Research article

Bifurcations and exact solutions of generalized nonlinear Schrödinger equation

  • Received: 19 December 2024 Revised: 26 February 2025 Accepted: 04 March 2025 Published: 07 March 2025
  • MSC : 34C23, 34C37, 74J30

  • To find the exact explicit solutions of the generalized nonlinear Schrödinger equation, we first give the corresponding differential system for the amplitude component, which constitutes a planar dynamical system featuring a singular straight line. By analyzing its corresponding traveling wave system, we can derive the dynamical behavior of the amplitude component and give the corresponding phase portraits. Under different parameter conditions, we obtain exact explicit solitary wave solutions, periodic wave solutions, as well as peakons and periodic peakons. By comparing our results with previous studies on the generalized nonlinear Schrödinger equation, we correct the error regarding the first integral and present accurate solutions to the equation.

    Citation: Qian Zhang, Ai Ke. Bifurcations and exact solutions of generalized nonlinear Schrödinger equation[J]. AIMS Mathematics, 2025, 10(3): 5158-5172. doi: 10.3934/math.2025237

    Related Papers:

  • To find the exact explicit solutions of the generalized nonlinear Schrödinger equation, we first give the corresponding differential system for the amplitude component, which constitutes a planar dynamical system featuring a singular straight line. By analyzing its corresponding traveling wave system, we can derive the dynamical behavior of the amplitude component and give the corresponding phase portraits. Under different parameter conditions, we obtain exact explicit solitary wave solutions, periodic wave solutions, as well as peakons and periodic peakons. By comparing our results with previous studies on the generalized nonlinear Schrödinger equation, we correct the error regarding the first integral and present accurate solutions to the equation.



    加载中


    [1] A. H. Arnous, A. Biswas, M. Ekici, A. K. Alzahrani, M. R. Belic, Optical solitons and conservation laws of Kudryashov's equation with improved modified extended tanh-function, Optik, 225 (2021), 165406. https://doi.org/10.1016/j.ijleo.2020.165406 doi: 10.1016/j.ijleo.2020.165406
    [2] A. Biswas, A. Sonmezoglu, M. Ekici, A. K. Alzahrani, M. R. Belic, Cubic-quartic optical solitons with differential group delay for Kudryashov's model by extended trial function, J. Commun. Technol. Electron., 65 (2020), 1384–1398. https://doi.org/10.1134/S1064226920120037 doi: 10.1134/S1064226920120037
    [3] P. F. Byrd, M. D. Fridman, Handbook of elliptic integrals for engineers and scientists, Berlin: Springer, 1971. https://doi.org/10.1007/978-3-642-65138-0
    [4] M. Ekici, A. Sonmezoglu, A. Biswas, Stationary optical solitons with Kudryashov's laws of refractive index, Chaos Soliton. Fract., 151 (2021), 111226. https://doi.org/10.1016/j.chaos.2021.111226 doi: 10.1016/j.chaos.2021.111226
    [5] N. M. Elsonbaty, N. M. Badra, H. M. Ahmed, S. Alkhatib, A. M. Elsherbeny, New visions of optical soliton to a class of generalized nonlinear Schrödinger equation with triple refractive index and non-local nonlinearity, Ain Shams Eng. J., 15 (2024), 102641. https://doi.org/10.1016/j.asej.2024.102641 doi: 10.1016/j.asej.2024.102641
    [6] M. S. Ghayad, N. M. Badra, H. M. Ahmed, W. B. Rabie, Derivation of optical solitons and other solutions fornonlinear Schrödinger equation using modifed extended direct algebraic method, Alex. Eng. J., 64 (2023), 801–811. https://doi.org/10.1016/j.aej.2022.10.054 doi: 10.1016/j.aej.2022.10.054
    [7] A.-A. Hyder, A. H. Soliman, An extended Kudryashov technique for solving stochastic nonlinear models with generalized comformable derivatives, Commun. Nonlinear Sci., 97 (2021), 105730. https://doi.org/10.1016/j.cnsns.2021.105730 doi: 10.1016/j.cnsns.2021.105730
    [8] A.-A. Hyder, A. H. Soliman, Exact solutions of space-time local fractal nonlinear evolution equations generalized comformable derivative approach, Results Phys., 17 (2020), 103135. https://doi.org/10.1016/j.rinp.2020.103135 doi: 10.1016/j.rinp.2020.103135
    [9] N. A. Kudryashov, A generalized model for description of propagation pulses in optical fiber, Optik, 189 (2019), 42–52. https://doi.org/10.1016/j.ijleo.2019.05.069 doi: 10.1016/j.ijleo.2019.05.069
    [10] N. A. Kudryashov, Implicit solitary waves for one of the generalized nonlinear schrödinger equations, Mathematics, 9 (2021), 3024. https://doi.org/10.3390/math9233024 doi: 10.3390/math9233024
    [11] N. A. Kudryashov, Model of propagation pulses in an optical fiber with a new law of refractive indices, Optik, 248 (2021), 168160. https://doi.org/10.1016/j.ijleo.2021.168160 doi: 10.1016/j.ijleo.2021.168160
    [12] N. A. Kudryashov, Optical solitons of the resonant nonlinear schrödinger equation with arbitrary index, Optik, 235 (2021), 166626. https://doi.org/10.1016/j.ijleo.2021.166626 doi: 10.1016/j.ijleo.2021.166626
    [13] N. A. Kudryashov, Solitary wave solutions of hierarchy with non-local nonlinearity, Appl. Math. Lett., 103 (2020), 106155. https://doi.org/10.1016/j.aml.2019.106155 doi: 10.1016/j.aml.2019.106155
    [14] J. B. Li, Singular nonlinear traveling wave equations: bifurcations and exact solutions, Beijing: Science Press, 2013.
    [15] J. B. Li, G. R. Chen, On a class of singular nonlinear traveling wave equations, Int. J. Bifurcat. Chaos, 17 (2007), 4049–4065. https://doi.org/10.1142/s0218127407019858 doi: 10.1142/s0218127407019858
    [16] J. B. Li, M. Han, A. Ke, Bifurcations and exact traveling wave solutions of the Khorbatly's geophysical Boussinesq system, J. Math. Anal. Appl., 537 (2024), 128263. https://doi.org/10.1016/j.jmaa.2024.128263 doi: 10.1016/j.jmaa.2024.128263
    [17] N. Ozdemir, A. Secer, M. Ozisik, M. Bayram, Optical soliton solutions of the nonlinear Schrödinger equation in the presence of chromatic dispersion with cubic-quintic-septic-nonicnonlinearities, Phys. Scr., 98 (2023), 115223. https://doi.org/10.1088/1402-4896/acff50 doi: 10.1088/1402-4896/acff50
    [18] C. Rogers, G. Saccomandi, L. Vergori, Helmholtz-type solitary wave solutions in nonlinear elastodynamics, Ric. Mat., 69 (2020), 327–341. https://doi.org/10.1007/s11587-019-00464-w doi: 10.1007/s11587-019-00464-w
    [19] M. Wang, Y.-F. Yang, Degenerate solitons in a generalized nonlinear Schrödinger equation, Nonlinear Dyn., 112 (2024), 3763–3769. https://doi.org/10.1007/s11071-023-09207-x doi: 10.1007/s11071-023-09207-x
    [20] Y. Yildirim, A. Biswas, M. Ekici, O. Gonzalez-Gaxiola, S. Khan, H. Triki, et al., Optical solitons with Kudryashov's model by a range of integration norms, Chinese J. Phys., 66 (2020), 660–672. https://doi.org/10.1016/j.cjph.2020.06.005 doi: 10.1016/j.cjph.2020.06.005
    [21] Y. Yildirim, A. Biswas, A. Kara, M. Ekici, A. K. Alzahrani, M. R. Belic, Cubic-quartic optical soliton perturbation and conservation laws with generalized Kudryashov's form of refractive index, Chaos Soliton. Fract., 50 (2021), 354–360. https://doi.org/10.1007/s12596-021-00681-3 doi: 10.1007/s12596-021-00681-3
    [22] E. M. E. Zayed, R. M. A. Shohib, A. Biswas, M. Ekici, L. Moraru, A. K. Alzahrani, et al., Optical solitons with differential group delay for Kudryashov's model by the auxiliary equation mapping method, Chinese J. Phys., 67 (2020), 631–645. https://doi.org/10.1016/j.cjph.2020.08.022 doi: 10.1016/j.cjph.2020.08.022
    [23] E. M. E. Zayed, R. M. A. Shohib, M. E. M. Alngar, A. Biswas, M. Asma, M. Ekici, et al., Solitons in magneto-optic waveguides with dual-power law nonlinearity, Phys. Lett. A, 384 (2020), 126697. https://doi.org/10.1016/j.physleta.2020.126697 doi: 10.1016/j.physleta.2020.126697
    [24] E. M. E. Zayed, R. M. A. Shohib, M. E. M. Alngar, A. Biswas, A. H. Kara, A. Dakova, et al., Solitons and conservation laws in magneto-optic waveguides with generalized Kudryashov's equation by the unified auxiliary equation approach, Optik, 245 (2021), 167694. https://doi.org/10.1016/j.ijleo.2021.167694 doi: 10.1016/j.ijleo.2021.167694
    [25] J. S. Zhuang, Y. Zhou, J. B. Li, Bifurcations and exact solutions of the Gerdjikov-Ivanov equation, Journal of Nonlinear Modeling and Analysis, 5 (2023), 549–564. https://doi.org/10.12150/jnma.2023.549 doi: 10.12150/jnma.2023.549
    [26] E. M. E. Zayed, M. E. M. Alngar, A. Biswas, M. Asma, M. Ekici, A. K. Alzahrani, et al., Solitons in magneto-optic waveguides with Kudryashov's law of refractive index, Chaos Soliton. Fract., 140 (2020), 110129. https://doi.org/10.1016/j.chaos.2020.110129 doi: 10.1016/j.chaos.2020.110129
    [27] Y. Zhou, J. S. Zhuang, J. B. Li, Bifurcations and exact traveling wave solutions in two nonlinear wave systems, Int. J. Bifurcat. Chaos, 31 (2021), 2150093. https://doi.org/10.1142/s0218127421500930 doi: 10.1142/s0218127421500930
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(110) PDF downloads(36) Cited by(0)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog