges at ±∞, then φa = (φa
jk) satisfies

lim
(t1,t2)→(+∞,0)

φa(t1, t2) = a(−∞)I.

That is, for ε > 0, there exists δ > 0 and N > 0 such that |φa
jk(t1, t2)−δ jka(−∞)| < ε whenever 0 < t2 < δ

and t1 > N. Analogously,
lim

(t1,t2)→(−∞,0)
φa(t1, t2) = a(+∞)I.

Proof. Suppose that a(−∞) = 0. Let ε > 0. Since h j−1(s1)hk−1(s1) ∈ L2(R), there exists s0 > 0 such
that

‖a‖∞

∫ ∞

s0

|h j−1(s1)hk−1(s1)|ds1 <
ε

2
.

Let C jk =
∫ ∞
−∞
|h j−1(s1)hk−1(s1)|dy1 > 0, then we have

|φa
jk(t1, t2)| =

∣∣∣∣∣∣∣∣∣
∫ ∞

−∞

a

 −t1 + s1

2
√

t2(t2
1 + 1)

 h j−1(s1)hk−1(s1)ds1

∣∣∣∣∣∣∣∣∣
≤

∫ s0

−∞

∣∣∣∣∣∣∣∣∣a
 −t1 + s1

2
√

t2(t2
1 + 1)

 h j−1(s1)hk−1(s1)

∣∣∣∣∣∣∣∣∣ ds1

+

∫ ∞

s0

∣∣∣∣∣∣∣∣∣a
 −t1 + s1

2
√

t2(t2
1 + 1)

 h j−1(s1)hk−1(s1)

∣∣∣∣∣∣∣∣∣ ds1

≤ C jk max
−∞<s1<s0

∣∣∣∣∣∣∣∣∣a
 −t1 + s1

2
√

t2(t2
1 + 1)


∣∣∣∣∣∣∣∣∣ +

ε

2
.
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Since a converges to zero at −∞, there exists N1 > 0 such that C jk|a(s)| < ε/2 for −s > N1. Take
δ = 1/(16N2

1 ), then we have 1
2
√

t2
> 2N1 for 0 < t2 < δ. On the other hand, assume t1 > s0 and

−∞ < s1 < s0, then
t1 − s1√

t2
1 + 1

>
t1 − s0√

t2
1 + 1

.

The righthand side of this inequality converges to 1 when t1 tends to +∞, thus there exists N2 > s0 such

that (t1 − s0)/
√

t2
1 + 1 > 1/2 for t1 > N2. Consequently,

N1 = 2N1
1
2
<

1
2
√

t2

t1 − s0√
(t2

1 + 1)
<

t1 − s1

2
√

t2(t2
1 + 1)

.

For 0 < t2 < δ and t1 > N := max{s0,N2} we have

C jk

∣∣∣∣∣∣∣∣∣a
 −t1 + s1

2
√

t2(t2
1 + 1)


∣∣∣∣∣∣∣∣∣ <

ε

2
.

We define â(s) = a(s) − a2 in the case a(−∞) , 0, where a2 := a(−∞). Note that â converges to
zero at −∞ and φa1+a2 = φa1 + φa2 for any nilpotent symbols a1 and a2, then

lim
(t1,t2)→(+∞,0)

φa
jk(t1, t2) = lim

(t1,t2)→(+∞,0)
φâ+a2

jk (t1, t2)

= lim
(t1,t2)→(+∞,0)

φâ
jk(t1, t2)

+ a2

∫ ∞

−∞

h j−1(s1)hk−1(s1)ds1

= a(−∞)δ jk.

Finally, the limit of φa at (−∞, 0) can be proved analogously. �

Lemma 4.5. Let t0 ∈ R+. If a ∈ L∞(R) is continuous at −1/(2
√

t0), then the spectral matrix-valued
function φa satisfies

lim
(t1,t2)→(+∞,t0)

φa(t1, t2) = a
(
−

1
2
√

t0

)
I.

Analogously, if a is continuous at 1/(2
√

t0), then

lim
(t1,t2)→(−∞,t0)

φa(t1, t2) = a
(

1
2
√

t0

)
I.

Proof. Suppose that a converges to zero at −1/(2
√

t0). Let ε > 0. Since h j−1(s1), hk−1(s1) ∈ L2(R, ds1),
there exists s0 > 0 such that

‖a‖∞

∫ −s0

−∞

|h j−1(s1)hk−1(s1)|ds1 <
ε

3
,

(4.6)
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‖a‖∞

∫ ∞

s0

|h j−1(s1)hk−1(s1)|ds1 <
ε

3
.

Take into account C jk =
∫ ∞
−∞
|h j−1(s1)hk−1(s1)|ds1 > 0 in the following computation

|φa
jk(t1, t2)| ≤

∫ −s0

−∞

∣∣∣∣∣∣∣∣∣a
 −t1 + s1

2
√

t2(t2
1 + 1)


∣∣∣∣∣∣∣∣∣ |h j−1(s1)hk−1(s1)|ds1

+

∫ s0

−s0

∣∣∣∣∣∣∣∣∣a
 −t1 + s1

2
√

t2(t2
1 + 1)


∣∣∣∣∣∣∣∣∣ |h j−1(s1)hk−1(s1)|ds1

+

∫ ∞

s0

∣∣∣∣∣∣∣∣∣a
 −t1 + s1

2
√

t2(t2
1 + 1)


∣∣∣∣∣∣∣∣∣ |h j−1(s1)hk−1(s1)|ds1

<
2ε
3

+ C jk max
−s0<s1<s0

∣∣∣∣∣∣∣∣∣a
 −t1 + s1

2
√

t2(t2
1 + 1)


∣∣∣∣∣∣∣∣∣ .

Because of the continuity of a at −1/(2
√

t0), there exists δ1 > 0 such that C jk|a(s)| < ε/3 for
|s − −1

2
√

t0
| < δ1. Let us estimate the value of the argument of a:

I :=

∣∣∣∣∣∣∣∣∣
1

2
√

t2(t2
1 + 1)

(−t1 + s1) −
−1

2
√

t0

∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣− 1
2
√

t2
+

1
2
√

t0

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

t1√
t2
1 + 1

∣∣∣∣∣∣∣∣∣ +
1

2
√

t0

∣∣∣∣∣∣∣∣∣1 −
t1√

t2
1 + 1

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
s1

2
√

t2(t2
1 + 1)

∣∣∣∣∣∣∣∣∣ .
Choose δ > 0 such that

∣∣∣∣− 1
2
√

t2
+ 1

2
√

t0

∣∣∣∣ < δ1/3 for |t2 − t0| < δ. Pick N1 > 0 such that
∣∣∣∣∣1 − t1√

t21+1

∣∣∣∣∣ <
(2
√

t0δ1)/3 whenever t1 > N1. Now, assume that |t2 − t0| < δ and |s1| < s0, then | 1
2
√

t2
| < 1

2
√

t0
+ δ1

3 . Thus,
|s1 |

2
√

t2(t21+1)
converges to 0 when t1 tends to +∞. Therefore, there exists N > N1 such that |s1 |

2
√

t2(t21+1)
< δ1/3

for t1 > N. The additional condition t1 > N implies

C jk

∣∣∣∣∣∣∣∣∣a
 −t1 + s1

2
√

t2(t2
1 + 1)


∣∣∣∣∣∣∣∣∣ < ε/3.

Hence, |φa
jk(t1, t2)| < ε if |t2 − t0| < δ and t1 > N.
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If a does not converge to zero at − 1
2
√

t0
, then take the function â(s) = a(s)− a2 and proceed as in the

proof of Lemma 4.4, where a2 = a
(
− 1

2
√

t0

)
.

Finally, the justification of the limit of φa at (−∞, t0) can be done analogously. �

Lemma 4.6. Let a ∈ L∞(R) be continuous at 0 ∈ R. For t0 ∈ R, the spectral matrix-valued function φa

satisfies
lim

(t1,t2)→(t0,+∞)
φa(t1, t2) = a(0)I.

Actually, we have uniform convergence of φa(t1, t2) at (t0,+∞); that is, for ε > 0, there exists N > 0
such that |φa

jk(t1, t2) − a(0)| < ε for all t2 > N and for all t1 ∈ R.

Proof. Suppose that a(0) = 0. Let ε > 0, and choose s0 > 0 such that Eq (4.6) holds. Let C jk =∫ ∞
−∞
|h j−1(s1)hk−1(s1)|ds1 > 0, then

|φa
jk(t1, t2)| ≤

∫ −s0

−∞

∣∣∣∣∣∣∣∣∣a
 −t1 + s1

2
√

t2(t2
1 + 1)


∣∣∣∣∣∣∣∣∣ |h j−1(s1)hk−1(s1)|ds1

+

∫ s0

−s0

∣∣∣∣∣∣∣∣∣a
 −t1 + s1

2
√

t2(t2
1 + 1)


∣∣∣∣∣∣∣∣∣ |h j−1(s1)hk−1(s1)|ds1

+

∫ ∞

s0

∣∣∣∣∣∣∣∣∣a
 −t1 + s1

2
√

t2(t2
1 + 1)


∣∣∣∣∣∣∣∣∣ |h j−1(s1)hk−1(s1)|ds1

<
2ε
3

+ C jk max
−s0<s1<s0

∣∣∣∣∣∣∣∣∣a
 −t1 + s1

2
√

t2(t2
1 + 1)


∣∣∣∣∣∣∣∣∣ .

By the continuity of a at 0, there exists δ1 > 0 such that |a(s)| < ε/(3C jk) for |s| < δ1. For
−s0 < s1 < s0, we have∣∣∣∣∣∣∣∣∣

−t1 + s1

2
√

t2(t2
1 + 1)

∣∣∣∣∣∣∣∣∣ ≤
1

2
√

t2


∣∣∣∣∣∣∣∣∣

t1√
t2
1 + 1

∣∣∣∣∣∣∣∣∣ +
|s1|√
t2
1 + 1

 < 1
2
√

t2
(1 + s0).

Take N = (1 + s0)2/(4δ2
1). The inequality t2 > N implies 1

2
√

t2
< δ1

(1+s0) . Thus, if t2 > N, t1 ∈ R and
−s0 < s1 < s0, then ∣∣∣∣∣∣∣∣∣

−t1 + s1

2
√

t2(t2
1 + 1)

∣∣∣∣∣∣∣∣∣ < δ1.

Consequently, |φa
jk(t1, t2)| < ε for all t2 > N and t1 ∈ R.

Finally, in the case a(0) , 0, the proof can be carried out by considering the symbol â(s) = a(s) −
a(0). �
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For each nilpotent symbol a ∈ C(R), the spectral function φa is continuous on Π and is constant
along R × {+∞}. In order to obtain a larger algebra, we now consider symbols a ∈ PC(R, {0}), where
PC(R, {0}) is the set of continuous functions on R with one-sided limits at 0.

Consider the indicator function χ+ = χ[0,+∞], for which

φχ+(t1, t2) =

∫ ∞

t1
H(s1)[H(s1)]T ds1. (4.7)

Theorem 4.7. Let a ∈ PC(R, {0}), then the spectral matrix-valued function φa can be extended
continuously to Π.

Proof. For a ∈ PC(R, {0}), we have

a(s) = â(s) + [a(0+) − a(0−)]χ+(s),

where a(0−) and a(0+) are the one-side limits of a at 0, and â(s) = a(s) + [a(0−) − a(0+)]χ+(s). Since
â ∈ C(R), the spectral function φâ is continuous on Π. According to (4.7), φχ+ is obviously continuous
on Π. �

The spectral matrix-valued function φχ+ depends only the real variable t1; thus, it can be identified
with the one-variable function

φ+(t) :=
∫ ∞

t
H(s)[H(s)]T ds. (4.8)

Lemma 4.8. The matrix-valued function φ+ = (φ+
jk) satisfies:

(1) φ+(−∞) = I and φ+(+∞) = 0.
(2) For each t ∈ R, φ+(t) is symmetric positive definite and ‖φ+(t)‖ ≤ 1, where ‖ · ‖ is the uniform

norm.
(3) There exists E ∈ Mn(C) such that for all t ∈ R, one has that φ+(t) = EMtET , where E ∈ Mn(C)

and

Mt =

∫ ∞

t
e−s2

S S T ds, S = (1, s, ..., sn−1)T .

(4) For each t ∈ R and λ ∈ C, det(λI − φ+(t)) = 0 if, and only if, det(λM−∞ − Mt) = 0.

Proof. Part (1) follows since {h j}
∞
j=0 is an orthonormal basis for L2(R). The matrix φ+(t) is symmetric

for all t because H(s)H(s)T is symmetric for all s. Let v ∈ Cn be a unit vector, then

〈φ+(t)v, v〉 =

∫ ∞

t
|〈H(s), v〉|2ds, (4.9)

where es2
|〈H(s), v〉|2 is a nonzero polynomial, thus 〈φ+(t)v, v〉 > 0. Now, we note that

〈φ+(t)v, v〉 <
∫ ∞

−∞

|〈H(s), v〉|2ds = 〈φ+(−∞)v, v〉 = 〈Iv, v〉 = 1,

hence, ‖φ+(t)‖ ≤ 1. This proves (2).
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The Hermite function is given by

hk(s) = e−s2/2
[k/2]∑
m=0

dkm sk−2m, dkm =
1√

2kk!
√
π

(−1)mk!2k−2m

m!(k − 2m)!

= e−s2/2
k∑

m=0

ckm sm.

Define

E =


c00 0 · · · 0
c10 c11 · · · 0
...

...
. . .

...

cn−1,0 cn−1,1 · · · cn−1,n−1

 ,
then H(s) = (h0(s), ..., hn−1(s))T = e−s2/2ES and

H(s)H(s)T = e−s2
ES (ES )T = e−s2

ES S T ET .

Therefore, φ+(t) = EMtET . Also, det E , 0 since E is a lower triangular matrix and the scalars c j j are
nonzero. This proves (3).

Finally, let λ ∈ C. We have I = φ+(−∞) = EM−∞ET , then

λI − φ+(t) = λEM−∞ET − EMtET

= E(λM−∞ − Mt)ET .

Thus, det(λI − EMtET ) = 0 if, and only if, det(λM−∞ − Mt) = 0. �

4.2. The algebra generated by the Toeplitz operator Tχ+

The C∗-algebra generated by Tχ+ is isomorphic to the C∗-algebra generated by φ+. Let Dn be C∗-
algebra generated by I and φ+, which is a subalgebra of Mn(C) ⊗ C(R), where the metric is given by
‖M‖ = maxt∈R ‖M(t)‖.

According to Lemma 4.8, the matrix φ+(t) is diagonalizable for each t ∈ R and its spectrum σ(φ+(t))
lies in [0, 1]. The eigenvalues are given by the equation det(λM−∞−Mt) = 0. There exists an orthogonal
matrix B(t) such that

D(t) := B(t)Tφ+(t)B(t) = diag {λ1(t), ..., λn(t)},

that is, if B(t) = [v1(t) · · · vn(t)], then φ+(t)v j(t) = λ j(t)v j(t) for j = 1, ..., n. We may assume that B and
λ j are continuous on R, and λ1(t) ≤ λ2(t) ≤ · · · ≤ λn(t). We have λ j(−∞) = 1 and λ j(+∞) = 0.

Up to isomorphism, the C∗-algebra Dn is equal to the C∗-algebra generated by D, that is, each
element ϕ ∈ Dn is a uniform limit of polynomials on D:

ϕ(t) = lim
m→∞

diag {pm(λ1(t)), ..., pm(λn(t))}.

Therefore, we conclude
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Theorem 4.9. Let Cn(R) be the C∗-subalgebra of (C(R))n that consists of all n-tuples f = ( f1, ..., fn)
such that

f j(t) = fk(x)

when λ j(t) = λk(x). We can identify f with diag { f1, ..., fn}, then the C∗-algebra Dn generated by φ+ is
isomorphic to Cn(R), where the isomorphism is given by

ϕ 7−→ BTϕB.

4.3. The algebra generated by the Toeplitz operators with symbols a ∈ PC(R, {0})

In this section, we describe the C∗-algebra generated by all the Toeplitz operators Ta or, equivalently,
the C∗-algebra generated by the matrix-valued functions φa : Π → C with a ∈ PC(R, {0}). Let B be
the C∗-algebra generated by all the matrix-valued functions φa with a ∈ PC(R, {0}), and let T be the
C∗-subalgebra of Mn(C(Π)) = Mn(C) ⊗ C(Π) consisting of all M such that M(±∞, t2) ∈ CI for each
t2 ∈ R+ and

BT M(·, 0)B, BT M(·,+∞)B ∈ Cn(R).

We will prove that B = T by using a Stone-Weierstrass theorem for C∗-algebras. Recall that a
C∗-algebra A is said to be a CCR algebra if for every non-cero irreducible representation (H, π) of A
we have π(A) ⊂ K(H), where K(H) is the ideal of all compact operators acting on the Hilbert space H.

Theorem 4.10. [26] Let A and B be C∗-algebras such that B ⊂ A. If A is a CCR algebra and B
separates the pure state space ofA, then B = A.

Our main result of this section is the following:

Theorem 4.11. The C∗-algebra generated by all matrix-valued functions φa, with a ∈ PC(R, {0}),
equals T . That is, the C∗-algebra generated by all Toeplitz operators Ta is isomorphic and isometric
to the algebra T , where the isomorphism is defined on the generators by the rule

Ta 7→ φa.

Proof. B = T follows from Theorem 4.10. That is, B separates the pure state space of T according to
Lemmas 4.12–4.15, 4.17, and 4.19. �

It is easy to see that B is contained in T . Let 〈·, ·〉 denote the usual inner product on Cn. Now, the
pure state space of the C∗-algebra T consists of all functionals having the form:

1) f(x1,x2),v(M) = 〈M(x1, x2)v, v〉 for (x1, x2) ∈ Π, v ∈ Cn a unit vector,
2) f(±∞,t2)(M) = λ±t2 for 0 ≤ t2 ≤ +∞, where λ±t2 I = M(±∞, t2),
3) f(t1,±∞), j(M) = 〈M(t1,±∞)v j(t1), v j(t1)〉 for t1 ∈ R and j =, ..., n,

where M ∈ T is arbitrary. The remainder of this section is devoted to separate all the pure states of T .

Lemma 4.12. Let t2, τ2 ∈ R+. We have f(−∞,t2)(φχ+) , f(+∞,τ2)(φχ+). If t2 , τ2, then there exists a ∈ C(R)
such that f(±∞,t2)(φa) , f(±∞,τ2)(φa).
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Proof. The pure states f(−∞,t2) and f(+∞,τ2) are separated by φχ+ since φχ+(−∞,+∞) = I and
φχ+(+∞,+∞) = 0. If a ∈ C(R), then φa(±∞, t2) = a(∓1/(2

√
t2))I for t2 ∈ R+, φa(±∞, 0) = a(∓∞)I,

and φa(±∞,+∞) = a(0)I. Thus, taking a(s) = s/
√

s2 + 1, we have

f(±∞,t2)(φa) = ∓
1

√
1 + 4t2

.

Therefore, the pure states f(±∞,t2) and f(±∞,τ2) are separated by φa when t2 , τ2. �

We shall continue separating the rest of pure states using continuous functions onR and the indicator
function χ+.

Let v ∈ Cn be a unit vector. Consider the function hv(s) = |〈H(s), v〉|2. This can be written as
hv(s) = qv(s)e−s2

, where
qv(s) = |v0d0H0(s) + · · · + vn−1dn−1Hn−1(s)|2

is a polynomial of degree at most 2n − 2 taking nonnegative values.

Lemma 4.13. Let v ∈ Cn be a unit vector and (±∞, t2), (x1, x2) be points with x1 ∈ R and x2, t2 ∈ R+,
then there exists a symbol a ∈ PC(R, {0}) such that

f(±∞,t2)(φa) , f(x1,x2),v(φa).

Proof. For x1 ∈ R and x2 ∈ R+, we have

f(x1,x2),v(φχ+) =

∫ ∞

x1

|〈H(s), v〉|2ds =

∫ ∞

x1

qv(s)e−s2
ds.

Since qv is not zero and nonnegative, f(x1,x2),v(φχ+) > 0. On the other hand, f(+∞,t2)(φχ+) =

χ+(−1/(2
√

t2)) = 0 for t2 ∈ [0,+∞]. Hence,

f(+∞,t2)(φχ+) , f(x1,x2),v(φχ+).

We now take χ− = 1 − χ+, then

f(x1,x2),v(φχ−) =

∫ x1

−∞

|〈H(s), v〉|2ds =

∫ x1

−∞

qv(s)e−s2
> 0.

Also, f(−∞,t2)(φχ−) = χ−(1/(2
√

t2)) = 0, then

f(−∞,t2)(φχ−) , f(x1,x2),v(φχ−).

�

Lemma 4.14. Let v,w ∈ Cn be unit vectors. Take (t1, 0), (x1, x2) ∈ Π, with t1 ∈ R, x1 ∈ R and
0 < x2 ≤ +∞, then there exists a symbol a ∈ C(R) such that

f(t1,0),w(φa) , f(x1,x2),v(φa).
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Proof. Consider a(s) = 1/(s2 + 1) for which a(−∞) = 0 = a(+∞), then

f(t1,0),w(φa) = a(−∞)
∫ t1

−∞

|〈H(s),w〉|2ds + a(+∞)
∫ ∞

t1
|〈H(s),w〉|2ds = 0.

Since a(s) > 0 for all s ∈ R, and qv(s) = 0 at most at finite number of values of s, we have that
a(s)qv(s)e−s2

> 0 almost everywhere, then

f(x1,x2),v(φa) =

∫ ∞

−∞

a

 −x1 + s

2
√

x2(x2
1 + 1)

 qv(s)e−s2
ds > 0 if x2 ∈ R.

Moreover, φa(x1,+∞) = a(0)I = 1 · I. Thus, f(x1,+∞),v(φa) = 1. We have proved that f(t1,0),w(φa) ,
f(x1,x2),v(φa). �

Lemma 4.15. Let v,w ∈ Cn be unit vectors, (x1, x2) ∈ Π, and (t1,+∞) ∈ Π with t1 ∈ R, then there
exists a ∈ C(R) such that

f(x1,x2),v(φa) , f(t1,+∞),w(φa).

Proof. Let a(s) = |s|/(s2 + 1) so that a(0) = 0 and f(t1,+∞),w(φa) = a(0) = 0. Since qv(s) = 0 at most at
finite number of points,

f(x1,x2),v(φa) =

∫ ∞

−∞

a

 −x1 + s

2
√

x2(x2
1 + 1)

 qv(s)e−s2
ds > 0.

�

Next, we will separate the pure states associated to the points (t1, t2) ∈ Π using continuous symbols
indexed by α > 0 and r ∈ R. We introduce

ar
α(y) =

1
α

a([y − r]/α)

where

a(y) =



0 if y < [−1, 1]

1 + y if y ∈ [−1, 0]

1 − y if y ∈ [0, 1].

Note that the family of functions aα := a0
α is an approximate identity in L1(R, dµ). Since h jhk ∈

L1(R), we have pointwise convergence in

lim
α→0

(aα ∗ h jhk)(y) = (h jhk)(y)

because h jhk is continuous.
Since Φ : Π → Π is a homeomorphism and φa = γa ◦ Φ−1, we consider the matrix-valued function

γa in order to carry out the separation of pure states associated to the points in Π.
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Lemma 4.16. Let (x1, x2) ∈ Π and ar,α = ar
α

2√x2
, with α > 0 and r ∈ R, then the matrix-valued function

γar,α satisfies
lim
α→0

γar,α(x1, x2) = 2
√

x2H(x1 + 2
√

x2r)[H(x1 + 2
√

x2r)]T . (4.10)

Further,
lim
α→0

f(x1,x2),v(γar1 ,αγar2 ,α) = 4x2 [H(β1)]T H(β2) 〈H(β1), v〉〈v,H(β2)〉, (4.11)

where βi = x1 + 2
√

x2ri for i = 1, 2.

Proof. Take into account that {aα} is an approximate identity and aα(y− x) = aα(x− y) for any x, y ∈ R.
Calculate the entries of γar,α:

γ
ar,α
jk (x1, x2) =

∫ ∞

−∞

ar,α

(
−x1 + y
2
√

x2

)
(h j−1hk−1)(y)dy

= 2
√

x2

∫ ∞

−∞

1
α

a
(
y − (x1 + 2

√
x2r)

α

)
(h j−1hk−1)(y)dy

= 2
√

x2

∫ ∞

−∞

aα(y − (x1 + 2
√

x2r))(h j−1hk−1)(y)dy

= 2
√

x2

∫ ∞

−∞

aα((x1 + 2
√

x2r) − y)(h j−1hk−1)(y)dy

= 2
√

x2((h j−1hk−1) ∗ aα)(x1 + 2
√

x2r).

Since aα is an approximate identity, we have that

lim
α→0

γ
ar,α
jk (x1, x2) = lim

α→0
2
√

x2((h j−1hk−1) ∗ aα)(x1 + 2
√

x2r)

= 2
√

x2 lim
α→0

((h j−1hk−1) ∗ aα)(x1 + 2
√

x2r)

= 2
√

x2(h j−1hk−1)(x1 + 2
√

x2r).

This completes the proof of (4.10). Finally,

I := lim
α→0

f(x1,x2),v(γar1 ,αγar2 ,α)

= lim
α→0
〈γar1 ,α(x1, x2)γar2 ,α(x1, x2)v, v〉

= 4x2〈H(β1)[H(β1)]T H(β2)[H(β2)]T v, v〉

= 4x2 [H(β1)]T H(β2) 〈H(β1), v〉〈v,H(β2)〉.

�

For v and w unit vectors in Cn and (t1, t2) , (x1, x2) ∈ Π, the following result says that the pure states
f(t1,t2),w and f(x1,x2),v can be separated by B.

Lemma 4.17. Let v, w ∈ Cn be unit vectors, (t1, t2), (x1, x2) ∈ Π, and ar,α,t2 = ar
α

4
√

x2t2

, with α > 0 and

r ∈ R. If
f(x1,x2),v(γar,α,t2 ) = f(t1,t2),w(γar,α,t2 ) ∀α > 0, r ∈ R, (4.12)

then (t1, t2) = (x1, x2).
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Proof. It is easy to see that

γ
ar,α,t2
jk (x1, x2) = 2

√
x2((h j−1hk−1) ∗ a α

2
√

t2
)(x1 + 2

√
x2r)

and
γ

ar,α,t2
jk (t1, t2) = 2

√
t2((h j−1hk−1) ∗ a α

2√x2
)(t1 + 2

√
t2r).

Since Eq (4.12) holds for all α > 0, we can take the limit in both sides of it when α → 0; then for
all r ∈ R, we have

lim
α→0

f(x1,x2),v(γar,α,t2 ) = lim
α→0

f(t1,t2),w(γar,α,t2 ),

2
√

x2|〈H(x1 + 2
√

x2r), v〉|2 = 2
√

t2|〈H(t1 + 2
√

t2r),w〉|2,
√

x2e−(x1+2
√

x2r)2
qv(x1 + 2

√
x2r) =

√
t2e−(t1+2

√
t2r)2

qw(t1 + 2
√

t2r),

where qv and qw are polynomials of degree at most 2n − 2. Thus, there is a constant C ∈ R such that

e4(x2−t2)r2+4(x1
√

x2−t1
√

t2)r+x2
1−t21 = C ∀r ∈ R. (4.13)

Therefore, (4.13) holds if, and only if, x1 = t1 and x2 = t2. �

For the separation of pure states attached to the same fiber, we will use the following lemma.

Lemma 4.18. [19] Let y1, ..., yn be real numbers different from each other, then {H(y1), ...,H(yn)} is a
basis for Cn.

Lemma 4.19. Let w, v ∈ Cn be unit vectors and (x1, x2) ∈ Π. Take the matrix-valued functions γar1 ,α

and γar2 ,α with symbols as defined in Lemma 4.16, where r1, r2 ∈ R and α > 0. Suppose that

f(x1,x2),w(γar1 ,αγar2 ,α) = f(x1,x2),v(γar1 ,αγar2 ,α) ∀α > 0, r1, r2 ∈ R. (4.14)

Then w = λv, where λ is a uni-modular complex number; that is, f(x1,x2),w = f(x1,x2),v.

Proof. Define βi = 2
√

x2ri + x1 for i = 1, 2. The real number [H(β1)]T H(β2) could be zero only for
a finite number of values of β1 and β2. We also have x2 > 0. By continuity and (4.11), the following
equality

lim
α→0

f(x1,x2),w(γar1 ,αγar2 ,α) = lim
α→0

f(x1,x2),v(γar1 ,αγar2 ,α)

is reduced to
〈H(β1),w〉〈w,H(β2)〉 = 〈H(β1), v〉〈v,H(β2)〉.

Without loss of generality, we can assume that x1 = 0 and x2 = 1/4, then

〈w,H(r1)〉〈w,H(r2)〉 = 〈v,H(r1)〉〈v,H(r2)〉.

This equality holds for all r1 and r2. In particular, take r = r2 = r1; thus, |〈w,H(r)〉| = |〈v,H(r)〉| for
all r. We can write 〈w,H(r)〉 = 〈v,H(r)〉eiθ(r) with θ(r) ∈ R, then

〈v,H(r1)〉〈v,H(r2)〉eiθ(r2)−iθ(r1) = 〈v,H(r1)〉〈v,H(r2)〉.

Thus, eiθ(r2)−iθ(r1) = 1 for all r1, r2, which means that 〈w,H(y)〉 = eiθ0〈v,H(y)〉 for all y ∈ R and some
constant θ0. Take u = w − eiθ0v, then 〈u,H(y)〉 = 0. According to Lemma 4.18, the set {H(yk)}nk=1 is a
basis for Cn and

〈u,H(yk)〉 = 0, k = 1, ..., n.

Therefore, u must be the zero vector. �
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5. Conclusions

Recall that a nilpotent symbol for the Siegel domain D2 has the form c(Im ζ1, Im ζ2−|ζ1|
2). Certainly

each Toeplitz operator Tc : A2
L(D2)→ A2

L(D2) can be unitarily identified with a multiplication operator
γcI, but the C∗-algebra generated by all of them is large enough to fully describe its space of irreducible
representations. The problem arises because γc admits a continuous extension to the spectrum of
the algebra and such spectrum is uknown in general. For this reason, we confine ourselves to two
subclasses of nilpotent symbols in two particular cases of poly-Bergman-type spaces.

In the case of the poly-Bergman-type space A2
(1,n)(D2), in Theorem 3.3 we described the C∗-

algebra generated by all Toeplitz operators with symbols of the form b̃(ζ) = b(Im ζ2 − |ζ1|
2),

whereas in Theorem 3.4 we used symbols of the form a(Im ζ1). Concerning the poly-Bergman-type
space A2

(n,1)(D2), Theorem 4.11 is our main result, where we described the C∗-algebra generated by
all Toeplitz operators with symbols of the form a(Im ζ1) using the Stone-Weierstrass theorem for
noncommutative C∗-algebras [26]. The C∗-algebra generated by all Toeplitz operators with symbols of
the form b̃(ζ) = b(Im ζ2 − |ζ1|

2) was studied in [16]. The description of the C∗-algebra generated by all
Toeplitz operators with nilpotent symbols without restrictions is still an open problem.
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