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Abstract: To find the exact explicit solutions of the generalized nonlinear Schrödinger equation, we
first give the corresponding differential system for the amplitude component, which constitutes a planar
dynamical system featuring a singular straight line. By analyzing its corresponding traveling wave
system, we can derive the dynamical behavior of the amplitude component and give the corresponding
phase portraits. Under different parameter conditions, we obtain exact explicit solitary wave solutions,
periodic wave solutions, as well as peakons and periodic peakons. By comparing our results with
previous studies on the generalized nonlinear Schrödinger equation, we correct the error regarding the
first integral and present accurate solutions to the equation.
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1. Introduction

We consider the following nonlinear partial differential equation:

iQt + Qxx + αQ + β|Q|nQ + γ|Q|2nQ + δ|Q|3nQ + λ|Q|4nQ = 0, (1.1)

where Q(x, t) is a complex function representing the wave amplitude, x is the coordinate, t is the time,
n is a rational number indicating the nonlinearity order, and α, β, γ, δ, λ are related to the dispersion
and nonlinearity of the medium. We consider the generalized nonlinear Schrödinger equation (1.1)
due to its broad applicability in describing pulse propagation in nonlinear optical fibers. This equation
extends the standard nonlinear Schrödinger equation by incorporating higher-order nonlinear terms,
providing a more accurate model for complex optical systems (see [11–13,26] for example). There are
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many studies about the generalized nonlinear Schrödinger equation; see references in [5, 6, 10, 17, 19].
Elsonbaty et al. [5] considered a newly generalized nonlinear Schrödinger equation with a triple
refractive index and non-local nonlinearity. In order to obtain optical solitons for a specific case of
this innovative model, they employed the improved modified extended tanh function method. And
they derived various solutions, including bright solitons, dark solitons, singular solitons, singular
periodic solutions, trigonometric solutions, and hyperbolic solutions. Wang and Yang studied [19]
a generalized nonlinear Schrödinger equation by constructing the modified generalized Darboux
transformation. They analyzed the type-I, type-II, and type-III degenerate solitons for the equation
by some semirational solutions. In particular, letting n = 2, β , 0, α = γ = δ = λ = 0, Eq (1.1)
becomes the famous nonlinear Schrödinger equation. In [11], the author proposed a more generalized
equation for describing pulse propagation in optical fiber in the form

iQt + Qxx + αQ + βQ|Q|2m−2n + γQ|Q|2m−n + δQ|Q|2m+n + λQ|Q|2m+2n = 0, (1.2)

where m, n are rational numbers.
In fact, (1.1) is a special case of (1.2) for the case m = n. In addition, letting m = 0, (1.2) can be

written as follows:

iQt + Qxx + αQ + βQ|Q|−2n + γQ|Q|−n + δQ|Q|n + λQ|Q|2n = 0, (1.3)

which was introduced in paper [9] and has been widely investigated. However, Eq (1.3) cannot be
implemented in practice according to physicists on account of the negative degree terms. Therefore,
Eq (1.2) for m , 0 is better than Eq (1.1) for describing the propagation of various types of pulses in an
optical fiber. In paper [11], some solutions of Eq (1.2) for two cases, m = n and m = 2n, were obtained
by applying the variable transformation method.

In addition, Eq (1) generalizes several equations describing propagation pulses in nonlinear optics
(see [1, 2, 7, 8, 20, 22] for example). In [10], the author derived the implicit solitary wave solutions
of (1.1) through transformations of variables. However, it is worth noting that there may be some
potential errors affecting the correctness of the results in [10].

We hope to find solutions to Eq (1.1) as follows:

Q(x, t) = ϕ(ξ)ei(κx−ωt), ξ = x − vt, (1.4)

where κ and ω represent real-valued constants, ξ denotes the wave variable, and ϕ(ξ) stands for the
amplitude component. Substituting (1.4) into (1.1), dividing by the complex exponential function
ei(κx−ωt), and separating the real and imaginary parts, one obtains two ordinary differential equations

ϕ′′ + (−κ2 + α + ω)ϕ + βϕn+1 + γϕ2n+1 + δϕ3n+1 + λϕ4n+1 = 0, (1.5)

and
(2κ − v)ϕ′ = 0, (1.6)

where ′ represents differentiation with respect to ξ. Obviously, (1.6) implies that v = 2κ.
Let b = −κ2 + α + ω. Then (1.5) is equivalent to the following system:

dϕ
dξ
= y,

dy
dξ
= −

(
bϕ + βϕn+1 + γϕ2n+1 + δϕ3n+1 + λϕ4n+1

)
,
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which has a first integral of the form

H0(ϕ, y) = y2 + bϕ2 +
2β

n + 2
ϕn+2 +

γ

n + 1
ϕ2n+2 +

2δ
3n + 2

ϕ3n+2 +
λ

2n + 1
ϕ4n+2 = h. (1.7)

According to [4, 21, 24], we can make the following transformation:

ϕ = ψ−
1
n . (1.8)

Noting

ϕ′′ =
1
n

(
1
n
+ 1

)
ψ−

1
n−2(ψ′)2 −

1
n
ψ−

1
n−1ψ′′, (1.9)

and substituting (1.8) and (1.9) into (1.5), then one has

ψ3ψ′′ − n(bψ4 + βψ3 + γψ2 + δψ + λ) −
(
1 +

1
n

)
ψ2(ψ′)2 = 0. (1.10)

Equation (1.10) is equivalent to the planar dynamical system as follows:

dψ
dξ
= y,

dy
dξ
=

(
1 + 1

n

)
ψ2y2 + n(bψ4 + βψ3 + γψ2 + δψ + λ)

ψ3 , (1.11)

where ψ represents the transformed amplitude component, ξ is the wave variable, and n is the
nonlinearity order. It is easy to see that system (1.11) has a first integral of the form

H(ψ, y) = y2ψ−
2n+2

n + n2ψ−
4n+2

n

(
λ

2n + 1
+

2δ
3n + 2

ψ +
γ

n + 1
ψ2 +

2β
n + 2

ψ3 + bψ4
)
= h, (1.12)

for n , −1
2 ,−

2
3 ,−1,−2. If n = −1

2 ,−
2
3 ,−1,−2, then H(ψ, y) contains a term of ln(·); we omit them.

Remark 1. In [10], the author did not derive system (1.11). If we only consider H0(ϕ, y) = h given
by (1.7), then the transformation (1.8) makes (1.7) become

ψ2(ψ′)2 + n2
(
bψ4 +

2β
n + 2

ψ3 +
γ

n + 1
ψ2 +

2δ
3n + 2

ψ +
λ

2n + 1
− hψ4+ 2

n

)
= 0. (1.13)

Clearly, (1.13) is different from (1.12).

The author of [10] supposed that the first integral of the equation derived by his transformation was

(ψ′)2 + (−κ2 + α + ω)n2ψ4 +
2n2β

n + 2
ψ3 +

n2γ

n + 1
ψ2 +

2n2δ

3n + 2
ψ +

n2λ

2n + 1
= 0, (1.14)

i.e., the formula (12) on page 2 of his paper. As we mentioned above in (1.12), this first integral is
incorrect for the Eq (1.11). Therefore, the results in his paper [10] need to be corrected. Actually,
they did not derive and study the traveling wave system (1.11). Similar mistakes appeared in
Rogers et al. [18] and Zayed et al. [23]. Their results had been corrected by Zhou et al. [27].

We need to say that for an integrable planar differential system, if we make a variable transformation
like (1.8), we must derive a new equation with respect to the new variable, and we have to find the new
first integral.
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System (1.11) is a six-parameter system that relies on the parameter set (b, n, β, γ, δ, λ). It has very
abundant dynamical behavior. Furthermore, as defined in [14] and [15], it is classified as the first kind
of singular traveling wave system, which has the singular straight line ψ = 0. In recent years, many
researchers have employed the dynamical systems approach to explore the dynamical behaviors of
solutions for the first kind of singular systems and to provide possible parametric representations of
solutions (see [16, 25] for example).

In this paper, we first assume that δ = λ = 0, n = −1
3 , and n = 2. We analyze the bifurcations

of phase portraits of system (1.11) when there exist two real zeros of f (ψ) = bψ2 + βψ + γ. Then,
we calculate all possible exact explicit peakons, periodic peakons, smooth periodic solutions, as well
as homoclinic orbits of system (1.11). The exact parametric representations of these solutions are
presented.

The article is organized as follows: In Section 2, we analyze the bifurcations of phase portraits
for (1.11). In Sections 3 and 4, we derive all possible exact explicit parametric representations for
some bounded solutions of (1.11). In Section 5, we state the main results of this paper.

2. The bifurcations of phase portraits of (1.11) with δ = λ = 0

When δ = λ = 0, system (1.11) is reduced to

dψ
dξ
= y,

dy
dξ
=

(
1 + 1

n

)
y2 + n(bψ2 + βψ + γ)

ψ
. (2.1)

The associated system of (2.1) can be written as

dψ
dζ
= yψ,

dy
dζ
=

(
1 +

1
n

)
y2 + n(bψ2 + βψ + γ), (2.2)

where dξ = ψdζ.
Suppose that ∆ = β2 − 4bγ ≥ 0. Then (2.1) has two equilibrium points E1(ψ1, 0) and E2(ψ2, 0),

where ψ1,2 =
1

2b (−β ∓
√
∆) with ψ1 < ψ2.

When (n + 1)γ < 0, we have Ys =
−n2γ

n+1 > 0. Then on the straight line ψ = 0, system (2.2) has two
equilibrium points S ∓

(
0,∓
√

Ys

)
.

Let M(ψ j, 0) represent the coefficient matrix for the linearized system of system (2.2), at the point
E j(ψ j, 0), j = 1, 2. Let J(·, ·) be their Jacobian determinants. Then

J(ψ j, 0) = −n(2bψ j + β)ψ j, j = 1, 2,

J
(
0,∓

√
Ys

)
= 2

(
1 +

1
n

)
Ys.

By the theory of planar dynamical systems, for an equilibrium point of a planar integrable system,
if J < 0, then the equilibrium point is a saddle point; if J > 0 and (Trace(M(ψ j, 0)))2 − 4J(ψ j, 0) < 0,
then it is a center point; if J > 0 and (Trace(M(ψ j, 0)))2 − 4J(ψ j, 0) > 0, then it is a node; if J = 0 and
the Poincaré index of the equilibrium point is 0, then it is a cusp.

For H defined by (1.12), we write that h j = H(ψ j, 0), j = 1, 2 and hs = H(0,
√

Ys).
As two examples, we take n = −1

3 and n = 2. Utilizing the aforementioned information for
qualitative analysis, we obtain the bifurcations of phase portraits of system (2.1), which are displayed
in Figures 1 and 2.
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2.1. Assume that n = −1
3 and β > 0, γ < 0 are two fixed parameters

In this case, we know that Ys > 0 and J(0,∓
√

Ys) < 0. Therefore, the equilibrium points S ∓ are
two saddle points. Let bp := β2

4γ . Then the function F(ψ) = bψ2 + βψ + γ has two different real zeros
for bp < b < 0 or b > 0, which implies system (2.1) has two equilibrium points. Based on the above
results, by varying b, we get the bifurcations of phase portraits of (2.1), which are displayed in Figure 1.
In the case of γ > 0, we do not consider it here.

(a) bp < b < 0, h1 < h2 < 0. (b) bp < b < 0, h1 < h2 = 0.

(c) bp < b < 0, h1 < 0 < h2. (d) b > 0, h1 < h2 < 0.

Figure 1. The bifurcations of phase portraits of system (2.1) in the case n = −1
3 . This

figure illustrates the transition between different dynamical behaviors, such as periodic and
solitary wave solutions, as the parameter b varies. The bifurcation points correspond to
critical changes in the system’s stability and wave propagation characteristics.

2.2. Assume that n = 2 and β > 0 is a fixed parameter

When γ < 0, noting that Ys > 0, J(0,∓
√

Ys) > 0, and (Trace(M(0,∓
√

Ys)))2 − 4J(0,∓
√

Ys) > 0,
one finds that S ∓ are two node points. When γ > 0, there are no equilibrium points on the singular
straight line ψ = 0 because Ys < 0. By varying b such that ∆ > 0, i.e., bp < b < 0 or b > 0 when γ < 0
(0 < b < bp or b < 0 when γ > 0, respectively), we obtain the bifurcations of phase portraits of (2.1),
which are displayed in Figure 2.
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(a) b < 0, γ > 0, h2 < 0 < h1. (b) 0 < b < bp, γ > 0, h1 < h2 < 0.

(c) bp < b < 0, γ < 0, h2 < 0 < h1. (d) b > 0, γ < 0, h1 < 0 < h2.

Figure 2. The bifurcations of phase portraits of system (2.1) in the case n = 2.

3. The exact parametric representations of some bounded solutions given by (2.1) in Figure 1

In this section, some parametric representations for the bounded orbits in Figure 1 are derived.
In this case, we have the parameter condition n = −1

3 and β > 0, γ < 0. We see from (1.12) that
y2 = h

ψ4 −
1
9 (bψ2 + 6

5βψ +
3
2γ). By using the first equation of (2.1), one has

ξ =

∫ ψ

ψ0

ψ2dψ√∣∣∣∣h − 1
9ψ

4
(
bψ2 + 6

5βψ +
3
2γ

)∣∣∣∣ . (3.1)

For some orbits shown in Figure 1, if the integral of the right-hand side of (3.1) can be calculated, then
we can obtain their parametric representations.

3.1. The case of b > 0, h1 < h2 < 0 illustrated in Figure 1(d)

Corresponding to the closed orbit defined by H(ψ, y) = 0 in Figure 1(d), enclosing the equilibrium
points E j(ψ j, 0), j = 1, 2, and passing through the singular straight line ψ = 0, (3.1) can be written as

√
b

3
ξ =

∫ ψ

0

dψ√
(ψM − ψ)(ψ − ψm)

,
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where ψM, ψm are determined by∣∣∣∣∣ψ2 +
6β
5b
ψ +

3γ
2b

∣∣∣∣∣ = (ψM − ψ)(ψ − ψm)

with ψm < ψ < ψM. Thus, it follows that the parametric representation of a periodic solution (see
Figure 3(a)):

ψ(ξ) =
1
2

(ψM − ψm) sin
 √b

3
ξ − ξ01

 + (ψM − ψm)
 , (3.2)

where ξ01 = arcsin
(
ψM+ψm
ψM−ψm

)
.

3.2. The case of bp < b < 0, h1 < 0 < h2 illustrated in Figure 1(c)

Corresponding to the arch orbit defined by H(ψ, y) = 0 in Figure 1(c), enclosing the equilibrium
point E2(ψ2, 0), (3.1) can be represented as

√
|b|
3

ξ =

∫ ψM

ψ

dψ√
(ψL − ψ)(ψM − ψ)

,

where ψM, ψL are determined by∣∣∣∣∣ψ2 +
6β
5b
ψ +

3γ
2b

∣∣∣∣∣ = (ψL − ψ)(ψM − ψ)

with ψ < ψM < ψL. Thus, we obtain the following parametric representation of a periodic peakon
solution (see Figure 3(b)):

ψ(ξ) =
1
2

[
−(ψL − ψM) cosh

( √
|b|
3

ξ

)
+ (ψL + ψM)

]
, ξ ∈ (−ξ02, ξ02), (3.3)

where ξ02 =
3
√
|b|

cosh−1
(
ψL+ψM
ψL−ψM

)
.

3.3. The case of bp < b < 0, h1 < h2 = 0 illustrated in Figure 1(b)

Corresponding to the triangle orbit defined by H(ψ, y) = 0 in Figure 1(b), enclosing the singular
point E1(ψ1, 0), (3.1) can be represented as

√
|b|
3

ξ =

∫ ψ

0

dψ
ψ2 − ψ

.

It generates the parametric representation of an anti-peakon solution (see Figure 3(c)) as follows:

ψ(ξ) = ψ2

(
1 − e−

√
|b|
3 |ξ|

)
. (3.4)
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(a) Periodic wave (b) Periodic peakon

(c) Anti-Peakon (d) Solitary wave

Figure 3. The wave profiles of ψ(ξ) of system (2.1) in Figure 1.

3.4. The case of bp < b < 0, h1 < h2 < 0 illustrated in Figure 1(a)

Corresponding to the homoclinic orbits to the singular point E2(ψ2, 0) defined by H(ψ, y) = h2 in
Figure 1(a), enclosing the singular point E1(ψ1, 0), (3.1) can be represented as

√
|b|
3

ξ =

∫ ψ

ψm

ψ2dψ

(ψ2 − ψ)
√

(ψ − ψm)(ψ − ψl)[(ψ − b1)2 + a2
1]
,

where ψm, ϕl, b1, a1 are determined by∣∣∣∣∣∣9h2

b
− ψ4

(
ψ2 +

6β
5b
ψ +

3
2b

r
)∣∣∣∣∣∣ = (ψ2 − ψ)

√
(ψ − ψm)(ψ − ψl)[(ψ − b1)2 + a2

1]

with ψl < ψm < ψ < ψ2. It generates the parametric representation of a homoclinic orbit (solitary wave)
as follows (see Figure 3(d))

ψ(χ) = ψlA1−ψmB1−(ψmB1+ψlA1)cn(χ,k)
(A1−B1)−(A1+B1)cn(χ,k) , χ ∈ (−χ01 , χ01),

ξ(χ) = 3
√
|b|

[
−gψ2χ +

∫ ψ

ψm

ψdψ√
(ψ−ψm)(ψ−ψl)[(ψ−b1)2+a2

1]

+ψ2
2

∫ ψ

ψm

dψ

(ψ2−ψ)
√

(ψ−ψm)(ψ−ψl)[(ψ−b1)2+a2
1]

]
,

(3.5)
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where

A2
1 = (ψm − b1)2 + a2

1, B2
1 = (ψl − b1)2 + a2

1, k2 =
(A1 + B1)2 − (ψm − ψl)2

4A1B1
,

g =
1

√
A1B1

, χ01 = cn−1
(
ψ2(A1 − B1) − (ψlA1 − ψmB1)
ψ2(A1 + B1) − (ψmB1 + ψlA1)

)
,

sn(·, k), cn(·, k), dn(·, k) are the Jacobian elliptic functions (see Byrd and Fridman [3]). In the right hand
of ξ(χ), the formulas of two integrals are too longer; we omit them.

4. The exact parametric representations of all bounded solutions given by (2.1) in Figure 2

In this section, parametric representations of all bounded orbits in Figure 2 are derived. In this
case, we have the parameter conditions: n = 2 and β > 0, β2 > 4bγ. We see from (1.12) that y2 =

hψ3 − 4(bψ2 + 1
2βψ +

1
3γ). By using the first equation of (2.1), we have

ξ =

∫ ψ

ψ0

dψ√∣∣∣hψ3 − 4(bψ2 + 1
2βψ +

1
3γ)

∣∣∣ . (4.1)

4.1. The case of b < 0, γ > 0, h2 < 0 < h1 illustrated in Figure 2(a)

(i) Corresponding to the periodic orbit family defined by H(ψ, y) = h, h ∈ (h2, 0) in Figure 2(a),
enclosing the singular point E2(ψ2, 0), (4.1) can be represented as√

|h|ξ =
∫ ψ

ψb

dψ√
(ψa − ψ)(ψ − ψb)(ψ − ψc)

,

where ψa, ψb, ψc are determined by∣∣∣∣∣∣ψ3 −
4
h

(
bψ2 +

1
2
βψ +

1
3
γ

)∣∣∣∣∣∣ = (ψa − ψ)(ψ − ψb)(ψ − ψc), h ∈ (h2, 0)

with ψa > ψ > ψb > ψc. It follows that the parametric representation of the right family of periodic
orbits

ψ(ξ) = ψc +
ψb − ψc

dn2
(

1
2

√
|h|(ψa − ψc)ξ, k

) , (4.2)

where
k2 =

ψa − ψc

ψa − ψc
.

(ii) Corresponding to the periodic orbit family given by H(ψ, y) = h, h ∈ (0, h1) in Figure 2(a),
enclosing the singular point E1(ψ1, 0), (4.1) can be represented as

√
hξ =

∫ ψ

ψc

dψ√
(ψa − ψ)(ψb − ψ)(ψ − ψc)

,

where ψa, ψb, ψc are determined by∣∣∣∣∣∣ψ3 −
4
h

(
bψ2 +

1
2
βψ +

1
3
γ

)∣∣∣∣∣∣ = (ψa − ψ)(ψ − ψb)(ψ − ψc), h ∈ (0, h1)
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with ψa > ψb > ψ > ψc. It follows that the parametric representation of the left family of periodic
orbits

ψ(ξ) = ψc + (ψb − ψc)sn2
(
1
2

√
h(ψa − ψc)ξ, k

)
, (4.3)

where
k2 =

ψb − ψc

ψa − ψc
.

4.2. The case of b > 0, γ > 0, h1 < h2 < 0 illustrated in Figure 2(b)

(i) Corresponding to the periodic orbit family given by H(ψ, y) = h, h ∈ (h1, h2) in Figure 2(b),
enclosing the singular point E2(ψ2, 0), it has the same parametric representation as (4.2).

(ii) Corresponding to the homoclinic orbit to the singular point E1(ψ1, 0) given by H(ψ, y) = h1 in
Figure 2(b), enclosing the singular point E2(ψ2, 0), (4.1) can be represented as√

|h1|ξ =

∫ ψM

ψ

dψ
(ψ − ψ1)

√
ψM − ψ

,

where ψM is determined by∣∣∣∣∣∣ψ3 −
4
h1

(
bψ2 +

1
2
βψ +

1
3
γ

)∣∣∣∣∣∣ = (ψ − ψ1)
√
ψM − ψ,

with ψ1 < ψ < ψM. Thus, we have the following solitary wave solution:

ψ(ξ) = ψ1 + (ψM − ψ1)sech2
(
1
2

√
|h1|(ψM − ψ1)ξ

)
. (4.4)

4.3. The case of b < 0, γ < 0, h2 < 0 < h1 illustrated in Figure 2(c)

In this case the points S ∓ are node points of system (2.2). Now, the changes of the level curves
given by H(ψ, y) = h are shown in Figure 4.

(i) Corresponding to the periodic orbit family defined by H(ψ, y) = h, h ∈ (h2, 0) in Figure 4(a),
enclosing the singular point E2(ψ2, 0), it has the same parametric representation as (4.2).

(ii) Corresponding to the periodic orbit family given by H(ψ, y) = h, h ∈ (0, h1) in Figure 4(c),
passing through the singular straight line ψ = 0 at S ∓, it has the same parametric representation as (4.3).

(iii) Corresponding to the homoclinic orbit to the singular E1(ψ1, 0) given by H(ψ, y) = h1 in
Figure 4(d), passing through the singular straight line ψ = 0 at S ∓, now, (4.1) can be written as√

h1ξ =

∫ ψ

ψm

dψ
(ψ1 − ψ)

√
ψ − ψm

,

where ψm is determined by∣∣∣∣∣∣ψ3 −
4
h1

(
bψ2 +

1
2
βψ +

1
3
γ

)∣∣∣∣∣∣ = (ψ1 − ψ)
√
ψ − ψm,

with ψm < ψ < ψ1. Thus, one obtains the following solitary wave solution:

ψ(ξ) = ψ1 − (ψ1 − ψm)sech2
(
1
2

√
h1(ψ1 − ψm)ξ

)
. (4.5)
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(a) h ∈ (h2, 0) (b) h = 0

(c) h ∈ (0, h1) (d) h = h1

Figure 4. The level curves given by H(ψ, y) = h of system (2.1) in Figure 2(c).

4.4. The case of b > 0, γ < 0, h1 < 0 < h2illustrated in Figure 2(d)

In this case, the changes of the level curves given by H(ψ, y) = h are displayed in Figure 5.
(i) Corresponding to the homoclinic orbit to the singular point E1(ψ1, 0) given by H(ψ, y) = h1

in Figure 5(a), passing through the singular straight line ψ = 0 at S ∓, it has the same parametric
representation as (4.4).

(ii) Considering the periodic orbit family defined by H(ψ, y) = h, h ∈ (h1, 0) in Figure 5(b), which
intersects the singular straight line ψ = 0 at S ∓, it has the same parametric representation as (4.2).

(iii) Considering the periodic orbit family defined by H(ψ, y) = 0 in Figure 5(c), which intersects
the singular straight line ψ = 0 at S ∓, it has the same parametric representation as (3.2).

(iv) Corresponding to the periodic orbit family given by H(ψ, y) = h, h ∈ (0, h2) in Figure 5(d),
passing through the singular straight line ψ = 0 at S ∓, it has the same parametric representation as
(4.3).

(v) Corresponding to the homoclinic orbit to the singular point E2(ψ2, 0) given by H(ψ, y) = h2 in
Figure 5 (e), passing through the singular straight line ψ = 0 at S ∓, now, (4.1) can be written as

√
h2ξ =

∫ ψ

ψm

dψ
(ψ2 − ψ)

√
ψ − ψm

,
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where ψm is determined by∣∣∣∣∣∣ψ3 −
4
h2

(
bψ2 +

1
2
βψ +

1
3
γ

)∣∣∣∣∣∣ = (ψ2 − ψ)
√
ψ − ψm,

with ψm < ψ < ψ2. Thus, we have the following solitary wave solution

ψ(ξ) = ψ2 − (ψ2 − ψm)sech2
(
1
2

√
h2(ψ2 − ψm)ξ

)
. (4.6)

(a) h = h1 (b) h ∈ (h1, 0)

(c) h = 0 (d) h ∈ (0, h2)

(e) h = h2

Figure 5. The level curves given by H(ψ, y) = h of system (2.1) in Figure 2(d).
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5. Conclusions

In summary, this paper provides a comprehensive analysis of the generalized nonlinear Schrödinger
equation by transforming it into a planar dynamical system. We identified several distinct parametric
representations for the solutions, including solitary waves, periodic waves, peakons, and periodic
peakons. These findings not only enrich the theoretical framework of nonlinear wave propagation but
also offer practical guidance for designing optical systems with tailored wave characteristics. Future
work will focus on extending this analysis to more complex nonlinear models and exploring their
applications in other physical systems.

We will list the main conclusions as follows.

Theorem 1. (1) For the generalized nonlinear Schrödinger equation (1.1), to find the exact explicit
solutions with the form q(x, t) = (ψ(ξ))−

1
n ei(κx−ωt), ξ = x−2κt, the amplitude component ϕ(ξ) = (ψ(ξ))−

1
n

satisfies the planar dynamical system (1.11) with respect to ψ(ξ) and has the first integral (1.12).
(2) Assume that δ = λ = 0 and n = −1

3 , n = 2, respectively. Under different parametric conditions,
system (1.11) has the bifurcations of phase portraits, which are shown in Figures 1 and 2.

(3) For n = −1
3 , n = 2, system (1.11) has 8 exact explicit parametric representations given by (3.2)–

(3.5), and (4.2)–(4.5). The homoclinic orbits give rise to solitary wave solutions of Eq (1.11) with the
parametric representations given by (3.5), (4.4), and (4.5). For n = 2, the periodic orbit families give
rise to periodic wave solutions of Eq (1.11) with the parametric representations (4.2) and (4.3).

(4) Specially, when n = −1
3 , system (1.11) has a periodic solution, a periodic peakon solution, and

an anti-peakon solution with parametric representations given by (3.2), (3.3), and (3.4).
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