Citation: Mohammad Asim, Reny George, Mohammad Imdad. Suzuki type multivalued contractions in C*-algebra valued metric spaces with an application[J]. AIMS Mathematics, 2021, 6(2): 1126-1139. doi: 10.3934/math.2021068
[1] | A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points. Fixed Point Theory Appl., 2012 (2012), Article ID 204. |
[2] | M. Asim, M. Imdad, C*-algebra valued extended b-metric spaces and fixed point results with an application, U.P.B. Sci. Bull., Series A, 82 (2020), 209-218. |
[3] | M. Asim, M. Imdad, Partial JS-metric spaces and fixed point results, Indian J. Math., 61 (2019), 175-186. |
[4] | M. Asim, M. Imdad, S. Radenovic, Fixed point results in extended rectangular b-metric spaces with an application. U.P.B. Sci. Bull., Series A, 81 (2019), 11-20. |
[5] | I. A. Bakhtin, The contraction mapping principle in almost metric spaces. Funct. Anal., Gos. Ped. Inst. Unianowsk, 30 (1989), 26-37. |
[6] | Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Some common fixed point results in ordered partial b-metric spaces, J, Inequalities Appl., 2013 (2013), 562. doi: 10.1186/1029-242X-2013-562 |
[7] | N. Hussain, J. R. Roshan, V. Parvaneh, A. Latif, A Unification of G-Metric, Partial Metric, and b-Metric Spaces, Abstract Appl. Anal., 2014 (2014), Article ID 180698. |
[8] | A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math., 57 (2000), 31-37. |
[9] | S. Czerwik, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5-11. |
[10] | S. Chandok, D. Kumar, C. Park, C*-algebra valued partial metric spaces and fixed point theorems, Proc. Indian Acad. Sci. (Math. Sci.), 129 (2019), doi.org/10.1007/s12044-019-0481-0. |
[11] | H. Long-Guang, Z. Xian, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468—1476. doi: 10.1016/j.jmaa.2005.03.087 |
[12] | T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 30 (1969), 475-488, . |
[13] | S. B. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475-488. doi: 10.2140/pjm.1969.30.475 |
[14] | Z. H. Ma, L. N. Jiang, H. K. Sun, C*-algebra valued metric spaces and related fixed point theorems, Fixed Point Theory Appl., 2014 (2014), Article ID 206. |
[15] | Z. H. Ma, L. N. Jiang, C*-algebra valued b-metric spaces and related fixed point theorems, Fixed Point Theory Appl., 2015 (2015), Article ID 222. |
[16] | N. Mlaiki, M. Asim, M. Imdad, C*-algebra valued partial b-metric spaces and fixed point results with an application, MDPI Math., 8 (2020), 1381, doi:10.3390/math8081381. doi: 10.3390/math8081381 |
[17] | M. Samreen, T. Kamran, M. Postolache, Extended b-metric space, extended b-comparison function and nonlinear contractions, U. Politeh. Buch. Ser. A., 80 (2018), 21-28. |
[18] | H. H. Alsulami, E. KarapJnar, M. A. Kutbi, Antonio-Francisco Roldán-López-de-Hierro, An Illusion: "A Suzuki Type Coupled Fixed Point Theorem", Abstract Appl. Anal., 2014 (2014), Article ID 235731, 8. |
[19] | O. Alqahtani, V. M. Himabindu, E. Karapınar, On Pata-Suzuki-Type Contractions, Mathematics, 7 (2019), 720. doi: 10.3390/math7080720 |
[20] | E. Karapınar, V. M. L. Hima Bindu, On Pata-Suzuki-Type Contractions. Mathematics, 8 (2020), 389. |
[21] | H. H. Alsulami, E. Karapınar, H. Piri, Fixed Points of Generalized-Suzuki Type Contraction in Complete-Metric Spaces, Mathematics, 2015 (2015), Article ID 969726. |