Loading [MathJax]/jax/output/SVG/jax.js
Research article

Fault-tolerant edge metric dimension of certain families of graphs

  • Received: 23 July 2020 Accepted: 16 October 2020 Published: 11 November 2020
  • MSC : 68R01, 68R05, 68R10

  • Let WE={w1,w2,,wk} be an ordered set of vertices of graph G and let e be an edge of G. Suppose d(x,e) denotes distance between edge e and vertex x of G, defined as d(e,x)=d(x,e)=min{d(x,a),d(x,b)}, where e=ab. A vertex x distinguishes two edges e1 and e2, if d(e1,x)d(e2,x). The representation r(eWE) of e with respect to WE is the k-tuple (d(e,w1),d(e,w2),,d(e,wk)). If distinct edges of G have distinct representation with respect to WE, then WE is called edge metric generator for G. An edge metric generator of minimum cardinality is an edge metric basis for G, and its cardinality is called edge metric dimension of G, denoted by (G). In this paper, we initiate the study of fault-tolerant edge metric dimension. Let ˊWE be edge metric generator of graph G, then ˊWE is called fault-tolerant edge metric generator of G if ˊWE{v} is also an edge metric generator of graph G for every vˊWE. A fault-tolerant edge metric generator of minimum cardinality is a fault-tolerant edge metric basis for graph G, and its cardinality is called fault-tolerant edge metric dimension of G. We also computed the fault-tolerant edge metric dimension of path, cycle, complete graph, cycle with chord graph, tadpole graph and kayak paddle graph.

    Citation: Xiaogang Liu, Muhammad Ahsan, Zohaib Zahid, Shuili Ren. Fault-tolerant edge metric dimension of certain families of graphs[J]. AIMS Mathematics, 2021, 6(2): 1140-1152. doi: 10.3934/math.2021069

    Related Papers:

    [1] Maryam Salem Alatawi, Ali Ahmad, Ali N. A. Koam, Sadia Husain, Muhammad Azeem . Computing vertex resolvability of benzenoid tripod structure. AIMS Mathematics, 2022, 7(4): 6971-6983. doi: 10.3934/math.2022387
    [2] Ali N. A. Koam . Metric based resolvability of cycle related graphs. AIMS Mathematics, 2024, 9(4): 9911-9925. doi: 10.3934/math.2024485
    [3] Pradeep Singh, Sahil Sharma, Sunny Kumar Sharma, Vijay Kumar Bhat . Metric dimension and edge metric dimension of windmill graphs. AIMS Mathematics, 2021, 6(9): 9138-9153. doi: 10.3934/math.2021531
    [4] Meiqin Wei, Jun Yue, Xiaoyu zhu . On the edge metric dimension of graphs. AIMS Mathematics, 2020, 5(5): 4459-4465. doi: 10.3934/math.2020286
    [5] Lyimo Sygbert Mhagama, Muhammad Faisal Nadeem, Mohamad Nazri Husin . On the edge metric dimension of some classes of cacti. AIMS Mathematics, 2024, 9(6): 16422-16435. doi: 10.3934/math.2024795
    [6] Chenggang Huo, Humera Bashir, Zohaib Zahid, Yu Ming Chu . On the 2-metric resolvability of graphs. AIMS Mathematics, 2020, 5(6): 6609-6619. doi: 10.3934/math.2020425
    [7] Mohra Zayed, Ali Ahmad, Muhammad Faisal Nadeem, Muhammad Azeem . The comparative study of resolving parameters for a family of ladder networks. AIMS Mathematics, 2022, 7(9): 16569-16589. doi: 10.3934/math.2022908
    [8] Yanling Wang, Shiying Wang . Edge-fault-tolerant strong Menger edge connectivity of bubble-sort graphs. AIMS Mathematics, 2021, 6(12): 13210-13221. doi: 10.3934/math.2021763
    [9] Ali N. A. Koam, Sikander Ali, Ali Ahmad, Muhammad Azeem, Muhammad Kamran Jamil . Resolving set and exchange property in nanotube. AIMS Mathematics, 2023, 8(9): 20305-20323. doi: 10.3934/math.20231035
    [10] Shahbaz Ali, Muhammad Khalid Mahmmod, Raúl M. Falcón . A paradigmatic approach to investigate restricted hyper totient graphs. AIMS Mathematics, 2021, 6(4): 3761-3771. doi: 10.3934/math.2021223
  • Let WE={w1,w2,,wk} be an ordered set of vertices of graph G and let e be an edge of G. Suppose d(x,e) denotes distance between edge e and vertex x of G, defined as d(e,x)=d(x,e)=min{d(x,a),d(x,b)}, where e=ab. A vertex x distinguishes two edges e1 and e2, if d(e1,x)d(e2,x). The representation r(eWE) of e with respect to WE is the k-tuple (d(e,w1),d(e,w2),,d(e,wk)). If distinct edges of G have distinct representation with respect to WE, then WE is called edge metric generator for G. An edge metric generator of minimum cardinality is an edge metric basis for G, and its cardinality is called edge metric dimension of G, denoted by (G). In this paper, we initiate the study of fault-tolerant edge metric dimension. Let ˊWE be edge metric generator of graph G, then ˊWE is called fault-tolerant edge metric generator of G if ˊWE{v} is also an edge metric generator of graph G for every vˊWE. A fault-tolerant edge metric generator of minimum cardinality is a fault-tolerant edge metric basis for graph G, and its cardinality is called fault-tolerant edge metric dimension of G. We also computed the fault-tolerant edge metric dimension of path, cycle, complete graph, cycle with chord graph, tadpole graph and kayak paddle graph.


    Suppose that G is connected, simple and undirected graph having edge set E(G) and vertex set V(G), respectively. The order of graph G is |V(G)| and size of graph G is |E(G)|. Moreover, Δ(G) and δ(G) represent the maximum and minimum degree of graph G respectively. Let W={v1,v2,,vk} be an ordered set of V(G) and let u be a vertex of G. The representation r(uW) of u with respect to W is the k-tuple (d(u,v1),d(u,v2),,d(u,vk)). If distinct vertices of G have distinct representation with respect to W, then W is called metric generator for G. A metric generator of minimum cardinality is metric basis for G, and its cardinality is called metric dimension of G, denoted by dim(G) (see [1]). A metric generator ˊW for G is called fault-tolerant metric generator if ˊW{v} is also a metric generator, for each vˊW. The fault-tolerant metric dimension of G is the minimum cardinality of this set ˊW and is denoted by fdim(G) (see [2]).

    Let d(x,e) denotes distance between edge e and vertex x, defined as d(x,e)=min{d(x,a), d(x,b)}, where e=ab (see [3]). A vertex x distinguishes two edges e1 and e2, if d(e1,x)d(e2,x). Let WE={w1,w2,,wk} be an ordered set of vertices of G and let e be an edge of G. The representation r(eWE) of e with respect to WE is the k-tuple (d(e,w1),d(e,w2),,d(e,wk)). If distinct edges of G have distinct representation with respect to WE, then WE is called edge metric generator for G (see [3]). An edge metric generator of minimum cardinality is an edge metric basis for G, and its cardinality is called edge metric dimension of G, denoted by edim(G) [4,5,6,7].

    Slater proposed the idea of metric dimension to find the location of intruder in a network (see [1,8]). The proposed idea was further extended by Melter and Harary in [9]. Metric dimension is important in robot navigation, chemistry, problems of image processing and pattern recognition etc. (see [10,11,12,13,14,15]). The use of metric dimension of graphs was also observed in games like mastermind and coin weighing (see [16]).

    Kelenc in [3] extended the idea of metric dimension to edge metric dimension and make a comparison between them. He also discussed some useful results for paths Pn, cycles Cn, complete graphs Kn and wheel graphs. In [8], Zubrilina classified the graphs on n vertices for which edge metric dimension is n1. In [17], Kratica computed the edge metric dimension of generalized petersen graphs GP(n,k) for k=1 and 2 while for the other values of k the lower bound is given. In [18], Ahsan computed the edge metric dimension of convex polytopes related graphs [19,20,21].

    In 2008, Hernando, Slater, Mora and Wood introduced the new idea of fault-tolerant metric dimension in [2]. Further in 2017, Voronov calculated the fault-tolerant metric dimension of the king's graph (see in [22]). In 2018, Raza et al. computed the fault-tolerant metric dimension of generalized convex polytopes [23]. Recently in 2019, Liu, Munir, Ali, Hussain and Ahmed have computed the fault-tolerant metric dimension of wheel related graphs like gear graphs [24]. Basak has computed the fault-tolerant metric dimension of circulant graphs [25].

    A framework where failure of any single unit, another chain of units not containing the defective unit can substitute the initially utilized chain is called fault-tolerant self-stable framework. These graphs can tolerate the failure of one part (vertex) keeping consistent execution (see [24,26]). For this purpose we propose the concept of fault-tolerant edge metric dimension. Let ˊWE be edge metric generator of graph G, then ˊWE is called fault-tolerant edge metric generator of G if ˊWE{v} is also an edge metric generator of graph G for each vˊWE. A fault-tolerant edge metric generator of minimum cardinality is a fault-tolerant edge metric basis for graph G, and its cardinality is called fault-tolerant edge metric dimension of G, we are denoting it by fedim(G) [27,28]. In this concept, we will extend the work of edge metric dimension to fault-tolerant edge metric dimension.

    The lemmas given below are very helpful for calculating the fault-tolerant edge metric dimension of graphs:

    Lemma 1.1. [3] For any n2, edim(Pn)=dim(Pn)=1, edim(Cn)=dim(Cn)=2, edim(Kn)=dim(Kn)=n1. Moreover, edim(G)=1 if and only if G is path.

    Lemma 1.2. [3] For a connected graph G, edim(G)log2((G)).

    Lemma 1.3. [3] For a connected graph G of order n, edim(G)1+log2δ(G).

    From the definition of fault-tolerant edge metric dimension, it can be seen that

    Lemma 1.4. For a connected graph G,

    1. fedim(G)1+edim(G).

    2. 2fedim(G)n.

    The rest of paper is structured as follows: In the second section, we will study the fault-tolerant edge metric dimension of family of path, cycle and complete graphs. In third section, we will investigate the fault-tolerant edge metric dimension of family of cycle with chord graphs Cmn. In fourth section, fault-tolerant edge metric dimension of family of tadpole graphs Gln will be determined. In last section, we will compute the fault-tolerant edge metric dimension of family of kayak paddle graphs Gln,m.

    In this section, we will investigate the fault-tolerant edge metric dimension of family of paths, cycles and complete graphs. The family Pn have V(Pn)={u1,u2,,un} and E(Pn)={uiui+1:1in1}. The family Pn for n=10 is shown in Figure 1. The following theorem tells us the edge metric dimension of Pn.

    Figure 1.  Path graph P10.

    Theorem 2.1. [3] For any integer n2, edim(Pn)=1.

    Now, we will compute the fault-tolerant edge metric dimension of Pn.

    Theorem 2.2. For any integer n2, fedim(Pn)=2.

    Proof. In order to compute fault-tolerant edge metric dimension of Pn, we have ˊWE={u1,un} V(Pn), we have to show that ˊWE is a fault-tolerant edge metric generator of Pn. For this, we give representations of each edge of Pn.

    r(uiui+1|ˊWE)=(i1,ni1), where 1in1.

    We see that there are no two tuples having the same representations. This shows that fault-tolerant edge metric dimension of Pn is less than or equal to 2. Since by Lemma 1.4, Pn has fault-tolerant edge metric dimension greater than or equal to 2. Hence fault-tolerant edge metric dimension is equal to 2.

    The family Cn have V(Cn)={u1,u2,,un} and E(Cn)={uiui+1:1in1}{unu1}. The family Cn for n=15 is shown in Figure 2. The following theorem tells us the edge metric dimension of Cn.

    Figure 2.  Cycle graph C15.

    Theorem 2.3. [3] For any integer n3, edim(Cn)=2.

    Now, we will compute the fault-tolerant edge metric dimension of Cn.

    Theorem 2.4. For any integer n3, fedim(Cn)=3.

    Proof. In order to compute fault-tolerant edge metric dimension of Cn, we have the following cases.

    Case (i). n is odd. Take ˊWE={u1,u2,u3} V(Cn), we have to show that ˊWE is a fault-tolerant edge metric generator of Cn. For this, we give representations of each edge of Cn.

     r(uiui+1|ˊWE)={(0,0,1),if i=1;(1,0,0),if i=2;(i1,i2,i3),if 3in+12;(n32,n12,n32),if i=n+12+1;(ni,ni+1,ni+2),if n+12+2in1;

    r(unu1|ˊWE)= (0,1,2).

    Case (ii). n is even. Take ˊWE={u1,u2,u3} V(Cn), we have to show that ˊWE is a fault-tolerant edge metric generator of Cn. For this, we give representations of each edge of Cn.

     r(uiui+1|ˊWE)={(0,0,1),if i=1;(1,0,0),if i=2;(i1,i2,i3),if 3in2;(n22,n22,n42),if i=n2+1;(n42,n22,n22),if i=n2+2;(ni,ni+1,ni+2),if n2+3in1;

    r(unu1|ˊWE)= (0,1,2).

    We see that there are no two tuples having the same representations. This shows that fault-tolerant edge metric dimension of Cn is less than or equal to 3. Since by Lemma 1.4, Cn has fault-tolerant edge metric dimension greater than or equal to 3. Hence fault-tolerant edge metric dimension of Cn is equal to 3.

    Theorem 2.5. For any integer n2, fedim(Kn)=n.

    Proof. The proof is straight forward from Lemma 1.1 and Lemma 1.4.

    In this section, we will investigate the fault-tolerant edge metric dimension of family of cycle with chord graphs Cmn. The family Cmn have V(Cmn)={v1,v2,,vn} and E(Cmn)={vivi+1:1in1}{vnv1,v1vm}. It suffices to consider 2<mn2. The family Cmn for n=20 and m=9 is shown in Figure 3. The following theorem tells us the edge metric dimension of Cmn.

    Figure 3.  Cycle with Chord graph C920.

    Theorem 3.1. [29] For all n4, edim(Cmn)=2.

    Now, we will compute the fault-tolerant edge metric dimension of Cmn.

    Theorem 3.2. For all n4, fedim(Cmn)=3.

    Proof. In order to compute fault-tolerant edge metric dimension of Cmn, we have the following cases.

    Case (i). Both n and m are even. Let ˊWE={v2,vm2+1,vm+1} V(Cmn), we have to show that ˊWE is a fault-tolerant edge metric generator of Cmn. For this, we give representations of each edge of Cmn.

     r(vivi+1|ˊWE)={(0,m21,2),if i=1;(i2,m2i,i+1),if 2im21;(m22,0,m2),if i=m2;(m21,0,m21),if i=m2+1;(mi+1,im21,mi),if m2+2im1;(2,m21,0),if i=m;(im+2,im21,im1),if m+1in2+m21;(n2m2+1,n21,n2m21),if i=n2+m2;(n2m2,n21,n2m2),if i=n2+m2+1;(ni+1,n+m2i,ni+2),if n2+m2+2in;

    r(vnv1|ˊWE)= (1,m2,2) and r(v1vm|ˊWE)= (1,m21,1).

    Case (ii). n is odd and m is even. Let ˊWE={v2,vm2+1,vm+1} V(Cmn), we have to show that ˊWE is a fault-tolerant edge metric generator of Cmn. For this, we give representations of each edge of Cmn.

     r(vivi+1|ˊWE)={(0,m21,2),if i=1;(i2,m2i,i+1),if 2im21;(m22,0,m2),if i=m2;(m21,0,m21),if i=m2+1;(mi+1,im21,mi),if m2+2im1;(2,m21,0),if i=m;(im+2,im21,im1),if m+1in12+m2;(n+12m2,n12,n12m2),if i=n12+m2+1;(ni+1,n+m2i,ni+2),if n12+m2+2in1;

    r(vnv1|ˊWE)= (1,m2,2) and r(v1vm|ˊWE)= (1,m21,1).

    Case (iii). n is even and m is odd. Let ˊWE={v2,vm+12+1,vn2+m+12} V(Cmn), we have to show that ˊWE is a fault-tolerant edge metric generator of Cmn. For this, we give representations of each edge of Cmn.

     r(vivi+1|ˊWE)={(0,m12,n2m12),if i=1;(i2,m+12i,m+i2),if 2im12;(m121,0,n21),if i=m+12;(mi+1,im+121,n2+m12i),if m+12+1im1;(im+2,im+121,n2+m12i),if min2+m12;(ni+1,n+m12i,i+mn2),if n2+m12+1in1;

    r(vnv1|ˊWE)= (1,m12,m2) and r(v1vm|ˊWE)= (1,m121,m1).

    Case (iv). Both n and m are odd. Let ˊWE={vm+12,vm+1,vn} V(Cmn), we have to show that ˊWE is a fault-tolerant edge metric generator of Cmn. For this, we give representations of each edge of Cmn.

     r(vivi+1|ˊWE)={(m12i,i+1,i),if 1im12(im+12,mi,mi+1),if m+12im1;(m12,0,2),if i=m;(im+12,im1,im+2),if m+1in12+m121;(im+12,im1,ni1),if n12+m12in12+m+12;(n32,n+12m+12,n12m+121),if i=n+12+m+12;(n+m12i,ni+2,ni1),if n+12+m+12in1;

    r(vnv1|ˊWE)= (m12,2,0) and r(v1vm|ˊWE)= (m12,1,1).

    We see that there are no two tuples having the same representations in all the four cases. This shows that fault-tolerant edge metric dimension of Cmn is less than or equal to 3. Since by Lemma 1.4, Cmn is not a path so fault-tolerant edge metric dimension of Cmn is greater than or equal to 3. Hence fault-tolerant edge metric dimension of Cmn is 3.

    In this section, we will compute the fault-tolerant edge metric dimension of family of tadpole graphs Gln. The family Gln have V(Gln)={v1,v2,,vn,u1,u2,,ul} and E(Gln)={vivi+1:1in1}{usus+1,:1sl1}{vnu1,u1v1}. The graph Gln for n=9 and l=7 is shown in Figure 4. The following theorem tells us the edge metric dimension of Gln.

    Figure 4.  Tadpole graph G79.

    Theorem 4.1. [29] For all n2, l3, edim(Gln)=2.

    Now, we will compute the fault-tolerant edge metric dimension of Gln.

    Theorem 4.2. For all n2, l3, fedim(Gln)=3.

    Proof. In order to compute fault-tolerant edge metric dimension of Gln, we have the following cases.

    Case (i). n is odd. Let ˊWE={v1,vn,um} V(Gln), we have to show that ˊWE is a fault-tolerant edge metric generator of Gln. For this, we give representations of each edge of Gln.

     r(vivi+1|ˊWE)={(i1,i+1,i+n12),if 1in121;(n121,n12,n12+m1),if i=n12;(n12,n121,n12+m1),if i=n12+1;(ni+1,ni1,n+mi1),if n12+2in1;

    r(uiui+1|ˊWE)=(i,i,mi1) where 1im1,

    r(vnu1|ˊWE)= (1,0,m1) and r(u1v1|ˊWE)= (0,1,m1).

    Case (ii). n is even. Let ˊWE={v1,vn,um} V(Gln), we have to show that ˊWE is a fault-tolerant edge metric generator of Gln. For this, we give representations of each edge of Gln.

     r(vivi+1|ˊWE)={(i1,i+1,i+n2),if 1in21;(n21,n21,n2+m1),if i=n2;(ni+1,ni1,n+mi1),if n2+1in1;

    r(uiui+1|ˊWE)=(i,i,mi1) where 1im1,

    r(vnu1|ˊWE)= (1,0,m1) and r(u1v1|ˊWE)= (0,1,m1).

    We see that there are no two tuples having the same representations. This shows that fault-tolerant edge metric dimension of Gln is less than or equal to 3 and now we try to show that fault-tolerant edge metric dimension of Gln is greater than or equal to 3. Since by Lemma 1.4, Gln is not a path so fault-tolerant edge metric dimension of Gln is greater than or equal to 3. Hence fault-tolerant edge metric dimension of Gln is equal to 3.

    In this section, we will compute the edge metric dimension of family of kayak paddle graphs Gln,m. The family Gln,m have V(Gln,m)={u1,u2,,um,v1,v2,,vn,w1,w2,,wl} and E(Gln,m)={vivi+1:1in1}{wjwj+1:1jl1}{usus+1:1sm1}{vnw1,w1v1,wlu1,umwl}. The family Gln,m for n=8, m=5 and l=4 is shown in Figure 5. The following theorem tells us the edge metric dimension of Gln,m.

    Figure 5.  Kayak Paddle graph G48,5.

    Theorem 5.1. [29] For every n2, m2 and l4, edim(Gln,m)=2.

    Now, we will compute the fault-tolerant edge metric dimension of Gln,m.

    Theorem 5.2. For n2, m2 and l4, fedim(Gln,m)=4.

    Proof. In order to compute fault-tolerant edge metric dimension of Gln,m, we have the following cases.

    Case (i). n is odd and m is even. Let ˊWE={v1,v2,u1,u2} V(Gln,m), we have to show that ˊWE is a fault-tolerant edge metric generator of Gln,m. For this, we give representations of each edge of Gln,m.

     r(vivi+1|ˊWE)={(0,0,l+1,l+2),if i=1;(i1,i2,,l+i,l+i+1),if 2in12;(n12,n121,n12+l,n12+l+1),if i=n+12;(n12,n12,n12+l1,n12+l),if i=n+12+1;(ni+1,ni+2,n+li,n+li+1),if n+12+2in1;

    r(wiwi+1|ˊWE)=(i,i+1,li,li+1) where 1il1,

     r(uiui+1|ˊWE)={(l+1,l+2,0,0),if i=1;(l+i,l+i+1,i1,i2),if 2im2;(l+m21,l+m2,m2,m21),if i=m2+1;(m+li,m+li+1,mi+1,mi+2),if m2+2im1;

    r(vnw1|ˊWE)= (1,2,l,l+1), r(w1v1|ˊWE)= (0,1,l,l+1), r(wlu1|ˊWE)= (l,l+1,0,1) and r(umwl|ˊWE)= (l,l+1,1,2).

    Case (ii). Both n and m are even. Let ˊWE={v1,v2,u1,u2} V(Gln,m), we have to show that ˊWE is a fault-tolerant edge metric generator of Gln,m. For this, we give representations of each edge of Gln,m.

     r(vivi+1|ˊWE)={(0,0,l+1,l+2),if i=1;(i1,i2,,l+i,l+i+1),if 2in2;(n2,n21,n2+l1,n2+l),if i=n2+1;(n21,n2,n2+l2,n2+l1),if i=n2+2;(ni+1,ni+2,n+li,n+li+1),if n2+3in1;

    r(wiwi+1|ˊWE)=(i,i+1,li,li+1) where 1il1,

     r(uiui+1|ˊWE)={(l+1,l+2,0,0),if i=1;(l+i,l+i+1,i1,i2),if 2im2;(l+m21,l+m2,m2,m21),if i=m2+1;(m+li,m+li+1,mi+1,mi+2),if m2+2im1;

    r(vnw1|ˊWE)= (1,2,l,l+1), r(w1v1|ˊWE)= (0,1,l,l+1), r(wlu1|ˊWE)= (l,l+1,0,1) and r(umwl|ˊWE)= (l,l+1,1,2).

    Case (iii). Both n and m are odd. Let ˊWE={v1,v2,u1,u2} V(Gln,m), we have to show that ˊWE is a fault-tolerant edge metric generator of Gln,m. For this, we give representations of each edge of Gln,m.

     r(vivi+1|ˊWE)={(0,0,l+1,l+2),if i=1;(i1,i2,,l+i,l+i+1),if 2in12;(n12,n121,n12+l,n+12+l),if i=n+12;(n12,n12,n12+l1,n12+l),if i=n+12+1;(ni+1,ni+2,n+li,n+li+1),if n+12+2in1;

    r(wiwi+1|ˊWE)=(i,i+1,li,li+1) where 1il1,

     r(uiui+1|ˊWE)={(l+1,l+2,0,0),if i=1;(l+i,l+i+1,i1,i2),if 2im12;(l+m12,l+m+12,m12,m121),if i=m+12;(l+m121,l+m12,m12,m12),if i=m+12+1;(m+li,m+li+1,mi+1,mi+2),if m+12+2im1;

    r(vnw1|ˊWE)= (1,2,l,l+1), r(w1v1|ˊWE)= (0,1,l,l+1), r(wlu1|ˊWE)= (l,l+1,0,1) and r(umwl|ˊWE)= (l,l+1,1,2).

    We see that there are no two tuples having the same representations. This shows that fault-tolerant edge metric dimension of Gln,m is less than or equal to 4 and now we try to show that fault-tolerant edge metric dimension of Gln,m is grater than or equal to 4.

    For this purpose, we have to show that there is no fault-tolerant edge metric generator having cardinality 3, we suppose on contrary that fault-tolerant edge metric dimension of Gln,m is 3 and let ˊWE={vi,vj,vk}. Then the Table 1 shows all order pairs of edges (e,f) for which r(e|ˊWE)=r(f|ˊWE).

    Table 1.  (e,f) for which r(e|ˊWE)=r(f|ˊWE).
    Conditions on i,j and k(e, f)
    1i,j,kn(u1wl,umwl)
    1i,jn,1kl(u1wl,umwl)
    1in and 1j,kl(u1wl,umwl)
    1i,j,kl(u1wl,umwl)
    1in,1jl and 1km
     If we take ˊWE{vk}(u1wl,umwl)
    1i,jn, and 1km
     If we take ˊWE{vk}(w1w2,w1v1) or (w1w2,w1vn)

     | Show Table
    DownLoad: CSV

    In all possibilities, we conclude that there is no fault-tolerant edge metric generator of 3 vertices. Hence fault-tolerant edge metric dimension of Gln,m is 4.

    In this paper, we have computed the fault-tolerant edge metric dimension of some planar graphs path, cycle, complete, cycle with chord, tadpole and kayak paddle. It is observed that the fault-tolerant edge metric dimension of these graphs is constant and does not depend on the number of vertices. It is concluded that the fault-tolerant edge metric dimension of families of path graphs is two, the fault-tolerant edge metric dimension of families of cycle graphs, cycle with chord graphs, tadpole graphs is three and the fault-tolerant edge metric dimension of kayak paddle graphs is found to be four. Here we end with an open problem.

    Characterize all families of graphs for which difference of fault-tolerant metric dimension and edge metric dimension is one.

    Authors are thankful to the reviewers for their valuable comments.

    The authors declare that no competing interests exist.



    [1] P. J. Slater, Leaves of trees, Congr. Numer., 14 (1975), 549-559.
    [2] M. C. Hernando, M. Mora, P. J. Slater, D. R. Wood, Fault-tolerant metric dimension of graphs, Convexity Discrete Struct., 5 (2008), 81-85.
    [3] A. Kelenc, N. Tratnik, I. G. Yero, Uniquely identifying the edges of a graph: The edge metric dimension, Discrete Appl. Math., 251 (2018), 204-220. doi: 10.1016/j.dam.2018.05.052
    [4] A. Tabassum, M. A. Umar, M. Perveen, A. Raheem, Antimagicness of subdivided fans, Open J. Math. Sci., 4 (2020), 18-22. doi: 10.30538/oms2020.0089
    [5] J. B. Liu, Z. Zahid, Z. Nasir, W. Nazeer, Edge version of metric dimension and doubly resolving sets of the necklace graph, Mathematics, 6 (2018), 243. doi: 10.3390/math6110243
    [6] H. F. M. Salih, S. M. Mershkhan, Generalized the Liouville's and Mobius functions of graph, Open J. Math. Sci., 4 (2020), 186-194. doi: 10.30538/oms2020.0109
    [7] W. Gao, B. Muzaffar, W. Nazeer, K-Banhatti and K-hyper Banhatti indices of dominating David derived network, Open J. Math. Anal., 1 (2017), 13-24.
    [8] N. Zubrilina, On the edge dimension of a graph, Discrete Math., 341 (2018), 2083-2088. doi: 10.1016/j.disc.2018.04.010
    [9] F. Haray, R. A. Melter, On the metric dimension of a graph, Ars Comb., 2 (1976), 191-195.
    [10] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oeller-mann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), 99-113.
    [11] G. Chartrand, C. Poisson, P. Zhang, Resolvability and the upper dimension of graphs, Comput. Math. Appl., 39 (2000), 19-28.
    [12] M. Imran, A. Q. Baig, A. Ahmad, Families of plane graphs with constant metric dimension, Utilitas Math., 88 (2012), 43-57.
    [13] M. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Stat., 3 (1993), 203-236. doi: 10.1080/10543409308835060
    [14] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70 (1996), 217-229. doi: 10.1016/0166-218X(95)00106-2
    [15] R. A. Melter, I. Tomescu, Metric bases in digital geometry, Comput. Vision, Graphics, Image Process., 28 (1984), 113-121.
    [16] J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, et al., On the metric dimension of cartesian products of graphs, SIAM J. Discrete Math., 21 (2008), 423-441.
    [17] J. Kratica, V. Filipovii, A. Kartelj, Edge metric dimension of some generalized Petersen graphs, 2018. Available from: http://arXiv.org/abs/1807.00580v1.
    [18] M. Ahsan, Z. Zahid, S. Zafar, A. Rafiq, M. S. Sindhu, M. Umar, Computing the edge metric dimension of convex polytopes related graphs, J. Math. Computer Sci., 22 (2021), 174-188.
    [19] U. Ali, Y. Ahmad, M. S. Sardar, On 3-total edge product cordial labeling of tadpole, book and flower graphs, Open J. Math. Sci., 4 (2020), 48-55. doi: 10.30538/oms2020.0093
    [20] S. M. Kang, M. A. Zahid, W. Nazeer, W. Gao, Calculating the degree-based topological indices of dendrimers, Open Chem., 16 (2018), 681-688. doi: 10.1515/chem-2018-0071
    [21] Y. C. Kwun, A. U. R. Virk, W. Nazeer, M. A. Rehman, S. M. Kang, On the multiplicative degreebased topological indices of silicon-carbon Si2C3-I [p, q] and Si2C3-II [p, q], Symmetry, 10 (2018), 320. doi: 10.3390/sym10080320
    [22] R. V. Voronov, The fault-tolerant metric dimension of the king's graph, Vestnik Saint Petersburg Univ. Appl. Math., Comput. Sci. Control Processes, 13 (2017), 241-249. doi: 10.21638/11701/spbu10.2017.302
    [23] H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of convex polytopes, Appl. Math. Comput., 339 (2018), 172-185.
    [24] J. B. Liu, M. Munir, I. Ali, Z. Hussain, A. Ahmed, Fault-Tolerant metric dimension of Wheel related graphs, 2019. Available from: https://hal.archives-ouvertes.fr/hal-01857316v2.
    [25] M. Basak, L. Saha, G. K. Das, K. Tiwary, Fault-tolerant metric dimension of circulant graphs Cn(1, 2, 3), Theor. Comput. Sci., 2019. DOI: 10.1016/j.tcs.2019.01.011.
    [26] A. Shabbir, T. Zamfirescu, Fault-tolerant designs in triangular lattice networks, Appl. Anal., 10 (2016), 447-456.
    [27] W. Nazeer, A. Farooq, M. Younas, M. Munir, S. M. Kang, On molecular descriptors of carbon nanocones, Biomolecules, 8 (2018), 92. doi: 10.3390/biom8030092
    [28] Y. C. Kwun, M. Munir, W. Nazeer, S. Rafique, S. M. Kang, Computational analysis of topological indices of two Boron Nanotubes, Sci. Rep., 8 (2018), 1-14. doi: 10.1038/s41598-017-17765-5
    [29] M. Ahsan, S. Zafar, Edge metric dimension of certain families of graphs, Utilitas Math., In Press.
  • This article has been cited by:

    1. Muhammad Azeem, Muhammad Faisal Nadeem, Metric-based resolvability of polycyclic aromatic hydrocarbons, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-01399-8
    2. Ali Al Khabyah, Muhammad Kamran Jamil, Ali N. A. Koam, Aisha Javed, Muhammad Azeem, Partition dimension of COVID antiviral drug structures, 2022, 19, 1551-0018, 10078, 10.3934/mbe.2022471
    3. Ali N.A. Koam, Ali Ahmad, Sadia Husain, Muhammad Azeem, Mixed metric dimension of hollow coronoid structure, 2023, 14, 20904479, 102000, 10.1016/j.asej.2022.102000
    4. Yahya Alqahtani, Muhammad Kamran Jamil, Hamdan Alshehri, Ali Ahmad, Muhammad Azeem, Vertex metric resolvability of COVID antiviral drug structures, 2023, 44, 10641246, 1017, 10.3233/JIFS-220964
    5. Jia-Bao Liu, Sunny Kumar Sharma, Vijay Kumar Bhat, Hassan Raza, Multiset and Mixed Metric Dimension for Starphene and Zigzag-Edge Coronoid, 2023, 43, 1040-6638, 190, 10.1080/10406638.2021.2019066
    6. Ali Ahmad, Al-Nashri Al-Hossain Ahmad, Gohar Ali, Computation of Resolvability Parameters for Benzenoid Hammer Graph, 2022, 2022, 2314-4785, 1, 10.1155/2022/7013832
    7. Chinu Singla, Fahd N. Al-Wesabi, Yash Singh Pathania, Badria Sulaiman Alfurhood, Anwer Mustafa Hilal, Mohammed Rizwanullah, Manar Ahmed Hamza, Mohammad Mahzari, Metric-Based Resolvability of Quartz Structure, 2022, 71, 1546-2226, 2053, 10.32604/cmc.2022.022064
    8. Ali Ahmad, Ali N.A. Koam, M.H.F. Siddiqui, Muhammad Azeem, Resolvability of the starphene structure and applications in electronics, 2022, 13, 20904479, 101587, 10.1016/j.asej.2021.09.014
    9. Al-Nashri Al-Hossain Ahmad, Ali Ahmad, Generalized perimantanes diamondoid structure and their edge-based metric dimensions, 2022, 7, 2473-6988, 11718, 10.3934/math.2022653
    10. Ali N. A. Koam, Ali Ahmad, Muhammad Ibrahim, Muhammad Azeem, Edge Metric and Fault-Tolerant Edge Metric Dimension of Hollow Coronoid, 2021, 9, 2227-7390, 1405, 10.3390/math9121405
    11. Yogesh Singh, Hassan Raza, Sunny Kumar Sharma, Vijay Kumar Bhat, Computing Basis and Dimension of Chloroquine and Hydroxychloroquine by Using Chemical Graph Theory, 2022, 1040-6638, 1, 10.1080/10406638.2022.2086269
    12. Dalal Alrowaili, Zohaib Zahid, Imran Siddique, Sohail Zafar, Muhammad Ahsan, Muhammad Sarwar Sindhu, Gohar Ali, On the Constant Edge Resolvability of Some Unicyclic and Multicyclic Graphs, 2022, 2022, 2314-4785, 1, 10.1155/2022/6738129
    13. Sunny Kumar Sharma, Vijay Kumar Bhat, Hamiden Abd El-Wahed Khalifa, Agaeb Mahal Alanzi, Mixed Metric Dimension of Certain Carbon Nanocone Networks, 2024, 44, 1040-6638, 2046, 10.1080/10406638.2023.2211734
    14. Malkesh Singh, Sohan Lal, Sunny Kumar Sharma, Vijay Kumar Bhat, Edge dependent fault-tolerance in certain carbon-based crystal structures, 2024, 99, 0031-8949, 085224, 10.1088/1402-4896/ad5fcb
    15. Sunny Kumar Sharma, Malkesh Singh, Vijay Kumar Bhat, Vertex-Edge Partition Resolvability for Certain Carbon Nanocones, 2024, 44, 1040-6638, 1745, 10.1080/10406638.2023.2206142
    16. Ibtisam Masmali, Muhammad Tanzeel Ali Kanwal, Muhammad Kamran Jamil, Ali Ahmad, Muhammad Azeem, Ali N. A. Koam, COVID antiviral drug structures and their edge metric dimension, 2024, 122, 0026-8976, 10.1080/00268976.2023.2259508
    17. Basem Assiri, Muhammad Faisal Nadeem, Waqar Ali, Ali Ahmad, Fault-tolerance in biswapped multiprocessor interconnection networks, 2025, 196, 07437315, 105009, 10.1016/j.jpdc.2024.105009
    18. S. Vidya, Sunny Kumar Sharma, Prasanna Poojary, G. R. Vadiraja Bhatta, Metric basis and metric dimension of some infinite planar graphs, 2024, 16, 1793-8309, 10.1142/S1793830924500769
    19. S. Prabhu, D. Sagaya Rani Jeba, Sudeep Stephen, Metric dimension of star fan graph, 2025, 15, 2045-2322, 10.1038/s41598-024-83562-6
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4481) PDF downloads(207) Cited by(19)

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog