Research article Special Issues

A symplectic approach to Schrödinger equations in the infinite-dimensional unbounded setting

  • Received: 04 July 2024 Revised: 11 September 2024 Accepted: 20 September 2024 Published: 27 September 2024
  • MSC : 17B66, 34A26, 34A34, 53Z05

  • By using the theory of analytic vectors and manifolds modeled on normed spaces, we provide a rigorous symplectic differential geometric approach to $ t $-dependent Schrödinger equations on separable (possibly infinite-dimensional) Hilbert spaces determined by families of unbounded self-adjoint Hamiltonians admitting a common domain of analytic vectors. This allows one to cope with the lack of smoothness of structures appearing in quantum mechanical problems while using differential geometric techniques. Our techniques also allow for the analysis of problems related to unbounded operators that are not self-adjoint. As an application, the Marsden-Weinstein reduction procedure was employed to map the above-mentioned $ t $-dependent Schrödinger equations onto their projective spaces. We also analyzed other physically and mathematically relevant applications, demonstrating the usefulness of our techniques.

    Citation: Javier de Lucas, Julia Lange, Xavier Rivas. A symplectic approach to Schrödinger equations in the infinite-dimensional unbounded setting[J]. AIMS Mathematics, 2024, 9(10): 27998-28043. doi: 10.3934/math.20241359

    Related Papers:

  • By using the theory of analytic vectors and manifolds modeled on normed spaces, we provide a rigorous symplectic differential geometric approach to $ t $-dependent Schrödinger equations on separable (possibly infinite-dimensional) Hilbert spaces determined by families of unbounded self-adjoint Hamiltonians admitting a common domain of analytic vectors. This allows one to cope with the lack of smoothness of structures appearing in quantum mechanical problems while using differential geometric techniques. Our techniques also allow for the analysis of problems related to unbounded operators that are not self-adjoint. As an application, the Marsden-Weinstein reduction procedure was employed to map the above-mentioned $ t $-dependent Schrödinger equations onto their projective spaces. We also analyzed other physically and mathematically relevant applications, demonstrating the usefulness of our techniques.



    加载中


    [1] J. E. Marsden, T. S. Ratiu, Introduction to mechanics and symmetry, Springer-Verlag, 1999. https://doi.org/10.1007/978-0-387-21792-5
    [2] A. C. Silva, Lectures on symplectic geometry, Springer-Verlag, 2001. https://doi.org/10.1007/978-3-540-45330-7
    [3] J. M. Souriau, Structure of dynamical systems: a symplectic view of physics, Birkhäuser, 1997.
    [4] J. F. Cariñena, J. Clemente-Gallardo, G. Marmo, Geometrization of quantum mechanics, Theor. Math. Phys., 152 (2007), 894–903. https://doi.org/10.1007/s11232-007-0075-3 doi: 10.1007/s11232-007-0075-3
    [5] J. F. Cariñena, A. Ibort, G. Marmo, G. Morandi, Geometry from dynamics, classical and quantum, Springer-Verlag, 2015. https://doi.org/10.1007/978-94-017-9220-2
    [6] J. M. F. Castillo, W. Cuellar, M. González, R. Pino, On symplectic Banach spaces, Rev. R. Acad. Cienc. Exactas Fis. Nat., 117 (2023), 56. https://doi.org/10.1007/s13398-023-01389-8 doi: 10.1007/s13398-023-01389-8
    [7] O. Fabert, Infinite-dimensional symplectic non-squeezing using non-standard analysis, arXiv, 2015. https://arXiv.org/abs/1501.05905v5
    [8] Y. Ostrover, When symplectic topology meets Banach space geometry, Proceedings of the International Congress of Mathematicians, 2014. http://doi.org/10.48550/arXiv.1404.6954
    [9] F. Pelletier, On Darboux Theorem for symplectic forms on direct limits of symplectic Banach manifolds, Int. J. Geom. Methods Mod. Phys., 15 (2018), 1850206. https://doi.org/10.1142/S0219887818502067 doi: 10.1142/S0219887818502067
    [10] A. B. Tumpach, Banach Poisson-Lie groups and Bruhat-Poisson structure of the restricted grassmannian, Commun. Math. Phys., 373 (2020), 795–858. https://doi.org/10.1007/s00220-019-03674-3 doi: 10.1007/s00220-019-03674-3
    [11] O. I. Mokhov, Symplectic and Poisson geometry on loop spaces of smooth manifolds and integrable equations, Harwood Academic Publishers, 2001.
    [12] R. Cirelli, A. Manià, L. Pizzocchero, Quantum mechanics as an infinite-dimensional Hamiltonian system with uncertainty structure: part Ⅰ, J. Math. Phys., 31 (1990), 2891–2897. https://doi.org/10.1063/1.528941 doi: 10.1063/1.528941
    [13] R. Cirelli, A. Manià, L. Pizzocchero, Quantum mechanics as an infinite-dimensional Hamiltonian system with uncertainty structure: part Ⅱ, J. Math. Phys., 31 (1990), 2898–2903. https://doi.org/10.1063/1.528942 doi: 10.1063/1.528942
    [14] A. Y. Khrennikov, Symplectic geometry on an infinite-dimensional phase space and an asymptotic representation of quantum averages by Gaussian functional integrals, Izv. Math., 72 (2008), 127. https://doi.org/10.1070/IM2008v072n01ABEH002395 doi: 10.1070/IM2008v072n01ABEH002395
    [15] D. Mendelson, A. R. Nahmod, N. Pavlović, M. Rosenzweig, G. Staffilani, A rigorous derivation of the Hamiltonian structure for the nonlinear Schrödinger equation, Adv. Math., 365 (2020), 107054. https://doi.org/10.1016/j.aim.2020.107054 doi: 10.1016/j.aim.2020.107054
    [16] R. Abraham, J. E. Marsden, T. Ratiu, Manifolds, tensor analysis and applications, Springer-Verlag, 1988. https://doi.org/10.1007/978-1-4612-1029-0
    [17] J. F. Cariñena, J. de Lucas, Lie systems: theory, generalizations, and applications, Dissertationes Math., 479 (2011), 1–162. https://doi.org/10.4064/dm479-0-1 doi: 10.4064/dm479-0-1
    [18] J. Grabowski, M. Kuś, G. Marmo, T. Shulman, Geometry of quantum dynamics in infinite-dimensional Hilbert space, J. Phys. A, 51 (2018), 165301. http://doi.org/10.1088/1751-8121/aab289 doi: 10.1088/1751-8121/aab289
    [19] J. E. Marsden, Hamiltonian one parameter groups, a mathematical exposition of infinite dimensional Hamiltonian systems with applications in classical and quantum mechanics, Arch. Ration. Mech. Anal., 28 (1968), 362–396. https://doi.org/10.1007/BF00251662 doi: 10.1007/BF00251662
    [20] F. Gay-Balmaz, T. S. Ratiu, Group actions on chains of Banach manifolds and applications to fluid dynamics, Ann. Glob. Anal. Geom., 31 (2007), 287–328. https://doi.org/10.1007/s10455-007-9061-0 doi: 10.1007/s10455-007-9061-0
    [21] F. Gay-Balmaz, C. Tronci, Complex fluid models of mixed quantum-classical ynamics, J. Nonlinear Sci., 34 (2004), 81. https://doi.org/10.1007/s00332-024-10044-4 doi: 10.1007/s00332-024-10044-4
    [22] D. Giannetto, Infinite dimensional symplectic reduction and the dynamics of a rigid body moving in a perfect fluid, Padua Thesis Diss. Arch., 2023.
    [23] J. E. Marsden, Generalized Hamiltonian mechanics a mathematical exposition of non-smooth dynamical systems and classical Hamiltonian mechanics, Arch. Ration. Mech. Anal., 28 (1968), 323–361. https://doi.org/10.1007/BF00251661 doi: 10.1007/BF00251661
    [24] J. F. Cariñena, J. Clemente-Gallardo, J. A. Jover-Galtier, J. de Lucas, Application of Lie systems to quantum mechanics: superposition rules, In: G. Marmo, D. M. de Diego, M. M. Lecanda, Classical and quantum physics, Springer-Verlag, 2019. https://doi.org/10.1007/978-3-030-24748-5_6
    [25] A. Schmeding, An introduction to infinite-dimensional differential geometry, Cambridge University Press, 2022. https://doi.org/10.1017/9781009091251
    [26] P. R. Chernoff, J. E. Marsden, Properties of infinite dimensional Hamiltonian systems, Springer-Verlag, 1974. https://doi.org/10.1007/BFb0073665
    [27] B. C. Hall, Quantum theory for mathematicians, Springer-Verlag, 2013. https://doi.org/10.1007/978-1-4614-7116-5
    [28] T. W. B. Kibble, Geometrization of quantum mechanics, Comm. Math. Phys., 65 (1979), 189–201.
    [29] A. Sergeev, Kähler geometry of loop spaces, Math. Soc. Jpn. Mem., 23 (2010), 212. https://doi.org/10.2969/msjmemoirs/023010000 doi: 10.2969/msjmemoirs/023010000
    [30] S. Haller, C. Vizman, Weighted nonlinear flag manifolds as coadjoint orbits, Can. J. Math., 2023. https://doi.org/10.4153/S0008414X23000585
    [31] F. Pelletier, P. Cabau, Convenient partial Poisson manifolds, J. Geom. Phys., 136 (2019), 173–194. https://doi.org/10.1016/j.geomphys.2018.10.017 doi: 10.1016/j.geomphys.2018.10.017
    [32] A. Ashtekar, T. A. Schilling, Geometrical formulation of quantum mechanics, In: A. Harvey, On Einstein's path, Springer-Verlag, 1999. https://doi.org/10.1007/978-1-4612-1422-9_3
    [33] R. Cirelli, L. Pizzocchero, On the integrability of quantum mechanics as an infinite-dimensional Hamiltonian system, Nonlinearity, 3 (1990), 1057–1080. https://doi.org/10.1088/0951-7715/3/4/006 doi: 10.1088/0951-7715/3/4/006
    [34] A. Kriegl, P. W. Michor, The convenient setting of global analysis, American Mathematical Society, 1997. https://doi.org/10.1090/surv/053
    [35] E. Massa, S. Vignolo, A new geometrical framework for time-dependent Hamiltonian mechanics, Extracta Math., 18 (2003), 107–118.
    [36] J. P. Antoine, Quantum mechanics beyond Hilbert space, In: A. Bohm, H. D. Doebner, P. Kielanowski, Irreversibility and causality semigroups and rigged Hilbert spaces, Springer-Verlag, 1998. https://doi.org/10.1007/BFb0106773
    [37] M. Gosson, Symplectic geometry and quantum mechanics, Birkhäuser, 2006. https://doi.org/10.1007/3-7643-7575-2
    [38] M. A. Gosson, Symplectic methods in harmonic analysis and in mathematical physics, Birkhäuser, 2011. https://doi.org/10.1007/978-3-7643-9992-4
    [39] F. M. Ciaglia, F. Di Cosmo, A. Ibort, G. Marmo, Dynamical aspects in the quantizer-dequantizer formalism, Ann. Phys., 385 (2017), 769–781. https://doi.org/10.1016/j.aop.2017.08.025 doi: 10.1016/j.aop.2017.08.025
    [40] L. Schiavone, From point particles to gauge field theories: a differential-geometrical approach to the structures of the space of solutions, PhD thesis, Carlos University, 2023.
    [41] D. Pastorello, Geometric Hamiltonian formulation of quantum mechanics in complex projective spaces, Int. J. Geom. Methods Mod. Phys., 12 (2015), 1560015. https://doi.org/10.1142/S0219887815600154 doi: 10.1142/S0219887815600154
    [42] D. Dahlbom, H. Zhang, C. Miles, X. Bai, C. D. Batista, K. Barros, Geometric integration of classical spin dynamics via a mean-field schrödinger equation, Phys. Rev. B, 2022.
    [43] F. M. Ciaglia, F. D. Cosmo, A. Figueroa, V. I. Man'ko, G. Marmo, L. Schiavone, et al., Nonlinear dynamics from linear quantum evolutions, Ann. Phys., 411 (2019), 167957. https://doi.org/10.1016/j.aop.2019.167957 doi: 10.1016/j.aop.2019.167957
    [44] M. Flato, J. Simon, H. Snellman, D. Sternheimer, Simple facts about analytic vectors and integrability, Ann. Sci. École Norm. Sup., 5 (1972), 423–434.
    [45] R. Goodman, Analytic and entire vectors for representations of Lie groups, Trans. Amer. Math. Soc., 143 (1969), 55–76. https://doi.org/10.2307/1995233 doi: 10.2307/1995233
    [46] E. Nelson, Analytic vectors, Ann. Math., 70 (1959), 572–615. https://doi.org/10.2307/1970331 doi: 10.2307/1970331
    [47] R. Tanzi, Hamiltonian study of the asymptotic symmetries of gauge theories, arXiv, 2021. https://doi.org/10.48550/arXiv.2109.02350
    [48] J. F. Cariñena, E. Martínez, G. Marmo, X. Gràcia, M. C. Muñoz-Lecanda, A quantum route to Hamilton-Jacobi equation: comments and remarks, Banach Center Publ., 110 (2016), 41–56. https://doi.org/10.4064/bc110-0-3 doi: 10.4064/bc110-0-3
    [49] C. Tronci, Momentum maps for mixed states in quantum and classical mechanics, J. Geom. Mech., 11 (2019), 639–656. https://doi.org/10.3934/jgm.2019032 doi: 10.3934/jgm.2019032
    [50] R. Coleman, Calculus on normed spaces, Springer-Verlag, 2012. https://doi.org/10.1007/978-1-4614-3894-6
    [51] M. Fabian, P. Habala, P. Hájek, V. Montesinos, V. Zizler, Banach space ttheory: the basis for linear and nonlinear analysis, Springer-Verlag, 2011. https://doi.org/10.1007/978-1-4419-7515-7
    [52] A. Frölicher, W. Bucher, Calculus in vector spaces without norm, Springer-Verlag, 1966. https://doi.org/10.1007/BFb0068432
    [53] J. D. Moore, Introduction to global analysis: minimal surfaces in Riemannian manifolds, American Mathematical Society, 2017. https://doi.org/10.1090/gsm/187
    [54] J. P. Ortega, T. S. Ratiu, Momentum maps and Hamiltonian reduction, Birkhäuser, 2004. https://doi.org/10.1007/978-1-4757-3811-7
    [55] J. von Neumann, Mathematical foundations of quantum mechanics, Princeton University Press, 2018. https://doi.org/10.1515/9781400889921
    [56] J. J. Sakurai, J. Napolitano, Modern quantum mechanics, Cambridge University Press, 2020. https://doi.org/10.1017/9781108587280
    [57] K. Schmüdgen, Unbounded self-adjoint operators on Hilbert space, Springer-Verlag, 2012. https://doi.org/10.1007/978-94-007-4753-1
    [58] J. Simon, On the integrability of representations of finite dimensional real Lie algebras, Commun. Math. Phys., 28 (1972), 39–46. https://doi.org/10.1007/BF02099370 doi: 10.1007/BF02099370
    [59] J. F. Cariñena, A. Ramos, Lie systems and connections in fibre bundles: applications in quantum mechanics, 9th Intermational Conference Differential Geometry and Applications, 2005. https://doi.org/10.1007/978-3-030-24748-5_6
    [60] F. R. S. Harish-Chandra, Representations of a semisimple Lie group on a Banach space. Ⅰ, Trans. Amer. Math. Soc., 75 (1953), 185–243. https://doi.org/10.1090/S0002-9947-1953-0056610-2 doi: 10.1090/S0002-9947-1953-0056610-2
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(489) PDF downloads(47) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog