In this paper, we prove some generalizations of Kannan-type fixed point theorems for singlevalued and multivalued mappings defined on a complete strong b- metric space in terms of a Suzuki-type contraction. Our results extend a result of Górnicki [
Citation: Hieu Doan. A new type of Kannan's fixed point theorem in strong $ b $- metric spaces[J]. AIMS Mathematics, 2021, 6(7): 7895-7908. doi: 10.3934/math.2021458
In this paper, we prove some generalizations of Kannan-type fixed point theorems for singlevalued and multivalued mappings defined on a complete strong b- metric space in terms of a Suzuki-type contraction. Our results extend a result of Górnicki [
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. doi: 10.4064/fm-3-1-133-181 |
[2] | T. D. Benavides, P. L. Ramírez, M. Rahimi, A. S. Hafshejani, Multivalued iterated contractions, Fixed Point Theory, 21 (2020), 151–166. doi: 10.24193/fpt-ro.2020.1.11 |
[3] | J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, T. Am. Math. Soc., 215 (1976), 241–251. doi: 10.1090/S0002-9947-1976-0394329-4 |
[4] | J. Caristi, W. A. Kirk, Geometric fixed point theory and inwardness conditions, In: The Geometry of metric and linear spaces, Berlin: Springer, 1975, 74–83, |
[5] | L. B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273. |
[6] | J. Dugundji, Positive definite functions and coincidences, Fund. Math., 90 (1976), 131–142. doi: 10.4064/fm-90-2-131-142 |
[7] | L. S. Dube, S. P. Singh, On multivalued contractions mappings, Bull. Math. de la Soc. Sci. Math. de la R. S. Roumanie, 14 (1970), 307–310. |
[8] | I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. doi: 10.1016/0022-247X(74)90025-0 |
[9] | I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443–474. doi: 10.1090/S0273-0979-1979-14595-6 |
[10] | J. Górnicki, Various extensions of Kannan's fixed point theorem. J. Fixed Point Theory Appl., 20 (2018), 20. |
[11] | T. K. Hu, On a fixed-point theorem for metric spaces, Am. Math. Mon., 74 (1967), 436–437. |
[12] | R. Kannan, Some results on fixed points, Bull. Calcutta. Math. Soc., 60 (1968), 71–77. |
[13] | W. A. Kirk, Caristi's fixed point theorem and metric convexity, Colloq. Math., 36 (1976), 81–86. doi: 10.4064/cm-36-1-81-86 |
[14] | W. A. Kirk, Contraction mappings and extensions, In: Handbook of metric fixed point theory, Dordrecht: Springer, 2001, 1–34. |
[15] | W. A. Kirk, Fixed points of asymptotic contractions, J. Math. Anal. Appl., 277 (2003), 645–650. doi: 10.1016/S0022-247X(02)00612-1 |
[16] | W. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer, 2014. |
[17] | A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329. doi: 10.1016/0022-247X(69)90031-6 |
[18] | S. B. Nadler Jr, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475–488. doi: 10.2140/pjm.1969.30.475 |
[19] | S. Park, Characterizations of metric completeness, Colloq. Math., 49 (1984), 21–26. doi: 10.4064/cm-49-1-21-26 |
[20] | I. A. Rus, Picard operators and applications, Sci. Math. Jpn., 58 (2003), 191–219. |
[21] | S. Reich, Kannan's fixed point theorem, Boll. Un. Mat. Ital., 4 (1971), 1–11. |
[22] | P. V. Subrahmanyam, Remarks on some fixed point theorems related to Banach's contraction principle, J. Math. Phys. Sci., 8 (1974), 445–457. |
[23] | T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl., 253 (2001), 440–458. doi: 10.1006/jmaa.2000.7151 |
[24] | T. Suzuki, Several fixed point theorems concerning $\tau$-distance, Fixed Point Theory A., 2004 (2004), 195–209. |
[25] | T. Suzuki, Contractive mappings are Kannan mappings, and Kannan mappings are contractive mappings in some sense, Annales Societatis Mathematicae Polonae: Commentationes Mathematicae, 45 (2005), 45–58. |
[26] | T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2007), 1861–1869. doi: 10.1090/S0002-9939-07-09055-7 |
[27] | P. V. Subrahmanyam, Completeness and fixed points, Monatsh. Math., 80 (1975), 325–330. doi: 10.1007/BF01472580 |