Research article

A new type of Kannan's fixed point theorem in strong $ b $- metric spaces

  • Received: 20 March 2021 Accepted: 12 May 2021 Published: 18 May 2021
  • MSC : 47H10, 54H25

  • In this paper, we prove some generalizations of Kannan-type fixed point theorems for singlevalued and multivalued mappings defined on a complete strong b- metric space in terms of a Suzuki-type contraction. Our results extend a result of Górnicki [10]. Furthermore, after each theorem are exemples and corollaries respectively.

    Citation: Hieu Doan. A new type of Kannan's fixed point theorem in strong $ b $- metric spaces[J]. AIMS Mathematics, 2021, 6(7): 7895-7908. doi: 10.3934/math.2021458

    Related Papers:

  • In this paper, we prove some generalizations of Kannan-type fixed point theorems for singlevalued and multivalued mappings defined on a complete strong b- metric space in terms of a Suzuki-type contraction. Our results extend a result of Górnicki [10]. Furthermore, after each theorem are exemples and corollaries respectively.



    加载中


    [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. doi: 10.4064/fm-3-1-133-181
    [2] T. D. Benavides, P. L. Ramírez, M. Rahimi, A. S. Hafshejani, Multivalued iterated contractions, Fixed Point Theory, 21 (2020), 151–166. doi: 10.24193/fpt-ro.2020.1.11
    [3] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, T. Am. Math. Soc., 215 (1976), 241–251. doi: 10.1090/S0002-9947-1976-0394329-4
    [4] J. Caristi, W. A. Kirk, Geometric fixed point theory and inwardness conditions, In: The Geometry of metric and linear spaces, Berlin: Springer, 1975, 74–83,
    [5] L. B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273.
    [6] J. Dugundji, Positive definite functions and coincidences, Fund. Math., 90 (1976), 131–142. doi: 10.4064/fm-90-2-131-142
    [7] L. S. Dube, S. P. Singh, On multivalued contractions mappings, Bull. Math. de la Soc. Sci. Math. de la R. S. Roumanie, 14 (1970), 307–310.
    [8] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. doi: 10.1016/0022-247X(74)90025-0
    [9] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443–474. doi: 10.1090/S0273-0979-1979-14595-6
    [10] J. Górnicki, Various extensions of Kannan's fixed point theorem. J. Fixed Point Theory Appl., 20 (2018), 20.
    [11] T. K. Hu, On a fixed-point theorem for metric spaces, Am. Math. Mon., 74 (1967), 436–437.
    [12] R. Kannan, Some results on fixed points, Bull. Calcutta. Math. Soc., 60 (1968), 71–77.
    [13] W. A. Kirk, Caristi's fixed point theorem and metric convexity, Colloq. Math., 36 (1976), 81–86. doi: 10.4064/cm-36-1-81-86
    [14] W. A. Kirk, Contraction mappings and extensions, In: Handbook of metric fixed point theory, Dordrecht: Springer, 2001, 1–34.
    [15] W. A. Kirk, Fixed points of asymptotic contractions, J. Math. Anal. Appl., 277 (2003), 645–650. doi: 10.1016/S0022-247X(02)00612-1
    [16] W. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer, 2014.
    [17] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329. doi: 10.1016/0022-247X(69)90031-6
    [18] S. B. Nadler Jr, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475–488. doi: 10.2140/pjm.1969.30.475
    [19] S. Park, Characterizations of metric completeness, Colloq. Math., 49 (1984), 21–26. doi: 10.4064/cm-49-1-21-26
    [20] I. A. Rus, Picard operators and applications, Sci. Math. Jpn., 58 (2003), 191–219.
    [21] S. Reich, Kannan's fixed point theorem, Boll. Un. Mat. Ital., 4 (1971), 1–11.
    [22] P. V. Subrahmanyam, Remarks on some fixed point theorems related to Banach's contraction principle, J. Math. Phys. Sci., 8 (1974), 445–457.
    [23] T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl., 253 (2001), 440–458. doi: 10.1006/jmaa.2000.7151
    [24] T. Suzuki, Several fixed point theorems concerning $\tau$-distance, Fixed Point Theory A., 2004 (2004), 195–209.
    [25] T. Suzuki, Contractive mappings are Kannan mappings, and Kannan mappings are contractive mappings in some sense, Annales Societatis Mathematicae Polonae: Commentationes Mathematicae, 45 (2005), 45–58.
    [26] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2007), 1861–1869. doi: 10.1090/S0002-9939-07-09055-7
    [27] P. V. Subrahmanyam, Completeness and fixed points, Monatsh. Math., 80 (1975), 325–330. doi: 10.1007/BF01472580
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3006) PDF downloads(366) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog