This paper extended the framework of quantum Markovianity by introducing backward and inverse backward quantum Markov chains (QMCs). We established the existence of these models under general conditions, demonstrating their applicability to a wide range of quantum systems. Our findings revealed distinct structural properties within these models, providing new insights into their dynamics and relationships to finitely correlated states. These advancements contributed to a deeper understanding of quantum processes and have potential implications for various quantum applications, including hidden quantum Markov processes.
Citation: Luigi Accardi, El Gheted Soueidi, Abdessatar Souissi, Mohamed Rhaima, Farrukh Mukhamedov, Farzona Mukhamedova. Structure of backward quantum Markov chains[J]. AIMS Mathematics, 2024, 9(10): 28044-28057. doi: 10.3934/math.20241360
This paper extended the framework of quantum Markovianity by introducing backward and inverse backward quantum Markov chains (QMCs). We established the existence of these models under general conditions, demonstrating their applicability to a wide range of quantum systems. Our findings revealed distinct structural properties within these models, providing new insights into their dynamics and relationships to finitely correlated states. These advancements contributed to a deeper understanding of quantum processes and have potential implications for various quantum applications, including hidden quantum Markov processes.
[1] | L. Accardi, Non-commutative Markov chains, Proceedings International School of Mathematical Physics, Università di Camerino, 1974. 268–295. |
[2] | L. Accardi, The noncommutative markovian property, Funct. Anal. Appl., 9 (1975), 1–8. https://doi.org/10.1007/BF01078167 doi: 10.1007/BF01078167 |
[3] | L. Accardi, E. G. Soueidy, Y. G. Lu, A. Souissi, Algebraic Hidden Processes and Hidden Markov Processes, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 2024. https://doi.org/10.1142/S0219025724500097 |
[4] | L. Accardi, E. G. Soueidy, Y. G. Lu, A. Souissi, Hidden Quantum Markov processes, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 2024. https://doi.org/10.1142/S0219025724500073 |
[5] | L. Accardi, S. El Gheteb, A. Souissi, Infinite Volume Limits of Entangled States, Lobachevskii J. Math., 44 (2023), 1967–1973. https://doi.org/10.1134/S1995080223060033 doi: 10.1134/S1995080223060033 |
[6] | L. Accardi, A. Souissi, E. G. Soueidy, Quantum Markov chains: A unification approach, Infin. Dimens. Anal. Qu., 23 (2020), 2050016. https://doi.org/10.1142/S0219025720500162 doi: 10.1142/S0219025720500162 |
[7] | C. Budroni, G. Fagundes, M. Kleinmann, Memory Cost of Temporal Correlations, New J. Phys., 21 (2019), 093018. https://doi.org/10.1088/1367-2630/ab3cb4 doi: 10.1088/1367-2630/ab3cb4 |
[8] | A. Dhahri, F. Mukhamedov, Open quantum random walks, quantum Markov chains and recurrence, Rev. Math. Phys., 31 (2019), 1950020. https://doi.org/10.1142/S0129055X1950020X doi: 10.1142/S0129055X1950020X |
[9] | A. Dhahri, F. Fagnola, Potential theory for quantum Markov states and other quantum Markov chains, Anal. Math. Phys., 13 (2023), 31. https://doi.org/10.1007/s13324-023-00790-1 doi: 10.1007/s13324-023-00790-1 |
[10] | M. Fannes, B. Nachtergaele, R. F. Werner, Ground states of VBS models on Cayley trees, J. Stat. Phys., 66 (1992), 939–973, https://doi.org/10.1007/BF01055710 doi: 10.1007/BF01055710 |
[11] | M. Fannes, B. Nachtergaele, R. F. Werner, Finitely correlated states on quantum spin chains, Commun. Math. Phys., 144 (1992), 443–490. https://doi.org/10.1007/BF02099178 doi: 10.1007/BF02099178 |
[12] | O. Fawzi, R. Renner, Quantum conditional mutual information and approximate Markov chains, Commun. Math. Phys., 340 (2015), 575–611. https://doi.org/10.1007/s00220-015-2466-x doi: 10.1007/s00220-015-2466-x |
[13] | Y. Feng, N. Yu, M. Ying, Model checking quantum Markov chains, J. Comput. Syst. Sci., 79 (2013), 1181–1198. https://doi.org/10.1016/j.jcss.2013.04.002 doi: 10.1016/j.jcss.2013.04.002 |
[14] | S. Gudder, Quantum Markov chains, J. Math. Phys., 49 (2008), https://doi.org/10.1063/1.2953952 |
[15] | B. Ibinson, N. Linden, A. Winter, Robustness of quantum Markov chains, Comm. Math. Phys., 277 (2008), 289–304. https://doi.org/10.1007/s00220-007-0362-8 doi: 10.1007/s00220-007-0362-8 |
[16] | B. Kümmerer, Quantum Markov processes and applications in physics, In: Quantum independent increment processes. II, Lecture Notes in Math., 1866, Springer, Berlin, 2006,259–330. https://doi.org/10.1007/11376637_4 |
[17] | G. Pisier, Introduction to Operator Space Theory, Cambridge University Press, 2003. https://doi.org/10.1017/CBO9781107360235 |
[18] | S. Sakai, $C^*$–Algebras and $W^*$–algebras, Springer, Berlin, 1971. https://doi.org/10.1007/978-3-642-61993-9 |
[19] | A. Souissi, F. Mukhamedov, E. G. Soueidi, M. Rhaima, F. Mukhamedova, Entangled hidden elephant random walk model, Chaos, 186 (2024), 115252. https://doi.org/10.1016/j.chaos.2024.115252 doi: 10.1016/j.chaos.2024.115252 |
[20] | A. Souissi, E. G. Soueidi, Entangled Hidden Markov Models, Chaos, Soliton. Fract., 174 (2023), https://doi.org/10.1016/j.chaos.2023.113804 |