Processing math: 100%
Research article

Dynamical behaviors to the coupled Schrödinger-Boussinesq system with the beta derivative

  • Received: 22 March 2021 Accepted: 30 April 2021 Published: 19 May 2021
  • MSC : 35Q41, 35Q60

  • In this paper, the modified auxiliary expansion method is used to construct some new soliton solutions of coupled Schrödinger-Boussinesq system that includes beta derivative. The new exact solution is obtained have a hyperbolic function, trigonometric function, exponential function, and rational function. These solutions might appreciate in laser and plasma sciences. It is shown that this method, provides a straightforward and powerful mathematical tool for solving the nonlinear problems. Moreover, the linear stability of this nonlinear system is analyzed.

    Citation: Hajar F. Ismael, Hasan Bulut, Haci Mehmet Baskonus, Wei Gao. Dynamical behaviors to the coupled Schrödinger-Boussinesq system with the beta derivative[J]. AIMS Mathematics, 2021, 6(7): 7909-7928. doi: 10.3934/math.2021459

    Related Papers:

    [1] Mahmoud Soliman, Hamdy M. Ahmed, Niveen Badra, M. Elsaid Ramadan, Islam Samir, Soliman Alkhatib . Influence of the β-fractional derivative on optical soliton solutions of the pure-quartic nonlinear Schrödinger equation with weak nonlocality. AIMS Mathematics, 2025, 10(3): 7489-7508. doi: 10.3934/math.2025344
    [2] Yanhua Wang, Min Liu, Gongming Wei . Existence of ground state for coupled system of biharmonic Schrödinger equations. AIMS Mathematics, 2022, 7(3): 3719-3730. doi: 10.3934/math.2022206
    [3] Noha M. Kamel, Hamdy M. Ahmed, Wafaa B. Rabie . Solitons unveilings and modulation instability analysis for sixth-order coupled nonlinear Schrödinger equations in fiber bragg gratings. AIMS Mathematics, 2025, 10(3): 6952-6980. doi: 10.3934/math.2025318
    [4] Mubashir Qayyum, Efaza Ahmad, Hijaz Ahmad, Bandar Almohsen . New solutions of time-space fractional coupled Schrödinger systems. AIMS Mathematics, 2023, 8(11): 27033-27051. doi: 10.3934/math.20231383
    [5] Qian Zhang, Ai Ke . Bifurcations and exact solutions of generalized nonlinear Schrödinger equation. AIMS Mathematics, 2025, 10(3): 5158-5172. doi: 10.3934/math.2025237
    [6] Thongchai Botmart, Ravi P. Agarwal, Muhammed Naeem, Adnan Khan, Rasool Shah . On the solution of fractional modified Boussinesq and approximate long wave equations with non-singular kernel operators. AIMS Mathematics, 2022, 7(7): 12483-12513. doi: 10.3934/math.2022693
    [7] Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040
    [8] Wei Li, Qingkai Xu, Xingjian Wang, Chunrui Zhang . Dynamics analysis of spatiotemporal discrete predator-prey model based on coupled map lattices. AIMS Mathematics, 2025, 10(1): 1248-1299. doi: 10.3934/math.2025059
    [9] Ian Marquette . Representations of quadratic Heisenberg-Weyl algebras and polynomials in the fourth Painlevé transcendent. AIMS Mathematics, 2024, 9(10): 26836-26853. doi: 10.3934/math.20241306
    [10] Abeer S. Khalifa, Hamdy M. Ahmed, Niveen M. Badra, Wafaa B. Rabie, Farah M. Al-Askar, Wael W. Mohammed . New soliton wave structure and modulation instability analysis for nonlinear Schrödinger equation with cubic, quintic, septic, and nonic nonlinearities. AIMS Mathematics, 2024, 9(9): 26166-26181. doi: 10.3934/math.20241278
  • In this paper, the modified auxiliary expansion method is used to construct some new soliton solutions of coupled Schrödinger-Boussinesq system that includes beta derivative. The new exact solution is obtained have a hyperbolic function, trigonometric function, exponential function, and rational function. These solutions might appreciate in laser and plasma sciences. It is shown that this method, provides a straightforward and powerful mathematical tool for solving the nonlinear problems. Moreover, the linear stability of this nonlinear system is analyzed.



    It is clear that most of the events that occur in mathematical physics and engineering areas can be described by partial differential equations. The physical phenomena of nonlinear partial differential equations (NLPDEs) can connect to a lot of areas of sciences, for example, plasma physics, optical fibers, nonlinear optics, fluid mechanics, chemistry, biology, geochemistry, and engineering sciences [1].

    Scientists have been used and improved many methods to obtain the analytic, semi analytic and numerical solution of (NLPDEs), such as shooting and Runga-Kutta fourth order technique [2,3], Adomian decomposition method [4], homotopy perturbation method [5], Adams-Bashforth-Moulton method [6], sine-Gordon expansion method [7,8], sinh-Gordon expansion method [9,10], an extended trial equation method [11], the degenerate Darboux transformation [12,13], the multiplier approach [14], the improved Bernoulli sub-equation function method [15,16,17], a modified simple equation method [18], method of undetermined coefficients [19], a functional variable method [20], the trial equation method [21], couple of integration schemes [22], lie symmetries along with (G/G)-expansion method [23], improved tan (ϕ(ξ)/2)-expansion method [24,25], inverse mapping method [26], Wronskian determinants [27], the simple equation method [28], tanh function method [29], the extended homoclinic test method [30], Jacobi elliptic function anzätz method [31], the decomposition-Sumudu-like-integral-transform method [32], hypothetical method [33], exp(φ(ξ))-expansion method [34,35], symbolic computational method [36,37,38,39], the Thomson scattering [40], the Lie group analysis method [41], and Darboux covariant Lax pairs and Bäcklund transformations [42].

    The fractional differential equation is a generalization of the classical integer differential equation that has many distinct advantages. In contrast to the classic integer derivative model, the fractional derivative model has more precise mathematical physical structure simulations [43]. Wang et al. [44] studied a wick-type stochastic fractional nonlinear Schrödinger equation and constructed its fractional optical solitons. Nabti and Ghanbari [45] presented a global stability analysis of a fractional SVEIR epidemic model. Ismael et al. [46] investigated the Lakshmanan-Porsezian-Daniel model include conformable fractional derivative. Lu et al. [47] used the fractional Riccati method and fractional bifunction method to study the fractional complex Ginzburg-Landau equation. Fang et al. [48] found discrete fractional soliton solutions of conformable fractional discrete complex cubic Ginzburg-Landau equation. Ghanbari and Kumar [49] offered the existence of chaos in a fractional predator-prey-pathogen model. Ghanbari [50] explored the dynamics of an eco-epidemiological system using a nonlinear fractional differential equation system. Yu et al. [51] used the fractional mapping equation method and fractional bi-function method to investigate a space-time fractional nonlinear Schrödinger equation, and exact to a suggested equation was driven by using the Mittag-Leffler function.

    The Boussinesq equation was introduced by Boussinesq [52] to describe two-dimensional irrotational flows of an inviscid liquid in a uniform rectangular channel as well as it was the first equation proposed in the research paper to describe a large range of physical phenomena. The Schrödinger-Boussinesq system raised in laser and plasma physics also has been attracted by many mathematicians and physicists. Manafian and Aghdaei [53] used the improved tan(ϕ(ξ)/2) -expansion method and reported some exact solutions to the Schrödinger-Boussinesq system. Osman et al. [54] studied the variable-coefficients coupled Schrödinger-Boussinesq equation by using a unified method. MU and QIN [55] constructed rational solutions, breather, and the second-order rational solution by employing the Hirota technique. Bai and Wang [56] used the time-splitting Fourier spectral method for the coupled Schrödinger-Boussinesq equations and Ray in Ref. [57] used the time-Splitting Spectral Technique for the suggested system include Riesz fractional derivative. Banquet et al. [58] found the existence of local and global solutions for coupled Schrödinger-Boussinesq systems involving singular initial data. Liang [59] studied modulational instability and reported some stationary waves for the coupled generalized Schrodinger-Boussinesq system. Kılıcman and Reza Abazari [60] addressed travelling wave solutions of the Schrödinger-Boussinesq System via (G/G)-expansion method.

    In this paper, we use the modified auxiliary expansion method to seek novel soliton solutions of the coupled Beta derivative of the Schrödinger-Boussinesq system that occur during the stationary propagation of coupled nonlinear magnetosonic waves and upper-hybrids in magnetized plasmas. The new solutions are presented as the family solution and expressed in hyperbolic, trigonometric, exponential and fractional function. Finally, the linear stability analysis and instability modulation Schrödinger-Boussinesq system are also presented.

    This paper is organized as follows. In section 2, some basic definitions, properties, and the theorem about the Beta derivative are given. The structures of the modified auxiliary expansion method are given in section 3. Soliton solutions are constructed for coupled Schrödinger-Boussinesq system with Beta derivative in section 4. Linear Stability Analysis of coupled Schrödinger-Boussinesq system is presented in section 5. In section 6, we provide a conclusion to the studied system.

    In this section, we introduce some basic definitions, properties, and the theorem about the beta derivative of a function of order α [61].

    Definition 1. Let f be a function, then the beta derivative of a function f of order α is defined as

    A0Dαt(f(t))=limΔ0f(t+Δ(t+1Γ(α)))f(t)Δ,for allt>0,0<α<1.

    Theorem 1. Suppose that 0<β1,β>0, and the function f,g are α -differentiable at a point t>0, then

    I. A0Dαt(af(t)+bg(t))=aA0Dαtf(t)+bA0Dαtg(t),a,bR.

    II. A0Dαt(f(t).g(t))=f(t)A0Dαtg(t)+g(t)A0Dαtf(t).

    III.

    A0Dαt{f(t)g(t)}=g(t)A0Dαtf(t)f(t)A0Dαtg(t)(g(t))2.

    IV. A0Dαt(C)=0, where C is a constant function.

    V. Suppose that f is differentiable function, Δ=(x+1Γ(α))α1h,h0 when Δ0 then

    A0Dαtf(t)=(t+1Γ(α))1αdf(t)dt.

    VI.

    A0Dαt(f(t)g(t))=ldf(η)dη,

    where l is a constant and η=lα(x+1Γ(α))α.

    Assume, we have the following nonlinear partial differential equation (NLPDE)

    P(A0Dαxu,A0Dαtu,A0DαtA0Dαxu,A0D2αxu,  )=0. (3.1)

    To find explicit exact solutions of coupled Schrödinger-Boussinesq system, we use the following transformation

    u(x,y,t)=U(ξ),ξ=1α(x+1Γ(α))ανα(t+1Γ(α))α, (3.2)

    where ν is arbitrary constant and ξ is the symbol of the wave variable. Inserting Eq (2) to Eq (1), we get a nonlinear ordinary differential equation (NLODE)

    N(U,U,U,  )=0. (3.3)

    The trial equation of solution for Eq (3) is given by

    U(ξ)=a0+ni=1aiKiΦ(ξ)+ni=1biKiΦ(ξ), (3.4)

    where a0,ai and bi are non-zero constants and Φ(ξ) is the auxiliary ODE given by

    Φ(ξ)=KΦ(ξ)+μKΦ(ξ)+λln(K), (3.5)

    where μ, λ are constants and K>0,K1. The auxiliary ODE has the general solution:

    I. When λ24μ>0, then f(ξ)=logK(λλ24μtanh(12λ24μ(C+ξ))).

    II. When λ24μ<0, then

    f(ξ)=logK(λ+λ2+4μtan(12λ2+4μ(C+ξ))).

    III. When λ24μ0, λ=0 andμ<0, then

    f(ξ)=logK(4μcoth(124μ(C+ξ))).

    IV. When λ24μ0, λ=0 andμ>0, then

    f(ξ)=logK(4μcot(124μ(C+ξ))).

    V. When λ24μ>0 and μ=0, then

    f(ξ)=logK(1+cosh(λ(C+ξ))+sinh(λ(C+ξ))λ).

    VI. When λ24μ=0,λ0 and μ0, then

    f(ξ)=logK(2λ(C+ξ)2μ(C+ξ)).

    VII. When λ24μ=0,λ=0 and μ=0, then

    f(ξ)=logK(ξ+C).

    Consider the coupled Schrödinger-Boussinesq system [62] with the Beta Derivative as follows:

    iA0DαtE+A0D2αxE+βEEN=0, (4.1)
    3A0D2αtNA0D4αxN+3A0D2αxN2+γA0D2αxNA0D2αx|E|2=0, (4.2)

    where β and γ are real constants, E(x,t) is a complex function, and N(x,t) is a real function. To find the explicit exact solutions of coupled S-B system, we use the following transformation

    E(x,t)=U(ξ)eiθ,N(x,t)=V(ξ),θ=κα(x+1Γ(α))α+ωα(t+1Γ(α))α+l,ξ=1α(x+1Γ(α))α+δα(t+1Γ(α))α, (4.3)

    where δ is arbitrary constant and κ is the symbol of the soliton wave number, ω represents the soliton frequency and l symbolize the phase constant. Substituting Eq (4.3) into Eqs (4.1) and (4.2), we obtain

    i(δ+2κ)U+(βωκ2)U+UUV=0, (4.4)
    (3δ2+γ)V+3V2U2VA=0, (4.5)

    where Eq (4.5) is found by integrating twice with respect to ξ and A is the arbitrary constant of integration. By Separate Eq (4.4) into real and imaginary parts, we get

    (βωκ2)U+UUV=0, (4.6)

    and

    δ=2κ. (4.7)

    Inserting Eq (4.7) into Eqs (4.5) and (4.6), we get

    (βωκ2)U+UUV=0, (4.8)
    (12κ2+γ)V+3V2U2VA=0. (4.9)

    From Eq (4.8), we have

    V(ξ)=U(ξ)U(ξ)+(βωκ2).

    By using the homogeneous balance principle between the highest-order derivatives and nonlinear terms appearing in Eqs (4.9) and (4.10), we get m=2 and n=2 for U and V, respectively. We assume that the solutions of Eqs (4.9) and (4.10) have the following form

    U(ξ)=a0+a1Kf(ξ)+a2K2f(ξ)+b1Kf(ξ)+b2K2f(ξ), (4.10)
    V(ξ)=c0+c1Kf(ξ)+c2K2f(ξ)+d1Kf(ξ)+d2K2f(ξ). (4.11)

    By inserting Eqs (4.10) and (4.11) into Eqs (4.8) and (4.9) and collecting all terms with the same order of Kf(ξ) together, putting each coefficient of each polynomial to zero, we conclude the following cases:

    Case One. When a0=λ2λ2μ28μ3+μ4(12A+β22+24β2κ2+144κ4+3λ424λ2μ+48μ2)2μ,a2=0, a1=22λ2μ28μ3+μ4(12A+β22+24β2κ2+144κ4+3λ424λ2μ+48μ2), b1=0, b2=0, c0=β2μ212κ2μ2+3λ2μ2+μ4(12A+β22+24β2κ2+144κ4+3λ424λ2μ+48μ2)6μ2,c1=2λμ, c2=2μ2, d1=0, d2=0, We obtain the following families of solutions.

    Family 1. When Δ=λ24μ>0, 2λ2μ28μ3+H1>0, λ22+2μ>0, (12A+β22+24β2κ2+3(48κ4+(λ24μ)2))μ4>0 and μ0, then

    E(x,t)=ei(lα+(x+αΓ(α))ακ+(t+αΓ(α))αω)αΔ(2λ2μ28μ3+H1)tanh(Δ(Cα+(x+αΓ(α))α2(t+αΓ(α))ακ)2α)2μ, (4.12)
    N(x,t)=β262κ2+H16μ2+12Δtanh2(Δ(Cα+(x+αΓ(α))α2(t+αΓ(α))ακ)2α), (4.13)

    where H1=(12A+β22+24β2κ2+3(48κ4+Δ2))μ4. Eq (4.12) and Eq (4.13) are dark soliton solutions as shown in Figure (1).

    Figure 1.  3-D figure of soliton solutions for Eq (4.12) and Eq (4.13) plotted when λ=3,μ=1,C=1,A=1,β2=1,κ=1,β1=0.1,l=1,ω=1.

    Family 2. When Δ=λ24μ<0, 2λ2μ28μ3+H1>0, Δ2>0, (12A+β22+24β2κ2+3(48κ4+Δ2))μ4>0 and μ0, then

    E(x,t)=ei(lα+(x+αΓ(α))ακ+(t+αΓ(α))αω)αΔ2(2λ2μ28μ3+H1)tan((Cα+(x+αΓ(α))α2(t+αΓ(α))ακ)Δ2α)μ, (4.14)
    N(x,t)=β262κ2+H6μ212Δtan2((Cα+(x+αΓ(α))α2(t+αΓ(α))ακ)Δ2α). (4.15)

    Equations (4.14) and (4.15) are singular soliton solutions as seen in Figure (2).

    Figure 2.  3-D figure of singular soliton solutions for Eq (4.14) and Eq (4.15) plotted when λ=1,μ=1,c=1,A=0.1,β2=0.2,κ=0.5,β1=0.3,l=2,ω=4.

    Family 3. When λ=0, μ<0, H2>μ and μ4(12A+β22+24β2κ2+48(3κ4+μ2))>0, then

    E(x,t)=2(H28μ3)μei(lα+(x+αΓ(α))ακ+(t+αΓ(α))αω)αcoth(μ(Cα2(t+αΓ(α))ακ+(x+αΓ(α))α)α), (4.16)
    N(x,t)=16μ2(H2β2μ212κ2μ212μ3coth2(μ(Cα2(t+αΓ(α))ακ+(x+αΓ(α))α)α)), (4.17)

    where H2=μ4(12A+β22+24β2κ2+48(3κ4+μ2)).

    These solutions are singular soliton solutions as presented in Figure (3).

    Figure 3.  3-D plot of soliton solutions for Eq (4.16) and Eq (4.17) plotted when λ=0,μ=0.01,C=0.1,A=1,β2=0.2,κ=0.2,β1=0.3,l=0.2,ω=4.

    Family 4. When λ=0, μ>0, H2>μ and μ4(12A+β22+24β2κ2+48(3κ4+μ2))>0, then

    E(x,t)=2(H28μ3)μei(lα+(x+αΓ(α))ακ+(t+αΓ(α))αω)αcot(μ(Cα+(x+αΓ(α))α2(t+αΓ(α))ακ)α), (4.18)
    N(x,t)=H2β2μ212κ2μ2+12μ3cot2((Cα+(x+αΓ(α))α2(t+αΓ(α))ακ)μα)6μ2. (4.19)

    These solutions are singular soliton solutions as presented in Figure (4).

    Figure 4.  3-D plot of singular soliton solutions for Eq (4.18) and Eq (4.19) plotted when λ=0,μ=0.2,C=0.4,A=1,β2=3,κ=0.2,β1=0.3,l=0.2,ω=4.

    Family 5. When λ24μ>0 and μ=0, then the solution of this family could not be found because is located at the denominator of a0,c0.

    Family 6. When λ24μ=0,λ0, 2λ2μ28μ3+H1>0 and μ0, then

    E(x,t)=α2(2λ2μ28μ3+H1)ei(lα+(x+αΓ(α))ακ+(t+αΓ(α))αω)α(Cα+(x+αΓ(α))α2(t+αΓ(α))ακ)μ, (4.20)
    N(x,t)=(((x+αΓ(α))α2(t+αΓ(α))ακ)λ+α(2+Cλ))22(Cα+(x+αΓ(α))α2(t+αΓ(α))ακ)22αλCα+(x+αΓ(α))α2(t+αΓ(α))ακλ2+H1β2μ212κ2μ2+3λ2μ26μ2. (4.21)

    As shown in Figure (5), Eq (4.20) and Eq (4.21) are singular solutions, too.

    Figure 5.  3-D plot of soliton solutions for Eq (4.20) and Eq (4.21) plotted when λ=2,μ=1,C=1,A=0.1,β2=3,κ=2,β1=3,l=0.2,ω=4.

    Family 7. When λ24μ=0,λ=0 and μ=0, then the solution of this family could not be found because μ=0 is located at the denominator of a0,c0.

    Case Two. When a0=λ2Δμ2μ,a1=22μ2Δ, a2=0,b1=0, b2=0, c0=16(5λ28μλ48λ2μ+16μ212A), c1=2λμ, c2=2μ2, d1=0, d2=0, ω=112(12β1+β210λ2+40μ+λ48λ2μ+16μ212A), κ=λ48λ2μ+16μ212Aβ223, we obtain the following families of solutions.

    Family 1. When Δ=λ24μ>0, β2>0, β2>H3 and Δ212A>0, then

    E(x,t)=2Δ3/2μei(12lα23(x+αΓ(α))α(β2+H3)+(t+αΓ(α))α(12β1+β210λ2H3+40μ))12αΔμ2×tanh((3(x+αΓ(α))α+3(t+αΓ(α))α(β2+H3))Δ6α), (4.22)
    N(x,t)=16(2λ2+H38μ+3Δtanh2((3(x+αΓ(α))α+3(t+αΓ(α))α(β2+H3))Δ6α)), (4.23)

    where H3=Δ212A.

    Family 2. WhenΔ<0, β2>0, β2>H3 and Δ212A>0, then

    E(x,t)=2ei(12lα23(x+αΓ(α))αβ2H3+(t+αΓ(α))α(12β1+β210λ2H3+40μ))12αΔμ2Δμtan((3Cα+3(x+αΓ(α))α+3(t+αΓ(α))α(β2+H3))Δ6α), (4.24)
    N(x,t)=16(2λ2+H38μ3Δtan2((3Cα+3(x+αΓ(α))α+3(t+αΓ(α))α(β2+H3))Δ6α)). (4.25)

    Family 3. When λ=0, μ<0, A>0 and β224μ23A>0, then

    E(x,t)=42μ2ei(12lα23(x+αΓ(α))αH4+(t+αΓ(α))α(12β1+β2+40μ24μ23A))12α×coth(μ(3(x+αΓ(α))α+3(t+αΓ(α))αH4)3α), (4.26)
    N(x,t)=13(4μ23A4μ6μcoth2(μ(3(x+αΓ(α))α+3(t+αΓ(α))αH4)3α)), (4.27)

    where H4=β224μ23A.

    Family 4. When λ=0, μ<0, A<0 and β224μ23A>0, then

    E(x,t)=42μ5/2μ3ei(12lα23(x+αΓ(α))αH4+(t+αΓ(α))α(12β1+β2+40μ24μ23A))12αcot(μ(C+(x+αΓ(α))αα+(t+αΓ(α))αH43α)), (4.28)
    N(x,t)=23(4μ23A4μ+6μcot2(μ(C+(x+αΓ(α))αα+(t+αΓ(α))αH43α))). (4.29)

    Family 5. When Δ>0 and μ=0, then the solution of E(x,t)could not be found because μ=0 is located at the denominator of a0.

    N(x,t)=16(5λ2+λ412A). (4.30)

    Family 6. When Δ=0,λ0, β2H>0 and μ0,

    E(x,t)=6α2Δμ2ei(12lα23(x+αΓ(α))αβ2H3+(t+αΓ(α))α(12β1+β210λ2H3+40μ))12α3Cα+3(x+αΓ(α))α+3(t+αΓ(α))α(β2+H3)μ, (4.31)
    N(x,t)=16(3(6α+3Cαλ+3(x+αΓ(α))αλ+3(t+αΓ(α))αλβ2H3)2(3Cα+3(x+αΓ(α))α+3(t+αΓ(α))αβ2H3)2+H38μλ236αλ3Cα+3(x+αΓ(α))α+3(t+αΓ(α))αβ2H3). (4.32)

    Family 7. When Δ=0,λ=0 and μ=0, then the solution E(x,y,t) could not be found because μ=0 is located at the denominator of a0.

    N(x,t)=A3. (4.33)

    Case Three. When a0=λλ2c0+8μc03c20A2λ2μ4μ2λ22c0, a1=0, a2=0, b1=2λ2c0+8μc03c20A2λ2μ4μ2λ22c0, b2=0, c1=0, c2=0, d1=2λ, d2=2, ω=2A+12β1λ2+β2λ2λ4+20λ2μ+8μ224β1c02β2c06λ2c048μc0+18c2012(λ22c0), κ=λ4+4λ2μ8μ2+2β2c06λ2c0+6c202Aβ2λ223(λ22c0), we obtain the following families of solutions.

    Family 1. When Δ=λ24μ>0 and (λ2+8μ)c03c20A2μ(λ2+2μ)>0, then

    E(x,t)=H5(λ24μ+λΔtanh(((x+αΓ(α))α2(t+αΓ(α))ακ)Δ2α))λ22c0(λ+Δtanh(((x+αΓ(α))α2(t+αΓ(α))ακ)Δ2α))×ei(lα+(x+αΓ(α))ακ+(t+αΓ(α))αω)α, (4.34)
    N(x,t)=c04μ(λ22μ+λΔtanh(((x+αΓ(α))α2(t+αΓ(α))ακ)Δ2α))(λ+Δtanh(((x+αΓ(α))α2(t+αΓ(α))ακ)Δ2α))2, (4.35)

    where H5=(λ2+8μ)c03c20A2μΔ.

    Family 2. When Δ<0 and (λ2+8μ)c03c20A2μ(λ2+2μ)>0, then

    E(x,t)=H5λ22c0ei(lα+(x+αΓ(α))ακ+(t+αΓ(α))αω)α×(λ4μλΔtan((Cα+(x+αΓ(α))α2(t+αΓ(α))ακ)Δ2α)), (4.36)
    N(x,t)=4μ(2μλ2+λΔtan((Cα+(x+αΓ(α))α2(t+αΓ(α))ακ)Δ2α))(λΔtan((Cα+(x+αΓ(α))α2(t+αΓ(α))ακ)Δ2α))2+c0. (4.37)

    Family 3. λ=0, μ<0, c0<0 and 8μc03c20A4μ2>0

    E(x,t)=2ei(lα+(x+αΓ(α))ακ+(t+αΓ(α))αω)αμH6c0tanh(((x+αΓ(α))α2(t+αΓ(α))ακ)μα), (4.38)
    N(x,t)=c02μtanh[((x+αΓ(α))α2(t+αΓ(α))ακ)μα]2, (4.39)

    where H6=8μc03c20A4μ2.

    Family 4. When λ=0, μ>0 and 8μc03c20A4μ2>0, then

    E(x,t)=2μei(lα+(x+αΓ(α))ακ+(t+αΓ(α))αω)αH6c0tan((Cα+(x+αΓ(α))α2(t+αΓ(α))ακ)μα), (4.40)
    N(x,t)=c0+2μtan2((Cα+(x+αΓ(α))α2(t+αΓ(α))ακ)μα). (4.41)

    Family 5. When Δ>0, λ22c0>0, λ2c03c20A>0 and μ=0, then

    E(x,t)=λλ2c03c20Aλ22c0ei(lα+(x+αΓ(α))ακ+(t+αΓ(α))αω)αcoth((Cα+(x+αΓ(α))α2(t+αΓ(α))ακ)λ2α), (4.42)
    N(x,t)=12csch2((Cα+(x+αΓ(α))α2(t+αΓ(α))ακ)λ2α)×(λ2+(cosh((Cα+(x+αΓ(α))α2(t+αΓ(α))ακ)λα)1)c0). (4.43)

    Family 6. When Δ=0,λ0, λ22c0>0, (λ2+8μ)c03c20A2μ(λ2+2μ)>0 and μ0, then

    E(x,t)=(((x+αΓ(α))α2(t+αΓ(α))ακ)Δ+α(2λ+Cλ24Cμ))H5(((x+αΓ(α))α2(t+αΓ(α))ακ)λ+α(2+Cλ))λ22c0×ei(lα+(x+αΓ(α))ακ+(t+αΓ(α))αω)α, (4.44)
    N(x,t)=8(Cα+(x+αΓ(α))α2(t+αΓ(α))ακ)2μ2(((x+αΓ(α))α2(t+αΓ(α))ακ)λ+α(2+Cλ))24(Cα+(x+αΓ(α))α2(t+αΓ(α))ακ)λμ((x+αΓ(α))α2(t+αΓ(α))ακ)λ+α(2+Cλ)+c0. (4.45)

    Family 7. When Δ=0,λ=0, μ=0, c0>0, and A3c20>0, then

    E(x,t)=2ei(lα+(x+αΓ(α))ακ+(t+αΓ(α))αω)ααA3c20(Cα+(x+αΓ(α))α2(t+αΓ(α))ακ)c0, (4.46)
    N(x,t)=2α2(Cα+(x+αΓ(α))α2(t+αΓ(α))ακ)2+c0. (4.47)

    In this section, we construct the modulation instability (MI) of the stationary solutions of Eqs (4.1) and (4.2) via the virtue of linear stability analysis. The MI may consist of exponential growth of small disturbances in the amplitude or optical wave phase [63]. It is essential that we can observe MI in the nonlinear physics of the wave. Suppose that Eqs (4.1) and (4.2) have the following stationary solutions [64]:

    E(x,t)=aeiφ1α(t+1Γ(α))α,N(x,t)=b, (5.1)

    where a and b are arbitrary real constants. Putting Eq (5.1) into Eqs (4.1) and (4.2), we get φ=(β1b). Suppose that the perturbed stationary solution has the form:

    E(x,t)=(a+εU(x,t))ei(β1b)1α(t+1Γ(α))α,N(x,t)=b+εV(x,t), (5.2)

    where U(x,t) is complex fractional function, and V(x,t) is real fractional function. Putting Eq (5.2) into Eqs (4.1) and (4.2), the results satisfy the following linear equations.

    aViUtUxx=0, (5.3)
    3Vtt(x,t)Vxxxx(x,t)+β2Vxx(x,t)(Uxx(x,t)+Uxx(x,t))+6bVxx(x,t)=0. (5.4)

    Where is the symbol of the conjugate and so, Eqs (5.3) and (5.4) can be written as

    U(x,t) = U1ei(W1α(t+1Γ(α))α+M1α(x+1Γ(α))α)+U2ei(W1α(t+1Γ(α))α+M1α(x+1Γ(α))α), (5.5)
    V(x,t) = V1ei(W1α(t+1Γ(α))α+M1α(x+1Γ(α))α)+V2ei(W1α(t+1Γ(α))α+M1α(x+1Γ(α))α). (5.6)

    Where W denotes the complex frequency, M is real disturbance wave-number, and U1,U2,V1,V2 are the coefficients of the linear combination. Substituting Eqs (5.5) and (5.6), we get the following homogeneous equations

    M2U1+aV1WU1=0,M2U2+aV2+WU2=0,M2U1+M2U26bM2V1M4V13W2V1M2β2V1=0,M2U1+M2U26bM2V2M4V23W2V2M2β2V2=0. (5.7)

    Evaluating the determinant and equaling to zero, we get the following relationship:

    (6bM2+M4+3W2+M2β2)(2aM4+(M4W2)(6bM2+M4+3W2+M2β2))=0. (5.8)

    According to Eq (5.8), we can discuss the following cases of the MI for Eqs (4.1) and (4.2) as follows

    Case 1. In case

    W=iM6b+M2+β23, (5.9)

    we observe that the modulation instability of the Eqs (4.1) and (4.2) occurs when the wave number contains an imaginary value, therefor

    6b+M2+β2>0. (5.10)

    Case 2. In case

    w=M2(2M26bβ2)M224a+36b2+M2(48b+16M2)+β2(12b+8M2+β2)6, (5.11)

    we observe that the modulation instability of the Eqs (4.1) and (4.2) occurs when either

    24a+36b2+M2(48b+16M2)+β2(12b+8M2+β2)>0, (5.12)

    or

    M2(2M26bβ2)M224a+36b2+M2(48b+16M2)+β2(12b+8M2+β2)<0. (5.13)

    Moreover, we investigate the modulation Instability gain spectrum G(W), which is determined by the maximum absolute value for the imaginary part of the wave number and defined as

    G(M)=2Im(w)=i2M6b+M2+β23, (5.14)

    and

    (M)=2Im(w)=26Im(M2(2M2β26b)M224a+36b2+M2(48b+16M2)+β2(12b+8M2+β2)). (5.15)

    The effect of the arbitrary constants a and b are illustrated graphically as seen in Figures (6) and (7).

    Figure 6.  2-D figure of gain spectrum G(M) for different value of parameters.
    Figure 7.  2-D figure of gain spectrum G(M), when β2=3.

    In this research, we constructed the new periodic, singular solutions of the coupled Schrödinger-Boussinesq system with beta derivative via a modified auxiliary expansion method. We found and investigated the several new family's solutions and one family are shown graphically in 2-D and 3-D; to more understands their physical characteristics. The novel solutions included hyperbolic function, trigonometric function, rational function, and constant function. The linear stability analysis of coupled Schrödinger-Boussinesq are studied and the modulation instability of two cases are analyzed. Moreover, the two cases of instability modulation and its gain spectrum are illustrated graphically. These new solutions and results might appreciate in laser and plasma sciences.

    This projected work was partially (not financial) supported by the Scientific Research Project Fund of Harran University with the project number HUBAP:21132.

    The authors declare that they have no conflict of interest.



    [1] O. A. Ilhan, A. Esen, H. Bulut, H. M. Baskonus, Singular solitons in the pseudo-parabolic model arising in nonlinear surface waves, Results Phys., 12 (2019), 1712–1715. doi: 10.1016/j.rinp.2019.01.059
    [2] H. F. Ismael, Carreau-Casson fluids flow and heat transfer over stretching plate with internal heat source/sink and radiation, Int. J. Adv. Appl. Sci. J., 4 (2017), 11–15.
    [3] A. Zeeshan, H. F. Ismael, M. A. Yousif, T. Mahmood, S. U. Rahman, Simultaneous effects of slip and wall stretching/shrinking on radiative flow of magneto nanofluid through porous medium, J. Magn., 23 (2018), 491–498. doi: 10.4283/JMAG.2018.23.4.491
    [4] H. F. Ismael, K. K. Ali, MHD casson flow over an unsteady stretching sheet, Adv. Appl. Fluid Mech., 20 (2017), 533–541.
    [5] M. A. Yousif, B. A. Mahmood, K. K. Ali, H. F. Ismael, Numerical simulation using the homotopy perturbation method for a thin liquid film over an unsteady stretching sheet, Int. J. Pure Appl. Math., 107 (2016), 289–300.
    [6] H. M. Baskonus, H. Bulut, On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method, Open Math., 13 (2015), 4255–4270.
    [7] K. K. Ali, R. Yilmazer, H. M. Baskonus, H. Bulut, New wave behaviors and stability analysis of the Gilson-Pickering equation in plasma physics, Indian J. Phys., 95 (2021), 1003–1008. doi: 10.1007/s12648-020-01773-9
    [8] H. Ismael, H. Bulut, On the wave solutions of (2+1)-dimensional time-fractional Zoomeron equation, Konuralp J. Math., 8 (2020), 410–418.
    [9] C. Cattani, T. A. Sulaiman, H. M. Baskonus, H. Bulut, On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel'd-Sokolov systems, Opt. Quant. Electron., 50 (2018), 1–11. doi: 10.1007/s11082-017-1266-2
    [10] H. Bulut, T. A. Sulaiman, H. M. Baskonus, Dark, bright optical and other solitons with conformable space-time fractional second-order spatiotemporal dispersion, Optik, 163 (2018), 1–7. doi: 10.1016/j.ijleo.2018.02.086
    [11] J. Manafian, M. Foroutan, A. Guzali, Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model, Eur. Phys. J. Plus, 132 (2017), 1–22. doi: 10.1140/epjp/i2017-11280-8
    [12] W. Liu, D. Q. Qiu, Z. W. Wu, J. S. He, Dynamical behavior of solution in integrable nonlocal Lakshmanan-Porsezian-Daniel equation, Commun. Theor. Phys., 65 (2016), 671. doi: 10.1088/0253-6102/65/6/671
    [13] X. B. Wang, B. Han, Vector nonlinear waves in a two-component Bose-Einstein condensate system, J. Phys. Soc. Japan, 89 (2020), 124003. doi: 10.7566/JPSJ.89.124003
    [14] A. Biswas, A. H. Kara, R. T. Alqahtani, M. Z. Ullah, H. Triki, M. Belic, Conservation laws for optical solitons of lakshmanan-porsezian-daniel model, Proc. Roman. Acad. Ser. A, 19 (2018), 39–44.
    [15] H. M. Baskonus, G. Yel, H. Bulut, Novel wave surfaces to the fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation, AIP Conf. Proc., 1863 (2017), 560084. doi: 10.1063/1.4992767
    [16] H. M. Baskonus, H. Bulut, Exponential prototype structures for (2+1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics, Waves Random Complex Media, 26 (2016), 189–196. doi: 10.1080/17455030.2015.1132860
    [17] H. M. Baskonus, H. Bulut, On the complex structures of Kundu-Eckhaus equation via improved Bernoulli sub-equation function method, Waves Random Complex Media, 25 (2015), 720–728. doi: 10.1080/17455030.2015.1080392
    [18] A. Javid, N. Raza, Singular and dark optical solitons to the well posed Lakshmanan-Porsezian-Daniel model, Optik, 171 (2018), 120–129. doi: 10.1016/j.ijleo.2018.06.021
    [19] J. Vega-Guzman, A. Biswas, M. F. Mahmood, Q. Zhou, S. P. Moshokoa, M. Belic, Optical solitons with polarization mode dispersion for Lakshmanan-Porsezian-Daniel model by the method of undetermined coefficients, Optik, 171 (2018), 114–119. doi: 10.1016/j.ijleo.2018.06.040
    [20] Z. Hammouch, T. Mekkaoui, Traveling-wave solutions of the generalized Zakharov equation with time-space fractional derivatives, J. MESA, 5 (2014), 489–498.
    [21] A. Biswas, Y. Yıldırım, E. Yaşar, R. T. Alqahtani, Optical solitons for Lakshmanan-Porsezian-Daniel model with dual-dispersion by trial equation method, Optik, 168 (2018), 432–439. doi: 10.1016/j.ijleo.2018.04.087
    [22] A. Biswas, M. Ekicid, A. Sonmezoglud, H. Trikie, F. B. Majida, Q. Zhou, et al., Optical solitons with Lakshmanan-Porsezian-Daniel model using a couple of integration schemes, Optik, 158 (2018), 705–711. doi: 10.1016/j.ijleo.2017.12.190
    [23] C. M. Khalique, I. E. Mhlanga, Travelling waves and conservation laws of a (2+1)-dimensional coupling system with Korteweg-de Vries equation, Appl. Math. Nonlinear Sci., 3 (2018), 241–254. doi: 10.21042/AMNS.2018.1.00018
    [24] J. Manafian, M. Lakestani, A. Bekir, Study of the analytical treatment of the (2+1)-dimensional zoomeron, the duffing and the SRLW equations via a new analytical approach, Int. J. Appl. Comput. Math., 2 (2016), 243–268. doi: 10.1007/s40819-015-0058-2
    [25] Z. Hammouch, T. Mekkaoui, P. Agarwal, Optical solitons for the Calogero-Bogoyavlenskii-Schiff equation in (2+1) dimensions with time-fractional conformable derivative, Eur. Phys. J. Plus, 133 (2018), 1–6. doi: 10.1140/epjp/i2018-11804-8
    [26] M. Dewasurendra, K. Vajravelu, On the method of inverse mapping for solutions of coupled systems of nonlinear differential equations arising in nanofluid flow, heat and mass transfer, Appl. Math. Nonlinear Sci., 3 (2018), 1–14. doi: 10.1504/IJANS.2018.097323
    [27] X. B. Wang, S. F. Tian, T. T. Zhang, Characteristics of the breather and rogue waves in a (2+1)-dimensional nonlinear Schrödinger equation, Proc. Am. Math. Soc., 146 (2018), 3353–3365. doi: 10.1090/proc/13765
    [28] L. D. Moleleki, T. Motsepa, C. M. Khalique, Solutions and conservation laws of a generalized second extended (3+1)-dimensional Jimbo-Miwa equation, Appl. Math. Nonlinear Sci., 3 (2018), 459–474. doi: 10.2478/AMNS.2018.2.00036
    [29] A. J. M. Jawad, M. J. Abu-AlShaeer, A. Biswas, Q. Zhou, S. Moshokoa, M. Belic, Optical solitons to Lakshmanan-Porsezian-Daniel model for three nonlinear forms, Optik, 160 (2018), 197–202. doi: 10.1016/j.ijleo.2018.01.121
    [30] X. B. Wang, S. F. Tian, L. L. Feng, T. T. Zhang, On quasi-periodic waves and rogue waves to the (4+1)-dimensional nonlinear Fokas equation, J. Math. Phys., 59 (2018), 073505. doi: 10.1063/1.5046691
    [31] H. Yépez-Martínez, J. F. Gómez-Aguilar, M-derivative applied to the soliton solutions for the Lakshmanan-Porsezian-Daniel equation with dual-dispersion for optical fibers, Opt. Quant. Electron., 51 (2019), 31. doi: 10.1007/s11082-018-1740-5
    [32] X. Yang, Y. Yang, C. Cattani, C. M. Zhu, A new technique for solving the 1-D Burgers equation, Therm. Sci., 21 (2017), 129–136. doi: 10.2298/TSCI17S1129Y
    [33] J. J. Mao, S. F. Tian, L. Zou, T. T. Zhang, Stability analysis, optical solitons and complexitons of the two-dimensional complex Ginzburg-Landau equation, J. Electromagn. Waves Appl., 33 (2019), 1224–1238. doi: 10.1080/09205071.2019.1606736
    [34] K. Khan, M. A. Akbar, The exp(Φ(ξ))-Expansion method for finding travelling wave solutions of Vakhnenko-Parkes equation, Int. J. Dyn. Syst. Differ. Equations, 5 (2014), 72–83.
    [35] C. Cattani, T. A. Sulaiman, H. M. Baskonus, H. Bulut, Solitons in an inhomogeneous Murnaghan's rod, Eur. Phys. J. Plus, 133 (2018), 1–11. doi: 10.1140/epjp/i2018-11804-8
    [36] J. J. Mao, S. F. Tian, L. Zou, T. T. Zhang, X. J. Yan, Bilinear formalism, lump solution, lumpoff and instanton/rogue wave solution of a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation, Nonlinear Dyn., 95 (2019), 3005–3017. doi: 10.1007/s11071-018-04736-2
    [37] D. Liu, X. Ju, O. A. Ilhan, J. Manafian, H. F. Ismael, Multi-waves, breathers, periodic and cross-kink solutions to the (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation, J. Ocean Univ. China, 20 (2020), 35–44.
    [38] X. W. Yan, S. F. Tian, M. J. Dong, L. Zhou, T. T. Zhang, Characteristics of solitary wave, homoclinic breather wave and rogue wave solutions in a (2+1)-dimensional generalized breaking soliton equation, Comput. Math. Appl., 76 (2018), 179–186. doi: 10.1016/j.camwa.2018.04.013
    [39] X. W. Yan, S. F. Tian, M. J. Dong, L. Zou, Bäcklund transformation, rogue wave solutions and interaction phenomena for a (3+1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation, Nonlinear Dyn., 92 (2018), 709–720. doi: 10.1007/s11071-018-4085-5
    [40] S. F. Tian, H. Q. Zhang, On the integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation, J. Phys. A: Math. Theor., 45 (2012), 055203. doi: 10.1088/1751-8113/45/5/055203
    [41] X. B. Wang, S. F. Tian, C. Y. Qin, T. T. Zhang, Lie symmetry analysis, conservation laws and exact solutions of the generalized time fractional Burgers equation, Europhys. Lett., 114 (2016), 20003. doi: 10.1209/0295-5075/114/20003
    [42] S. Tian, H. Zhang, On the integrability of a generalized variable‐coefficient forced Korteweg‐de Vries equation in fluids, Stud. Appl. Math., 132 (2014), 212–246. doi: 10.1111/sapm.12026
    [43] B. H. Wang, Y. Y. Wang, C. Q. Dai, Y. X. Chen, Dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas-Lenells equation, Alex. Eng. J., 59 (2020), 4699–4707. doi: 10.1016/j.aej.2020.08.027
    [44] B. H. Wang, Y. Y. Wang, C. Q. Dai, Fractional optical solitons with stochastic properties of a wick-type stochastic fractional NLSE driven by the Brownian motion, Waves Random Complex Media, (2021), 1–14. Available from: https://doi.org/10.1080/17455030.2021.1905910.
    [45] A. Nabti, B. Ghanbari, Global stability analysis of a fractional SVEIR epidemic model, Math. Methods Appl. Sci., 2021. Available from: https://doi.org/10.1002/mma.7285.
    [46] H. F. Ismael, H. M. Baskonus, H. Bulut, Abundant novel solutions of the conformable Lakshmanan-Porsezian-Daniel model, Discrete Contin. Dyn. Syst.-S, 2020. Available from: https://doi.org/10.3934/dcdss.2020398.
    [47] P. Lu, B. Wang, C. Dai, Fractional traveling wave solutions of the (2+1)‐dimensional fractional complex Ginzburg-Landau equation via two methods, Math. Methods Appl. Sci., 43 (2020), 8518–8526. doi: 10.1002/mma.6511
    [48] J. J. Fang, D. S. Mou, Y. Y. Wang, H. C. Zhang, C. Q. Dai, Y. X. Chen, Soliton dynamics based on exact solutions of conformable fractional discrete complex cubic Ginzburg-Landau equation, Results Phys., 20 (2021), 103710. doi: 10.1016/j.rinp.2020.103710
    [49] B. Ghanbari, S. Kumar, A study on fractional predator-prey-pathogen model with Mittag-Leffler kernel‐based operators, Numer. Meth. Part. D. E., 2020. Available from: https://doi.org/10.1002/num.22689.
    [50] B. Ghanbari, On the modeling of an eco-epidemiological model using a new fractional operator, Results Phys., 21 (2021), 103799. doi: 10.1016/j.rinp.2020.103799
    [51] L. J. Yu, G. Z. Wu, Y. Y. Wang, Y. X. Chen, Traveling wave solutions constructed by Mittag-Leffler function of a (2+1)-dimensional space-time fractional NLS equation, Results Phys., 17 (2020), 103156. doi: 10.1016/j.rinp.2020.103156
    [52] J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond., J. Math. Pures Appl., (1872), 55–108. Available from: http://eudml.org/doc/234248.
    [53] J. Manafian, M. F. Aghdaei, Abundant soliton solutions for the coupled Schrödinger-Boussinesq system via an analytical method, Eur. Phys. J. Plus, 131 (2016), 1–29. doi: 10.1140/epjp/i2016-16001-3
    [54] M. S. Osman, J. A. T. Machado, D. Baleanu, On nonautonomous complex wave solutions described by the coupled Schrödinger-Boussinesq equation with variable-coefficients, Opt. Quant. Electron., 50 (2018), 1–11. doi: 10.1007/s11082-017-1266-2
    [55] G. Mu, Z. Qin, Rogue waves for the coupled Schrödinger-Boussinesq equation and the coupled Higgs equation, J. Phys. Soc. Japan, 81 (2012), 084001. doi: 10.1143/JPSJ.81.084001
    [56] D. Bai, J. Wang, The time-splitting Fourier spectral method for the coupled Schrödinger-Boussinesq equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1201–1210. doi: 10.1016/j.cnsns.2011.08.012
    [57] S. S. Ray, A novel approach with time-splitting spectral technique for the coupled Schrödinger-Boussinesq equations involving Riesz fractional derivative, Commun. Theor. Phys., 68 (2017), 301. doi: 10.1088/0253-6102/68/3/301
    [58] C. Banquet, L. C. F. Ferreira, E. J. Villamizar-Roa, On the Schrödinger-Boussinesq system with singular initial data, J. Math. Anal. Appl., 400 (2013), 487–496. doi: 10.1016/j.jmaa.2012.10.047
    [59] Z. F. Liang, Modulational instability and stationary waves for the coupled generalized Schrödinger-Boussinesq system, Z. Naturforsch. A, 66 (2011), 143–150.
    [60] A. Kılıcman, R. Abazari, Travelling wave solutions of the Schrödinger-Boussinesq system, In: Abstract and Applied Analysis, Hindawi, 2012.
    [61] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A
    [62] J. Manafian, M. F. Aghdaei, Abundant soliton solutions for the coupled Schrödinger-Boussinesq system via an analytical method, Eur. Phys. J. Plus, 131 (2016), 1–29. doi: 10.1140/epjp/i2016-16001-3
    [63] X. Wen, Construction of new exact rational form non-travelling wave solutions to the (2+1)-dimensional generalized Broer-Kaup system, Appl. Math. Comput., 217 (2010), 1367–1375.
    [64] D. Guo, S. F. Tian, T. T. Zhang, J. Li, Modulation instability analysis and soliton solutions of an integrable coupled nonlinear Schrödinger system, Nonlinear Dyn., 94 (2018), 2749–2761. doi: 10.1007/s11071-018-4522-5
  • This article has been cited by:

    1. Souleymanou Abbagari, Alphonse Houwe, Serge Y. Doka, Thomas B. Bouetou, Mustafa Inc, Kofane T. Crepin, W-shaped profile and multiple optical soliton structure of the coupled nonlinear Schrödinger equation with the four-wave mixing term and modulation instability spectrum, 2021, 418, 03759601, 127710, 10.1016/j.physleta.2021.127710
    2. K. Hosseini, K. Sadri, F. Rabiei, M. Mirzazadeh, The (2+1)-dimensional potential Kadomtsev–Petviashvili equation: Its solitons and complexiton, 2022, 5, 26668181, 100316, 10.1016/j.padiff.2022.100316
    3. Xuejun Zhou, Onur Alp Ilhan, Fangyuan Zhou, Sutarto Sutarto, Jalil Manafian, Mostafa Abotaleb, Giovanni Di Fratta, Lump and Interaction Solutions to the ( 3 + 1 )-Dimensional Variable-Coefficient Nonlinear Wave Equation with Multidimensional Binary Bell Polynomials, 2021, 2021, 2314-8888, 1, 10.1155/2021/4550582
    4. Zehra Pinar, The soliton analysis for optical fibers models, 2022, 149, 00303992, 107849, 10.1016/j.optlastec.2022.107849
    5. Md. Nasiruzzaman, Khursheed J. Ansari, M. Mursaleen, On the Parametric Approximation Results of Phillips Operators Involving the q-Appell Polynomials, 2022, 46, 1028-6276, 251, 10.1007/s40995-021-01219-9
    6. Md. Tarikul Islam, Farah Aini Abdullah, J. F. Gómez-Aguilar, A variety of solitons and other wave solutions of a nonlinear Schrödinger model relating to ultra-short pulses in optical fibers, 2022, 54, 0306-8919, 10.1007/s11082-022-04249-8
    7. Wasfi Shatanawi, Mohammed S. Abdo, Mansour A. Abdulwasaa, Kamal Shah, Satish K. Panchal, Sunil V. Kawale, Kirtiwant P. Ghadle, A fractional dynamics of tuberculosis (TB) model in the frame of generalized Atangana–Baleanu derivative, 2021, 29, 22113797, 104739, 10.1016/j.rinp.2021.104739
    8. M. Ali Akbar, Farah Aini Abdullah, Sachin Kumar, Khaled A. Gepreel, Assorted soliton solutions to the nonlinear dispersive wave models in inhomogeneous media, 2022, 39, 22113797, 105720, 10.1016/j.rinp.2022.105720
    9. D. G. Prakasha, P. Veeresha, Haci Mehmet Baskonus, A Novel Approach for Fractional (1+1)-Dimensional Biswas–Milovic Equation, 2021, 7, 2349-5103, 10.1007/s40819-021-01124-0
    10. Hajar F. Ismael, Tukur Abdulkadir Sulaiman, Abdullahi Yusuf, Hasan Bulut, Resonant Davey–Stewartson system: Dark, bright mixed dark-bright optical and other soliton solutions, 2023, 55, 0306-8919, 10.1007/s11082-022-04319-x
    11. Md. Morshedul Haque, M. Ali Akbar, M. S. Osman, Optical soliton solutions to the fractional nonlinear Fokas–Lenells and paraxial Schrödinger equations, 2022, 54, 0306-8919, 10.1007/s11082-022-04145-1
    12. Md. Tarikul Islam, Md. Ali Akbar, J.F. Gómez-Aguilar, E. Bonyah, G. Fernandez-Anaya, Assorted soliton structures of solutions for fractional nonlinear Schrodinger types evolution equations, 2022, 7, 24680133, 528, 10.1016/j.joes.2021.10.006
    13. Guanqi Tao, Jalil Manafian, Onur Alp İlhan, Syed Maqsood Zia, Latifa Agamalieva, Abundant soliton wave solutions for the (3+1)-dimensional variable-coefficient nonlinear wave equation in liquid with gas bubbles by bilinear analysis, 2022, 36, 0217-9849, 10.1142/S0217984921505655
    14. Karmina K. Ali, Resat Yilmazer, M. S. Osman, Dynamic behavior of the (3+1)-dimensional KdV–Calogero–Bogoyavlenskii–Schiff equation, 2022, 54, 0306-8919, 10.1007/s11082-022-03528-8
    15. Riaz Ur Rahman, Waqas Ali Faridi, Magda Abd El-Rahman, Aigul Taishiyeva, Ratbay Myrzakulov, Emad Ahmad Az-Zo’bi, The Sensitive Visualization and Generalized Fractional Solitons’ Construction for Regularized Long-Wave Governing Model, 2023, 7, 2504-3110, 136, 10.3390/fractalfract7020136
    16. Md. Tarikul Islam, Md. Ali Akbar, Hijaz Ahmad, Diverse optical soliton solutions of the fractional coupled (2 + 1)-dimensional nonlinear Schrödinger equations, 2022, 54, 0306-8919, 10.1007/s11082-021-03472-z
    17. Jin Li, Barycentric rational collocation method for semi-infinite domain problems, 2023, 8, 2473-6988, 8756, 10.3934/math.2023439
    18. Md. Tarikul Islam, Mst. Armina Aktar, J. F. Gómez-Aguilar, J. Torres-Jiménez, Further innovative optical solitons of fractional nonlinear quadratic-cubic Schrödinger equation via two techniques, 2021, 53, 0306-8919, 10.1007/s11082-021-03223-0
    19. B. B. Jaimini, Manju Sharma, D. L. Suthar, S. D. Purohit, Zakia Hammouch, On Multi-Index Mittag–Leffler Function of Several Variables and Fractional Differential Equations, 2021, 2021, 2314-4785, 1, 10.1155/2021/5458037
    20. Farah Aini Abdullah, Md. Tarikul Islam, J. F. Gómez-Aguilar, Md. Ali Akbar, Impressive and innovative soliton shapes for nonlinear Konno–Oono system relating to electromagnetic field, 2023, 55, 0306-8919, 10.1007/s11082-022-04308-0
    21. Hajar F. Ismael, Muhammad Amin S. Murad, Hasan Bulut, Various exact wave solutions for KdV equation with time-variable coefficients, 2022, 7, 24680133, 409, 10.1016/j.joes.2021.09.014
    22. Muhammad Bilal, Jamshad Ahmad, Analysis in fiber Bragg gratings with Kerr law nonlinearity for diverse optical soliton solutions by reliable analytical techniques, 2022, 36, 0217-9849, 10.1142/S0217984922501226
    23. Sachin Kumar, Monika Niwas, Shubham Kumar Dhiman, Abundant analytical soliton solutions and different wave profiles to the Kudryashov-Sinelshchikov equation in mathematical physics, 2022, 7, 24680133, 565, 10.1016/j.joes.2021.10.009
    24. Li Yan, Ajay Kumar, Juan Luis García Guirao, Haci Mehmet Baskonus, Wei Gao, Deeper properties of the nonlinear Phi-four and Gross-Pitaevskii equations arising mathematical physics, 2022, 36, 0217-9849, 10.1142/S0217984921505679
    25. Sachin Kumar, Dharmendra Kumar, Analytical soliton solutions to the generalized (3+1)-dimensional shallow water wave equation, 2022, 36, 0217-9849, 10.1142/S0217984921505400
    26. Mahmoud A E Abdelrahman, M A Sohaly, Yousef F Alharbi, Fundamental stochastic solutions for the conformable fractional NLSE with spatiotemporal dispersion via exponential distribution, 2021, 96, 0031-8949, 125223, 10.1088/1402-4896/ac119c
    27. Karmina K. Ali, Sibel Tarla, Mohamed R. Ali, Abdullahi Yusuf, Modulation instability analysis and optical solutions of an extended (2+1)-dimensional perturbed nonlinear Schrödinger equation, 2023, 45, 22113797, 106255, 10.1016/j.rinp.2023.106255
    28. S. Salahshour, K. Hosseini, M. Mirzazadeh, D. Baleanu, Soliton structures of a nonlinear Schrödinger equation involving the parabolic law, 2021, 53, 0306-8919, 10.1007/s11082-021-03325-9
    29. Haci Mehmet Baskonus, Wei Gao, Hadi Rezazadeh, S.M. Mirhosseini-Alizamini, Jamel Baili, Hijaz Ahmad, Tuan Nguyen Gia, New classifications of nonlinear Schrödinger model with group velocity dispersion via new extended method, 2021, 31, 22113797, 104910, 10.1016/j.rinp.2021.104910
    30. Sıdıka Şule ŞENER, New wave behaviors of the (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation, 2021, 2636-8692, 10.33187/jmsm.1022320
    31. Md. Tarikul Islam, Farah Aini Abdullah, J. F. Gómez-Aguilar, New fascination of solitons and other wave solutions of a nonlinear model depicting ultra-short pulses in optical fibers, 2022, 54, 0306-8919, 10.1007/s11082-022-04197-3
    32. Karmina K Ali, Abdullahi Yusuf, Wen-Xiu Ma, Dynamical rational solutions and their interaction phenomena for an extended nonlinear equation, 2023, 75, 0253-6102, 035001, 10.1088/1572-9494/acb205
    33. Md. Ekramul Islam, Md. Motaleb Hossain, Khalifa Mohammad Helal, Udoy S. Basak, Rajandra Chadra Bhowmik, M. A. Akbar, Solitary wave analysis of the Kadomtsev–Petviashvili model in mathematical physics, 2023, 30, 2576-5299, 329, 10.1080/25765299.2023.2216536
    34. Md. Morshedul Haque, M. Ali Akbar, Hadi Rezazadeh, Ahmet Bekir, A variety of optical soliton solutions in closed-form of the nonlinear cubic quintic Schrödinger equations with beta derivative, 2023, 55, 0306-8919, 10.1007/s11082-023-05470-9
    35. K.M. Abdul Al Woadud, Dipankar Kumar, Aminur Rahman Khan, Obliquely propagating optical wave patterns to the (2 + 1)-dimensional chiral nonlinear Schrödinger equation in the absence and presence of Atangana derivative, 2023, 54, 22113797, 107113, 10.1016/j.rinp.2023.107113
    36. Xu Wang, Yiqun Sun, Jianming Qi, Shaheera Haroon, Dynamical Study of Nonlinear Fractional-order Schrödinger Equations with Bifurcation, Chaos and Modulation Instability Analysis, 2024, 63, 1572-9575, 10.1007/s10773-024-05776-8
    37. Muhammad Bilal Riaz, Marriam Fayyaz, Riaz Ur Rahman, Jan Martinovic, Osman Tunç, Analytical study of fractional DNA dynamics in the Peyrard-Bishop oscillator-chain model, 2024, 15, 20904479, 102864, 10.1016/j.asej.2024.102864
    38. Farhana Tasnim, Md Ali Akbar, Mohamed S. Osman, The Extended Direct Algebraic Method for Extracting Analytical Solitons Solutions to the Cubic Nonlinear Schrödinger Equation Involving Beta Derivatives in Space and Time, 2023, 7, 2504-3110, 426, 10.3390/fractalfract7060426
    39. Kamyar Hosseini, Evren Hincal, Olivia A. Obi, Ranjan Das, 2024, Chapter 5, 978-3-031-59538-7, 165, 10.1007/978-3-031-59539-4_5
    40. Sertac Goktas, Aslı Öner, Yusuf Gurefe, The Extended Weierstrass Transformation Method for the Biswas–Arshed Equation with Beta Time Derivative, 2024, 8, 2504-3110, 593, 10.3390/fractalfract8100593
    41. Md. Tarikul Islam, Mst. Armina Akter, J. F. Gómez-Aguilar, Md. Ali Akbar, Eduardo Pérez-Careta, Innovative and diverse soliton solutions of the dual core optical fiber nonlinear models via two competent techniques, 2023, 32, 0218-8635, 10.1142/S0218863523500376
    42. Melike Kaplan, Rubayyi T. Alqahtani, Nadiyah Hussain Alharthi, Wave Propagation and Stability Analysis for Ostrovsky and Symmetric Regularized Long-Wave Equations, 2023, 11, 2227-7390, 4030, 10.3390/math11194030
    43. Sachin Kumar, Nikita Mann, A variety of newly formed soliton solutions and patterns of dynamic waveforms for the generalized complex coupled Schrödinger–Boussinesq equations, 2023, 55, 0306-8919, 10.1007/s11082-023-04869-8
    44. Sonia Akram, Jamshad Ahmad, Shafqat Ur Rehman, Tayyaba Younas, Stability analysis and dispersive optical solitons of fractional Schrödinger–Hirota equation, 2023, 55, 0306-8919, 10.1007/s11082-023-04942-2
    45. Arzu Akbulut, Rubayyi T. Alqahtani, Nadiyah Hussain Alharthi, Some Latest Families of Exact Solutions to Date–Jimbo–Kashiwara–Miwa Equation and Its Stability Analysis, 2023, 11, 2227-7390, 4176, 10.3390/math11194176
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2776) PDF downloads(175) Cited by(45)

Figures and Tables

Figures(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog