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1. Introduction

It is clear that most of the events that occur in mathematical physics and engineering areas can be
described by partial differential equations. The physical phenomena of nonlinear partial differential
equations (NLPDEs) can connect to a lot of areas of sciences, for example, plasma physics, optical
fibers, nonlinear optics, fluid mechanics, chemistry, biology, geochemistry, and engineering
sciences [1].

Scientists have been used and improved many methods to obtain the analytic, semi analytic and
numerical solution of (NLPDEs), such as shooting and Runga-Kutta fourth order technique [2, 3],
Adomian decomposition method [4], homotopy perturbation method [5], Adams-Bashforth-Moulton
method [6], sine-Gordon expansion method [7, 8], sinh-Gordon expansion method [9, 10], an
extended trial equation method [11], the degenerate Darboux transformation [12, 13], the multiplier
approach [14], the improved Bernoulli sub-equation function method [15-17], a modified simple
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equation method [18], method of undetermined coefficients [19], a functional variable method [20],
the trial equation method [21], couple of integration schemes [22], lie symmetries along with
(G'/G)—expansion method [23], improved tan (¢ (£) /2)-expansion method [24, 25], inverse mapping
method [26], Wronskian determinants [27], the simple equation method [28], tanh function
method [29], the extended homoclinic test method [30], Jacobi elliptic function anzétz method [31],
the decomposition-Sumudu-like-integral-transform method [32], hypothetical method [33],
exp(—¢ (£))-expansion method [34, 35], symbolic computational method [36-39], the Thomson
scattering [40], the Lie group analysis method [41], and Darboux covariant Lax pairs and Backlund
transformations [42].

The fractional differential equation is a generalization of the classical integer differential equation
that has many distinct advantages. In contrast to the classic integer derivative model, the fractional
derivative model has more precise mathematical physical structure simulations [43]. Wang et al. [44]
studied a wick-type stochastic fractional nonlinear Schrodinger equation and constructed its fractional
optical solitons. Nabti and Ghanbari [45] presented a global stability analysis of a fractional SVEIR
epidemic model. Ismael et al. [46] investigated the Lakshmanan-Porsezian-Daniel model include
conformable fractional derivative. Lu et al. [47] used the fractional Riccati method and fractional
bifunction method to study the fractional complex Ginzburg-Landau equation. Fang et al. [48] found
discrete fractional soliton solutions of conformable fractional discrete complex cubic
Ginzburg-Landau equation. Ghanbari and Kumar [49] offered the existence of chaos in a fractional
predator-prey-pathogen model. Ghanbari [50] explored the dynamics of an eco-epidemiological
system using a nonlinear fractional differential equation system. Yu et al. [51] used the fractional
mapping equation method and fractional bi-function method to investigate a space-time fractional
nonlinear Schrodinger equation, and exact to a suggested equation was driven by using the
Mittag-Lefller function.

The Boussinesq equation was introduced by Boussinesq [52] to describe two-dimensional
irrotational flows of an inviscid liquid in a uniform rectangular channel as well as it was the first
equation proposed in the research paper to describe a large range of physical phenomena. The
Schrodinger-Boussinesq system raised in laser and plasma physics also has been attracted by many
mathematicians and physicists. Manafian and Aghdaei [53] used the improved tan (¢(‘9 / 2) -expansion
method and reported some exact solutions to the Schrodinger-Boussinesq system. Osman et al. [54]
studied the variable-coefficients coupled Schrodinger-Boussinesq equation by using a unified method.
MU and QIN [55] constructed rational solutions, breather, and the second-order rational solution by
employing the Hirota technique. Bai and Wang [56] used the time-splitting Fourier spectral method
for the coupled Schrodinger-Boussinesq equations and Ray in Ref. [57] used the time-Splitting
Spectral Technique for the suggested system include Riesz fractional derivative. Banquet et al. [58]
found the existence of local and global solutions for coupled Schrodinger-Boussinesq systems
involving singular initial data. Liang [59] studied modulational instability and reported some
stationary waves for the coupled generalized Schrodinger-Boussinesq system. Kilicman and Reza
Abazari [60] addressed travelling wave solutions of the Schrodinger-Boussinesq System via
(G' / G)—expansion method.

In this paper, we use the modified auxiliary expansion method to seek novel soliton solutions of
the coupled Beta derivative of the Schrodinger-Boussinesq system that occur during the stationary
propagation of coupled nonlinear magnetosonic waves and upper-hybrids in magnetized plasmas. The
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new solutions are presented as the family solution and expressed in hyperbolic, trigonometric,
exponential and fractional function. Finally, the linear stability analysis and instability modulation
Schrédinger-Boussinesq system are also presented.

This paper is organized as follows. In section 2, some basic definitions, properties, and the theorem
about the Beta derivative are given. The structures of the modified auxiliary expansion method are
given in section 3. Soliton solutions are constructed for coupled Schrodinger-Boussinesq system with
Beta derivative in section 4. Linear Stability Analysis of coupled Schrodinger-Boussinesq system is
presented in section 5. In section 6, we provide a conclusion to the studied system.

2. The beta derivative

In this section, we introduce some basic definitions, properties, and the theorem about the beta
derivative of a function of order « [61].

Definition 1. Let f be a function, then the beta derivative of a function f of order « is defined as

B G ) A
oD (f OD:&%M,

Theorem 1. Suppose that 0 < 8 < 1, g8 > 0, and the function f, g are « -differentiable at a point
t > 0, then

L §D (af (1) + bg (1)) = ay D f (1) + by Dg (1), a,beR.

IL 0Dy (f (1).g(0) = f(®)§DIg (1) + g () 3D f (1)

I11.
Ay {f (t)} _g0eDif (0 - f0)5Dg @)
IO (1) '
IV. (‘)*D;’ (C) = 0, where C is a constant function.

a—1
V. Suppose that f is differentiable function, A = (x + ﬁ) h, h > 0 when A — 0 then

forall +>0, O<a<l.

1 )“"df 0)

A na _ -
OD’f(t)_(Hr(a) dt

VL

Apr (f(t)) _ ldf (n),
g dn

%
where [ is a constant and 7 = é(x + ﬁ) .

3. General form of method

Assume, we have the following nonlinear partial differential equation (NLPDE)
P(}D%u, 3 Dfu, o Do Du, ¢ D¥u, ...) = 0. (3.1)

To find explicit exact solutions of coupled Schrodinger-Boussinesq system, we use the following

transformation
%

1 1\ 1\
u(x,y,t):U(‘f),f:a(x+m) ——(t ), (3.2)

' T
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where v is arbitrary constant and £ is the symbol of the wave variable. Inserting Eq (2) to Eq (1), we

get a nonlinear ordinary differential equation (NLODE)
N, U, U”, ...)=0.

The trial equation of solution for Eq (3) is given by

U@ =ay+ ) aK® + 3" bk,
i=1 i=1

(3.3)

(3.4)

where ay, a; and b; are non-zero constants and @ (¢) is the auxiliary ODE given by

KO 4+ i K¥ 1
In (K) ’

(&) =

(3.5)

where u, A are constants and K > 0, K # 1. The auxiliary ODE has the general solution:

I. When A% — 4yt > 0, then f () = logy (—1 - /22 = 4utanh ( V2% = 41 (C + §))).

II. When A2 — 4u < 0, then

f (&) =logg (—/l + =A% +4utan (% V=2 +4u(C + é:)))_

III. When A% — 4y # 0, A = 0 andu < 0, then

f &) =logg ( V- ucoth(% V-4u (C + f))).

IV. When A2 —4u # 0, A = 0 andu > 0, then

f = logK(\/@cot(% \/@(C +§))).

V. When A2 — 4y > 0 and u = 0, then

f(f):logK(_l+COSh(/l(C+§;)+Sinh(ﬂ(c+§))).
VL When 2 — 41 = 0,1 # 0 and 1 # 0, then
f(f)—logK( e )

VII. When A2 —4u = 0,4 =0 and u = 0, then
f &) =logg(E+0).
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4. The coupled Schriodinger-Boussinesq system with the beta derivative

Consider the coupled Schrodinger-Boussinesq system [62] with the Beta Derivative as follows:
A A N2a —
iyD/E + yD"E + BE — EN =0, 4.1)
30D;"N — DY N + 33D N* + vy DY*N — DY |E] = 0, (4.2)

where £ and y are real constants, E (x, t) is a complex function, and N (x, t) is a real function. To find
the explicit exact solutions of coupled S-B system, we use the following transformation

_ i _ k(e LY el VY LY e Y
Ex,n=UEe ,N(x,t)_V(g),e_a(x+r(a)) +a(t+ ) +l,§_a(x+r(a)) +a(t+r(a))’ “4.3)

where ¢ is arbitrary constant and « is the symbol of the soliton wave number, w represents the soliton
frequency and / symbolize the phase constant. Substituting Eq (4.3) into Eqs (4.1) and (4.2), we obtain

i0+20U +(B-w-K)U+U"=UV =0, (4.4)

(38 +y)V+3V - U - V" - A =0, (4.5)

where Eq (4.5) is found by integrating twice with respect to & and A is the arbitrary constant of
integration. By Separate Eq (4.4) into real and imaginary parts, we get

( —w—Kz)U+U”—UV:O, (4.6)

and
0= -2« 4.7

Inserting Eq (4.7) into Eqs (4.5) and (4.6), we get
(B-w-)U+U"-UV =0, (4.8)

(12 +y)V+3V2 - U2 - V' - A =0. (4.9)
From Eq (4.8), we have

V() = l{]“((;)) +( —a)—Kz).

By using the homogeneous balance principle between the highest-order derivatives and nonlinear
terms appearing in Eqgs (4.9) and (4.10), we get m = 2 and n = 2 for U and V, respectively. We assume
that the solutions of Eqs (4.9) and (4.10) have the following form

U () = ap+ a iK' + a; K@ + b K@ 4 p, K2, (4.10)

V(&) = co+ 1K' + 0,KY® + d | K/© + g KO (4.11)

By inserting Eqgs (4.10) and (4.11) into Eqgs (4.8) and (4.9) and collecting all terms with the same
order of K~/© together, putting each coefficient of each polynomial to zero, we conclude the
following cases:
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1 \/2/12/12—8#% Vit (12A+B22+2482K2 +144x4+344 2422 11+48% )
\/Ey , Ay

a; = V24[2222 — 8 + \/,ﬂ (124 + B2% + 24B0k2 + 144K + 324 = 244% + 4842, by = 0, by = 0,

Case One. When ag = = 0,

oo = “BoP 1232+ 30212 + At (1244527 +24B2K7 + 144xk4+304 2442+ 4817
0 — 6142
obtain the following families of solutions.

Family 1. When A = A2 -4y > 0, 22%* - &3 + H, > 0, -£ + 24 > 0,

2
(12A + B2 + 24802 + 3 (48K4 (- 4;1)2)) 44> 0and u # 0, then

,C1 = 2/1,[1, Cr = 2/.12, dl = 0, d2 = 0, We

i(la+(x+ % )HK+(t+ % )aw)
c @

\/ A2 — 83 + Hy) tanh( \/K(CC”*(“FEZ))Q‘Z(’*F?@)”K))

2«
E(x,1) = — . (412
V2u
H 1 VA (Ca + x+%a—2t+%ak
N =P oo B p L nn? ( i) M () ) , (4.13)
6 6u> 2 2a

where H, = \/(IZA + B + 248k + 3 (48«4 + AZ)),u“. Eq (4.12) and Eq (4.13) are dark soliton
solutions as shown in Figure (1).

20 20

@a=1/2

©a=1 da=1

Figure 1. 3-D figure of soliton solutions for Eq (4.12) and Eq (4.13) plotted when 4 = 3, u =
LC=1,A=1,6=1,k=1,5=01,l=1,w=1.
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Family 2.  When A = A2 - 4y < 0, 22%4* - 8u* + H > 0, —% > 0,
(12A +ﬁ22+24,82K2+3(48K4+A2)),u4 > 0 and u # 0, then

E(x,t) = 2a , 4.14)
u

) {(Ca + (x + %)a — Z(t + %)QK) V—A]

2a ’

ei(m(ﬁ%)aﬁ(wﬁ) ©) \/_% (24 — 8 + Hy)tan ((cd+(x+rgw)“_z(t+rgm)“K)m)

H 1
N(x,t) = —% — 2K2 + 6_/,[2 - EAtan

(4.15)

Equations (4.14) and (4.15) are singular soliton solutions as seen in Figure (2).

©a=1 da=1

Figure 2. 3-D figure of singular soliton solutions for Eq (4.14) and Eq (4.15) plotted when
A=1Lu=1,c=1,A=0.1,,=02,k=05,8,=03,1=2,w =4.

Family 3. When 2= 0, 41 < 0, Hy >yt and * (124 + % + 248 + 48 (3x* + ?)) > 0, then

R

\/_ (0

1
N(x, 1) = 62 H, — Bop® = 126°1% — 124 coth? "

[ ﬁ(ca _ 2(1,‘ + %)GK + (x + %)Q)]] , (417
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where H, = \/m (124 + B> + 248,12 + 48 (3¢ + 1)),
These solutions are singular soliton solutions as presented in Figure (3).

[E(x.H|

©a=1 da=1

Figure 3. 3-D plot of soliton solutions for Eq (4.16) and Eq (4.17) plotted when 4 = O, u =
-0.01,C=0.1,A=1,6,=-02,k=-02,6,=03,/=02,0 = 4.

Family 4. When 1 = 0, it > 0, Hy > jr and * (124 + B,* + 24B,1% + 48 (3* + 1)) > 0, then

\/Wei(lw(w%)zn(”%)%) COt[ \/l'_l(ca/ + (x + #YU/))Q B 2(t + %)QK)J . (4.18)
m

E(x,t)= ————F—
(0%

\/_

a

Hy — Bopi® — 126342 + 1243 cot? ((C“Jr(“r?a)) -2+ ) K)W)
N(x,t) =

o (4.19)

These solutions are singular soliton solutions as presented in Figure (4).
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©a=1 da=1

Figure 4. 3-D plot of singular soliton solutions for Eq (4.18) and Eq (4.19) plotted when
A=0,u=02,C=04,A=1,6,=3,«=-02,6,=03,1=02,0 =4.

Family 5. When 4> — 4y > 0 and u = 0, then the solution of this family could not be found because
is located at the denominator of ay, cg.

Family 6. When A% — 4y = 0,1 # 0, 22%u* — 8u® + H, > 0 and u # 0, then

i(la+(x+ % )aK+(f+ % )aw)
@

a+2(2A4%2 - 813 + H))e

E(x,0)=— a _ : (4.20)
(Ca+(x+:%) —2(t+ %) «)u
N(x0) = (((x+55) ~2(+ g5)' W) A+ a2+ ) B 201
2(Ca + (x + ﬁ)a - 2(t + %)“K)Z Ca+ (x N %)a B 2(t N %)O‘K -
-2+ H, — Bop® — 126317 + 3222

6u?

As shown in Figure (5), Eq (4.20) and Eq (4.21) are singular solutions, too.
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©@©a=1 da=1

Figure 5. 3-D plot of soliton solutions for Eq (4.20) and Eq (4.21) plotted when A = 2, u =
,LC=1,A=0.1,,=3,k=2,=3,1=02,w = 4.

Family 7. When A2 — 4u = 0,1 = 0 and u = 0, then the solution of this family could not be found
because u = 0 is located at the denominator of ay, c.

Case Two. When ap = V¥ a4 = 2\22A a, = Ob = 0, b = 0
co = $(SP-8u— A -BUPu+162-124), 1 = 2, o = % dy = 0, dy = 0,

N TR -
w = 15 (1281 + B2 = 1047 + 40 + /A% = 82 + 1617 — 124), k = AV ;‘j;” 247 we obtain
the following families of solutions.

Family 1. When A = A2 —4u > 0,82 > 0,82 > H3 and A*> — 12A > 0, then

(12002 V3 (v i )" V(2 H3)+ (1 1y ) (1281 +82-102 -3 +400) )

E(x, l) _ \/§A3/2,ue 2a y
A (4.22)
tanh[@(x +t) + V304 ) VS B ) VZ]
6a ’

1
N (x,1) = c [2&2 + H; — 8u + 3Atanh? c
(04

[(3(x +55) + V(1 + 7)) V- B + D) ‘/Z]] (4.23)

where H; = VA? — 12A.
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Family 2. WhenA <0, 8, > 0,82 > H3 and A% — 12A > 0, then

i(1210-2 \B(x+%)“ V—,@zﬁ{w%)"(lzﬂ, +5-102~H3 +401) )

2 @ \ [A 2 \[_A
E(.x, t) = — \/_e i K
K (4.24)
. (3Ca+3(x+ %) + V3(t+ 15) = (B2 + H)) V-A
6a ’
1 3Ca +3(x+ %) + V3(t + 2%) = (Ba + H3)) V-A
N(x,t) = = |22% + H; — 8u — 3Atan? ( [+ 5) (1 5) )
6 6a
(4.25)
Family 3. When A =0, u <0, A > 0 and -3, — 2 \/4u* — 3A > 0, then
i(lZlar—Z\/i(.w%)aH‘ﬁr(H%)n(lZﬁl+ﬁ2+40u—2m))
E (x,1) = =4 +/2u%e 120 X
= _a \* o \* 4.26
coth | 4 (B + 5) + V3(r+ 7t5) He) (420
3a ’
1 VE(3(x+ 2%)" + V3(r + 2=) H,
N(x, 1) = g(\/4,u2—3A—4,u—6,ucoth2( (et ))3 (1+ vi5) 1) : 4.27)
a
where Hy = \/—,82 —2+/4u? - 3A.
Family 4. When A =0, u <0, A <0 and -3, — 2 \/4u* — 3A > 0, then
4\/2115/2 i(lZlaer\6(.\4%)QH4+(I+%)Q(12[$1+ﬁ2+40;172\/4y277314))
E(x,1= e 2a
o (4.28)
S e |
cot| vu|C + + ,
10 V3a

V3a

Family 5. When A > 0 and u = 0, then the solution of E (x, f)could not be found because u = 0 is
located at the denominator of ay.

(03 @ l. (03 QH
N(x,f) = ? [\/4;12 —3A — 4u + 6ucot® { Vi [C + x +;“>) + (1 5t5) 4])) (4.29)

1
N(x, ) = < (512 + Va4 - 12A). (4.30)

Family 6. When A =0,4#0,-82—-H >0and u # 0,

i(1200-2V3 (e 1 ) VB + (1 1y ) (1268148, -1003-H3 4404 ) )

_ 6&’ V2A/l2€ 12«

E(x,0)= g @
(x-1) 3Ca+3(x+ %) + V3(t+ 75) V=B + Hap

(4.31)

AIMS Mathematics Volume 6, Issue 7, 7909-7928.
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(6o +3Ca+ 3+ i) o VAo ) VT
a o 3 — /’l —
Nen=gl  BCreseeds) ¢ B i) VF-TE) Cam
[0%
3Ca+3(x+ t5)"+ V3(1+ ) V=T

Family 7. When A = 0,4 = 0 and u = 0, then the solution E (x,y, f) could not be found because
u = 01is located at the denominator of ay.

V3
AN 2co+8uco—3c2—A-22u—4u? 2 A/ A2co+8uco—3c2—A-212u—4u2
Case Three. When q¢ = v 0 ,a; = 0,a, =0, by = v 0 ,

2A+12B1 248 2= 21442002 u+81% — 24881 co— 22 co—6A% co—48pco+18¢2
bZ:O,CI:O,cz:O,dl:2/1,d2:2,w: 0

12(22-2¢) ’
N HA2U-812+2B5c0-62c0+63—2A—3, 1

24/3(42-2¢0)
Family 1. When A = A2 — 4y > 0 and (42 + 8u1) o — 3c3 — A = 2u(4? + 2) > 0, then

{1 2

2a
E(x, 1) = X

a \¥

VT2 (a + VA tanh(«“rf'w)”‘@(’*w)‘ KM)) (4.34)

i(l{y+(x+ %&) )ak+(/+ #ﬁy) )aw)
c a ,

I

N (x,t) = (4.33)

, we obtain the following families of solutions.

() 204 255)" ) VA
4,1(12 ~2u +/l\/Ztanh( M) 2\ T

N(x,t) =c¢cy— > 3 (4.35)
(17 B o )
where Hs = \/(12 +8u) co — 3¢2 — A — 2uA.
Family 2. When A < 0 and (42 + 81) co — 3¢} = A = 2u1(2? + 2u) > 0, then
H i(la+(x+%)ak+(t+%)aw)
E(x,f)= ——e¢ X
A /12 - 26‘0
(4.36)
4p
A— )
(Ca+(x+ &) )0—2(1+ %)HK) V-A
a- v—_man( )2
oo 1+ BT 1)
N(x,t) = > + ¢p. 4.37)
(Cw+(x+ %)a72(t+%)ak) v-A
(/l— V—Atan( L) > I@)

AIMS Mathematics Volume 6, Issue 7, 7909-7928.
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Family 3. 1 =0, 4 <0, ¢y < 0 and 8uco — 3¢ — A —4u*> > 0

i([¢y+(x+%)ax+(t+%)aw) @ a . a
- - + =) = or + o =
E(af) = V2e \—uHs tanh(((x F(a)) ( F(a)) K) ‘/_“] (4.38)
V—Co (0
a % 2
+ =) =21+ =5 -
N (x,1) = ¢p — 2utanh ((x F(a)) (a m)) K) VH , (4.39)
where Hy = \/S,UCO — 32— A -4y,
Family 4. When A = 0, u > 0 and 8ucy — 3¢j — A — 4u* > 0, then
i(]a+(x+%)ak+([+%)aw) Y a o a
7 Ca+(x+5=) =2+
E (= YHE s tan [( @t e ai) ~ A+ i) ) \/ﬁ], (4.40)
—Cy a
Ca+(x+=2) =201+ =)
N (x,1) = co + 2utan’ (( @+ v+ i) - (r+ i) ¥ ‘/ﬁ]. (4.41)

Family 5. When A > 0, 22 — 2¢y > 0, 2%cy — 3c(2) —A>0andu =0, then

A A [A2¢co — 3c(2) - Aei(m(ﬁﬁ)"ﬁ(wﬁ)”w) coth (Coz + (x + %)w - Z(t + %)QK) A 4.42)
V- 2¢ 2a o

E(x,t) =

1
N(x, 1) = icsch2

[(Ca%x%)“—z(w %)“x)ﬂ]

2a %
N N (4.43)
[/12 . [cosh[(ca + (x + %) a— 2(t + %) K)/l] ~ l]co}.

Family 6. When A = 0,1 # 0, A2—2c > 0, (42 + 81) co—3¢3 —~A— 241 (4> + 2) > O and 1 # 0, then

E(x.f) = ((x+75)" -2t + 15) '€) A + @ (24 + €CA* - 4Cp)) Hs )

(((x + %)Q - 2(t + %)QK) A+a2+ C/l)) VA% = 2c¢o (4.44)

i(l(t+(x+ % )(Y/H-(H- #Ya) )(yw)
e @ ,

S(Ca/ -+ (x + L)a - 2(t + L)ak)zuz

T'(a) I'(a) _
(s + %) = 2(t+ ) ) a+a @+ D)
4 (Ca/ + (x + %)a - 2(t + %)QK) Au
(r+ %) -2(t+ 25) k) 1+ a2+ Ca)

N(x,t) =

(4.45)

+ Cgp.
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Family 7. When A = 0,4 = 0, u = 0,9 > 0, and —A — 3¢} > 0, then

i(1a+(.¥+%)ak+(t+%)nw)
V2e T 0 -A - 3¢

E(x1) = : - , (4.46)
T (Car (vr ) 2+ 15 ) ) Vo
N(x,1) = 232 — + o (4.47)
(Ca+(x+ %) —2(t+ %) K)

5. Linear stability analysis

In this section, we construct the modulation instability (MI) of the stationary solutions of Eqgs (4.1)
and (4.2) via the virtue of linear stability analysis. The MI may consist of exponential growth of small
disturbances in the amplitude or optical wave phase [63]. It is essential that we can observe MI in
the nonlinear physics of the wave. Suppose that Eqs (4.1) and (4.2) have the following stationary
solutions [64]:

E(x1) = ae*ltrm) N (x, ) = b, (5.1)

where a and b are arbitrary real constants. Putting Eq (5.1) into Eqgs (4.1) and (4.2), we get ¢ = (8; — D).
Suppose that the perturbed stationary solution has the form:

E(xf) = (a+eU(x,0) @280 ms) N =b+eVixi), (5.2)

where U (x, t) is complex fractional function, and V (x, ) is real fractional function. Putting Eq (5.2)
into Eqgs (4.1) and (4.2), the results satisfy the following linear equations.

aV—-iU,-U,, =0, (5.3)
3Vtt (X, t) - Vxxxx (X, t) + ﬂZVxx ()C, t) - (Uxx (X, t) + U;x ()C, l)) + 6bvxx (X, t) = 0 (54)
Where = is the symbol of the conjugate and so, Egs (5.3) and (5.4) can be written as
U (x, 1) =UeValrrin) sMi(emis)) 4 e i(-W i) +Ma (v i) (5.5)
V (e ) 2V Wt} m b)) 4y oW () b (e o ) ). (5.6)

Where W denotes the complex frequency, M is real disturbance wave-number, and U, U,, V}, V, are
the coeflicients of the linear combination. Substituting Eqgs (5.5) and (5.6), we get the following
homogeneous equations

M2U1 +aV,-WU, = 0,
M*U, +aV, + WU, = 0,

5.7
M?U, + M*U, — 6bM*V, — M*V, = 3W?V, - M°8,V, =0, 7
MU, + M*U, — 6bM*V, — M*V, — 3W?V, — M*B,V, = 0.
Evaluating the determinant and equaling to zero, we get the following relationship:
(6bM> + M* + 3W? + M?B,) (2aM* + (M* = W?) (6bM? + M* + 3W? + M*B,)) = 0. (5.8)
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According to Eq (5.8), we can discuss the following cases of the MI for Eqs (4.1) and (4.2) as follows
Case 1. In case

_iM+\J6b + M? + 3,

+ \/g .

we observe that the modulation instability of the Eqs (4.1) and (4.2) occurs when the wave number

contains an imaginary value, therefor

(5.9)

6b + M? + 3, > 0. (5.10)

Case 2. In case

3 \/ M2 (2M? - 6b — ;) F M2 +24a + 36b> + M2 (48b + 16M?) + 3, (12b + 8M? + f3,)
w=%F

, (5.11
z (5.11)
we observe that the modulation instability of the Eqs (4.1) and (4.2) occurs when either

24a + 366" + M* (48b + 16M?) + B, (12b + 8M” + 3,) > 0, (5.12)
or

M* (2M* = 6b — B,) ¥ M? \/24a +36b% + M2 (48b + 16M2) + B, (12b + 8M2 + 3,) < 0. (5.13)

Moreover, we investigate the modulation Instability gain spectrum G (W), which is determined by the
maximum absolute value for the imaginary part of the wave number and defined as
i2M +/6b + M? + 3,

GM)=2Im(w) = NG , (5.14)

and

GM)=2Im(w) =

% Im[\/M2 (2M? - B, — 6b) — M? \/24a + 36b% + M? (48b + 16M?) + B, (12b + 8M? + 3,) |.
(5.15)

The effect of the arbitrary constants a and b are illustrated graphically as seen in Figures (6) and (7).

6 10 .
a=0.1 ——b=01
a=1 9r b=1 |
50 a=2 b=2
sl ]
AN
AP\ 7 : )
< \ /. <
=3 3 y < 5§ 7
o \\ /) © N\ /
\\f\ // 4r N &
sl N\ "y
\ \\ // 3+ \\ // 4
N y
\ /
L N / 2r N\ / 1
! o g N S
D // 1 L P i
\ / 4
0 . . . L . . . 0 . . . . . .
2 1.5 -1 0.5 0 0.5 1 15 2 2 1.5 -1 0.5 0 0.5 1 15 2
M M
(a) (b)

Figure 6. 2-D figure of gain spectrum G (M) for different value of parameters.
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G(M)

20 1 1 1 1 1
-6 -4 -2 0 2 4 6

Figure 7. 2-D figure of gain spectrum G (M), when 3, = —3.

6. Conclusions

In this research, we constructed the new periodic, singular solutions of the coupled
Schrodinger-Boussinesq system with beta derivative via a modified auxiliary expansion method. We
found and investigated the several new family’s solutions and one family are shown graphically in
2-D and 3-D; to more understands their physical characteristics. The novel solutions included
hyperbolic function, trigonometric function, rational function, and constant function. The linear
stability analysis of coupled Schrodinger-Boussinesq are studied and the modulation instability of two
cases are analyzed. Moreover, the two cases of instability modulation and its gain spectrum are
illustrated graphically. These new solutions and results might appreciate in laser and plasma sciences.
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