Processing math: 58%
Research article

Clustering property for quantum Markov chains on the comb graph

  • Received: 28 September 2022 Revised: 10 January 2023 Accepted: 14 January 2023 Published: 31 January 2023
  • MSC : 46L53, 46L60, 82B10, 81Q10

  • Quantum Markov chains (QMCs) on graphs and trees were investigated in connection with many important models arising from quantum statistical mechanics and quantum information. These quantum states generate many important properties such as quantum phase transition and clustering properties. In the present paper, we propose a construction of QMCs associated with an XX-Ising model over the comb graph N0Z. Mainly, we prove that the QMC associated with the disordered phase, enjoys a clustering property.

    Citation: Abdessatar Souissi, El Gheteb Soueidy, Mohamed Rhaima. Clustering property for quantum Markov chains on the comb graph[J]. AIMS Mathematics, 2023, 8(4): 7865-7880. doi: 10.3934/math.2023396

    Related Papers:

    [1] Narongrit Kaewbanjak, Watcharin Chartbupapan, Kamsing Nonlaopon, Kanit Mukdasai . The Lyapunov-Razumikhin theorem for the conformable fractional system with delay. AIMS Mathematics, 2022, 7(3): 4795-4802. doi: 10.3934/math.2022267
    [2] Hadjer Belbali, Maamar Benbachir, Sina Etemad, Choonkil Park, Shahram Rezapour . Existence theory and generalized Mittag-Leffler stability for a nonlinear Caputo-Hadamard FIVP via the Lyapunov method. AIMS Mathematics, 2022, 7(8): 14419-14433. doi: 10.3934/math.2022794
    [3] Michael Precious Ineh, Edet Peter Akpan, Hossam A. Nabwey . A novel approach to Lyapunov stability of Caputo fractional dynamic equations on time scale using a new generalized derivative. AIMS Mathematics, 2024, 9(12): 34406-34434. doi: 10.3934/math.20241639
    [4] Kamal Shah, Muhammad Sher, Muhammad Sarwar, Thabet Abdeljawad . Analysis of a nonlinear problem involving discrete and proportional delay with application to Houseflies model. AIMS Mathematics, 2024, 9(3): 7321-7339. doi: 10.3934/math.2024355
    [5] Dinghong Jiang, Chuanzhi Bai . On coupled Gronwall inequalities involving a ψ-fractional integral operator with its applications. AIMS Mathematics, 2022, 7(5): 7728-7741. doi: 10.3934/math.2022434
    [6] Pratap Anbalagan, Evren Hincal, Raja Ramachandran, Dumitru Baleanu, Jinde Cao, Chuangxia Huang, Michal Niezabitowski . Delay-coupled fractional order complex Cohen-Grossberg neural networks under parameter uncertainty: Synchronization stability criteria. AIMS Mathematics, 2021, 6(3): 2844-2873. doi: 10.3934/math.2021172
    [7] Mengmeng Jiang, Xiao Niu . A new design method to global asymptotic stabilization of strict-feedforward nonlinear systems with state and input delays. AIMS Mathematics, 2024, 9(4): 9494-9507. doi: 10.3934/math.2024463
    [8] Huizhen Qu, Jianwen Zhou . S-asymptotically ω-periodic dynamics in a fractional-order dual inertial neural networks with time-varying lags. AIMS Mathematics, 2022, 7(2): 2782-2809. doi: 10.3934/math.2022154
    [9] Jingfeng Wang, Chuanzhi Bai . Global Mittag-Leffler stability of Caputo fractional-order fuzzy inertial neural networks with delay. AIMS Mathematics, 2023, 8(10): 22538-22552. doi: 10.3934/math.20231148
    [10] Ravi P. Agarwal, Snezhana Hristova . Stability of delay Hopfield neural networks with generalized proportional Riemann-Liouville fractional derivative. AIMS Mathematics, 2023, 8(11): 26801-26820. doi: 10.3934/math.20231372
  • Quantum Markov chains (QMCs) on graphs and trees were investigated in connection with many important models arising from quantum statistical mechanics and quantum information. These quantum states generate many important properties such as quantum phase transition and clustering properties. In the present paper, we propose a construction of QMCs associated with an XX-Ising model over the comb graph N0Z. Mainly, we prove that the QMC associated with the disordered phase, enjoys a clustering property.



    Schoenberg introduced the trigonometric spline functions defined by divided differences in [18]. And the trigonometric spline functions have been shown to possess many B-spline-like properties. In view of this, many scholars call the trigonometric splines the trigonometric B-splines, in [4,8]. It is well-known that the trigonometric B-splines are piecewise functions corresponding to the spaces

    T2n+1:=span{1,cost,sint,cos2t,sin2t,,cosnt,sinnt},

    for odd-order, and

    H2n:=span{cost2,sint2,cos3t2,sin3t2,,cos(2n1)t2,sin(2n1)t2},

    for even-order. Odd-order trigonometric B-splines in T2n+1 form a partition of unity, a desirable property for curve design. However, even-order B-splines in H2n lack this partition of unity, creating challenges in certain applications where this property is critical. As a result, extensive research has focused on the odd-order basis, particularly on its normalization. The author of [8] established the recurrence relation for the trigonometric B-splines of arbitrary order and derived trigonometric Marsden identity. The author of [20] utilized the trigonometric Marsden identity to derive the normalized odd-order trigonometric B-splines over uniform knots. Building on the trigonometric Marsden identity expansion introduced by [7], [11] explicitly derived the normalization coefficients required to ensure that the trigonometric B-spline basis functions are properly normalized. [15] provided the p-Bézier basis functions in the space T2n+1, which is defined over any interval of length <π. Those basis functions are a subcase of the normalized trigonometric B-splines. [2] presented the normalized Bernstein-like basis functions in the space T2n+1, which is defined over the interval [0,π/2]. [21] established the C-B spline basis. In this work, the C-B spline basis of order 3 is just the normalized trigonometric B-spline basis corresponding to the space T3. In a more general context, the normalized trigonometric B-splines are also considered in [16] as a special case.

    Curve and surface design is an important area in Computer Aided Geometric Design (CAGD), where trigonometric B-splines are a foundational tool. Normalized trigonometric B-splines enable enhanced construction and control of curves and surfaces, suggesting their potential applications in aircraft design [9]. Additionally, trigonometric B-splines show promising applications in other fields, such as physical simulations (see [5,12,19]).

    The purpose of this paper is to introduce the integral formula for odd-order trigonometric B-splines. Given the significant applications and theoretical importance of integral formulas in Chebyshev systems for fields such as numerical analysis, signal processing, and function approximation, it is notable that the integral properties of sin and cos in trigonometric B-spline bases render them incapable of being directly derived like other bases in Chebyshev systems. The aim of this study is to provide a similar integral formula for trigonometric B-spline bases. To achieve this, this paper first constructs a novel set of even-order trigonometric B-spline curve basis functions and, through integration of these functions, successfully derives the traditional odd-order trigonometric B-spline basis functions, thereby establishing the integral formula for odd-order trigonometric B-spline bases. During this derivation process, a determinant of even order with structural symmetry is obtained. Furthermore, this study refines the conditions for knot sequences to ensure that the corresponding normalized trigonometric B-spline bases possess nonnegativity.

    Our main contributions are

    ● A set of trigonometric spline bases corresponding to the DC component-free space is provided, along with the integral representation of normalized trigonometric B-spline bases corresponding to space T2n+1.

    ● Adjusting the conditions imposed on the knot sequence to guarantee the nonnegativity of the normalized trigonometric B-spline basis functions.

    ● A structurally symmetric even-order determinant is presented.

    The remainder of this article is organized as follows: Section 2 reviews the related concepts and properties. The improvements to knot sequences are discussed in Section 3. In Section 4, the trigonometric spline basis corresponding to the DC component-free space and the integral formula for the normalized trigonometric B-spline basis are presented. The final conclusions are drawn in the last section.

    In this section, we will recall some established concepts and conclusions.

    [1] has demonstrated that the knot sequences for B-spline basis functions can be finite, infinite, or bi-infinite. Analogous to the case of traditional B-spline basis functions, this paper focuses on the study of trigonometric B-spline basis functions corresponding to bi-infinite knot sequences.

    The normalized trigonometric B-spline basis functions are defined in a manner analogous to the de Boor-Cox formula [4,7,8,11].

    Definition 2.1. (Normalized trigonometric B-spline basis functions) Given a knot sequence T={ti}+i=, such that

    titi+1,0<ti+2n+1ti<2π,iZ,nZ+, (2.1)

    the normalized trigonometric B-spline basis functions of order 2n+1 are defined as follows:

    Ki,2n+1(t)=ζi,2n+1Ni,2n+1(t), (2.2)

    where

    Ni,1(t)={1, if tit<ti+1,0,otherwise. (2.3)
    Ni,2n(t)=sin(tti2)sin(ti+2n1ti2)Ni,2n1(t)+sin(ti+2nt2)sin(ti+2nti+12)Ni+1,2n1(t), (2.4)
    Ni,2n+1(t)=sin(tti2)sin(ti+2nti2)Ni,2n(t)+sin(ti+2n+1t2)sin(ti+2n+1ti+12)Ni+1,2n(t), (2.5)
    ζi,2n+1=1(2n)!μnj=1costi+μ(2j)ti+μ(2j1)2, (2.6)

    and the sum is taken over all permutations μ:{1,2,,2n}{1,2,,2n}.

    Remark 2.1 In [4,8,11], the knot sequence satisfies the condition 0<ti+2n+1ti<2π. However, the knot sequence described in [7] satisfies a slightly different condition, 0<ti+2nti<2π. In the subsequent section, the conditions of the knot sequence are reiterated.

    If ti1<ti=ti+1==ti+mi1<ti+mi, where 1mi2n, the knots tj, where j=i,i+1,,i+mi1, are referred to as knots of multiplicity mi. Especially, we set 00=0. The space of trigonometric spline basis is defined by

    Γ2n+1[T]:={Ni,2n+1(t)|Ni,2n+1(t)|t[ti,ti+1)T2n+1, and N(l)i,2n+1(ti)=N(l)i,2n+1(ti+),0l2nmi,iZ}.

    The trigonometric B-spline basis functions possess many B-spline-like properties [3,6,8,14].

    Property 2.1. (Properties of the trigonometric B-spline basis functions) The trigonometric B-spline basis functions Ni,2n+1(t) defined in Eq (2.5) possess the following properties:

    (1) (Local support) For any iZ and nZ+, there exists

    Ni,2n+1(t)={>0,t(ti,ti+2n+1),=0,t[ti,ti+2n+1]. (2.7)

    (2) (Continuity) The continuous order of Ni,2n+1(t) at tj (where iji+2n+1), denoted as kji,2n+1, can be described as

    kji,2n+1={2nξ,iji+ξ1,2nmj, i+ξji+2n+1η,2nη,   i+2n+2ηji+2n+1, (2.8)

    if ti=ti+1==ti+ξ1<ti+ξti+ξ+1ti+2n+1η<ti+2n+2η==ti+2n+1.

    In this section, we will adjust the conditions of the knot sequence to ensure the nonnegativity of the normalized trigonometric B-spline basis functions Ki,2n+1(t) for iZ and nZ+.

    First, the condition (2.1) can be relaxed.

    The nonnegativity of the basis function Ni,2n+1(t) is ensured by the condition 0<ti+2n+1ti<2π as stated in (2.1). Since the length of the support intervals for Ni,2n(t) and Ni+1,2n(t) in Eq (2.4) is 2n, replacing 0<ti+2n+1ti<2π with the condition 0<ti+2nti<2π still guarantees the nonnegativity of Ni,2n+1(t). Therefore, the condition (2.1) can be relaxed to

    titi+1,0<ti+2nti<2π,iZ,nZ+. (3.1)

    Second, the condition to ensure the positivity of the normalized coefficients ζi,2n+1 in Eq (2.6) is presented. According to the representation in Eq (2.6), we obtain the condition to ensure the positivity of the normalized coefficient ζi,2n+1, that is

    0ti+2n1ti<π, iZ,nZ+. (3.2)

    The Bézier-like basis defined in the space T2n+1 is a subcase of the trigonometric B-spline basis. In [13], it was noted that the space T2n+1 does not have an NTP basis when the domain of T2n+1 is [0,π]. This implies the non-existence of normalized coefficients. Consequently, we conclude that ti+2n1tiπ. In [15], it proved that there exist NTP bases provided that the domain of T2n+1 is any interval of length <π, specifically referred to as p-Bézier bases. This implies that the normalized coefficient satisfies the condition ti+2n1ti<π, in the special cases of Bézier.

    Figure 1a presents an example of the basis functions Ni,2n+1(t) for iZ, whose corresponding knot sequence T satisfies condition (3.1) but fails to satisfy condition (2.1). Here n=2 and the knot sequence T={ti}16i=1={1,1,1,1,1,3,4,5.3,6.5,7.5,8.8,10,10,10,10,10}. Figure 1b shows the trigonometric B-spline basis functions Ni,3(t) and Ki,3(t) corresponding to the knot sequence that satisfies condition (3.1) but does not satisfy condition (3.2), while Figure 1c presents the functions Ni,3(t) and Ki,3(t) corresponding to the knot sequence that satisfies both conditions (3.1) and (3.2).

    Figure 1.  Examples of trigonometric B-spline basis Ni,2n+1(t) and Ki,2n+1(t).

    Although the coefficients of the normalized trigonometric B-spline basis have already been defined in Eq (2.6), for the convenience of deriving and proving the integral formula of the normalized trigonometric B-spline basis, this paper introduces a simplified normalized coefficient expression that is equivalent to Eq (2.6).

    Lemma 3.1. Let

    Ci,2n+1=1(2n1)!!γ(1,2,,2n)nr=1costi+m2rti+m2r12,iZ,nZ+, (3.3)

    where the sum is taken over all permutations γ(1,2,,2n):{m1,m2,,m2n}{1,2,,2n}, with m1,m2,,m2n being a permutation of 1,2,,2n that satisfies m1<m3<<m2n1 and m2r1<m2r for each r=1,,n. Then there exists

    Ci,2n+1=ζi,2n+1,

    where ζi,2n+1 defined in Eq (2.6).

    Third, a new definition for the normalized trigonometric B-spline basis that guarantees nonnegativity is presented.

    Definition 3.1. (Nonnegative normalized trigonometric B-spline basis functions) Given a knot sequence T={ti}+i=, such that

    titi+1, 0<ti+2nti<2π and 0ti+2n1ti<π, iZ,nZ+, (3.4)

    the nonnegative normalized trigonometric B-spline basis functions of order 2n+1 are defined as follows:

    Ki,1(t)={1, if tit<ti+1,0,otherwise. (3.5)
    Ki,2n+1(t)=Ci,2n+1Ni,2n+1(t), (3.6)

    where Ni,2n+1(t), Ci,2n+1 is defined in Eqs (2.5) and (3.3), respectively.

    In this section, we generally set the knot sequence to be T={ti}+i= that satisfies condition (3.4), where the multiplicity of ti is mi with 1mi2n, and kji,2n+1 is defined in Eq (2.8) without further explanation. Let us define the DC component-free space as T2n:=span{cost,sint,,cosnt,sinnt}. Its corresponding piecewise trigonometric polynomial space is

    Γ2n[T]:={Fi,2n(t)|Fi,2n(t)|t[ti,ti+1)T2n, and F(l)i,2n(ti)=F(l)i,2n(ti+),0l2nmi1, 1mi2n1,iZ}.

    Clearly, Γ2n[T] is a linear space. We can derive the subspace of Γ2n[T] as follows:

    Γ2n[ti,ti+2n]={Fi,2n(t)Γ2n[T]|Fi,2n(t)=0,t[ti,ti+2n] and Fi,2n(t)0,t(ti,ti+2n),F(l)i,2n(tj)=F(l)i,2n(tj+),0lkji,2n, iji+2n}.

    It can be shown that a function in the space \(\Gamma_{2n}[t_i, t_{i + 2n}]\) exhibits local support and a specific order of continuity.

    The following determinant and its accompanying proof are presented to facilitate future derivations.

    Lemma 4.1. For any nZ+, then the following identity holds.

    D(t1,t2,,t2n):=|cost1cost2cost2nsint1sint2sint2ncos2t1cos2t2cos2t2nsin2t1sin2t2sin2t2ncosnt1cosnt2cosnt2nsinnt1sinnt2sinnt2n|=22n2nn!1l<jnsintjtl2γ(1,2,,2n)nr=1costm2rtm2r12, (4.1)

    where γ(1,2,,2n) defined in Lemma 3.1.

    Proof. According to Euler's formula and the identity eitjeits=2iei2(tj+ts)sintjts2, it follows that

    D(t1,t2,,t2n)=|eit1+eit12eit2+eit22eit2n+eit2n2eit1eit12ieit2eit22ieit2neit2n2ienit1+enit12enit2+enit22enit2n+enit2n2enit1enit12ienit2enit22ienit2nenit2n2i|=(1)n2+n(2i)nenit1enit2n|111eit1eit2eit2ne(n1)it1e(n1)it2e(n1)it2ne(n+1)it1e(n+1)it2e(n+1)it2ne2nit1e2nit2e2nit2n|=22n2n2nenit1enit2n1m1<m2<<mn2neitm1eitmn1s<j2nei2(tj+ts)sintjts2.

    For the sake of convenience, let

    C(t1,t2,,t2n)=γ(1,2,,2n)nr=1costm2rtm2r12. (4.2)

    Therefore, it suffices to prove that

    C(t1,t2,,t2n)=n!2nenit1enit2n1m1<m2<<mn2neitm1eitmn1s<j2nei2(tj+ts)=n!2n1m1<m2<<mn2nexp(i2mnq=m1tqi2(2nh=1thmnq=m1tq)). (4.3)

    We establish the inductive hypothesis for n. For n=1, the result is straightforward. Assume that the conclusion holds for np1, where \(p\) is any positive integer. Specifically, we have

    C(tn1,tn2,,tn2p2)=(p1)!2(p1)εexp(i2mp1q=m1tqi2(n2p2h=n1thmp1q=m1tq)),

    where the sum is taken over all permutations ε:{m1,m2,,mp1}{n1,n2,,n2p2}. Here, n1,n2,,n2p2 represent a permutation of 1,2,,2n such that n1<n2<<n2p2, while m1,m2,,mp1 is a subset of n1,n2,,n2p2 satisfying m1<m2<<mp1.

    Next, consider the case where n=p. Based on this assumption, we have

    C(t1,t2,,t2p)=cost2pt2p12γ(1,2,,2p2)p1r=1costm2rtm2r12+cost2pt2p22γ(1,2,,2p3,2p1)p1r=1costm2rtm2r12++cost2pt22γ(1,3,4,,2p1)p1r=1costm2rtm2r12+cost2pt12γ(2,3,,2p1)p1r=1costm2rtm2r12=12(exp(i2(t2pt2p1))+exp(i2(t2pt2p1)))C(t1,t2,,t2p2)+12(exp(i2(t2pt2p2))+exp(i2(t2pt2p2)))C(t1,t2,,t2p3,t2p1)++12(exp(i2(t2pt2))+exp(i2(t2pt2)))C(t1,t3,t4,,t2p1)+12(exp(i2(t2pt1))+exp(i2(t2pt1)))C(t2,t3,,t2p1)=p!2p1m1<m2<<mp2pexp(i2mpq=m1tqi2(2ph=1thmpq=m1tq)),

    where the sum is taken over all permutations γ(n1,n2,,n2p2):{m1,m2,,m2p2}{n1,n2,,n2p2}, with m1,m2,,m2p2 being a permutation of n1,n2,,n2p2 that satisfies m1<m3<<m2p3 and m2r1<m2r for each r=1,,p1. Here, the sequence {n1,n2,,n2p2} represents, in order, the sequences {1,2,,2p2}, {1,2,,2p3,2p1}, , {1,3,4,,2p1}, and \(\{2, 3, \cdots, 2p-1\}\). Eq (4.3) is valid for any positive integer n. Thus, the lemma is proved.

    This subsection defines a set of truncated functions and demonstrates that any function in the space Γ2n[ti,ti+2n] can be expressed as a linear combination of these functions.

    Let g2n(t):=sintsin2n2(t2)(nZ+), the truncated functions Gi,2n(t), where iZ and nZ+, are defined as follows: If ti=ti+1==ti+ξ1<ti+ξ, then

    Gi,2n(t):={0,t<ti,g(ξ1)2n(tti),tti. (4.4)

    Figure 2a2c illustrate examples of the function g4(t) and the truncated functions Gi,4(t), where iZ, over single and multiple knots, respectively.

    Figure 2.  Examples of functions g4(t) and Gi,4(t) for iZ.

    To prove that any function in the space Γ2n[ti,ti+2n] can be represented as a linear combination of {Gi,2n(t)}iZ, the following lemmas will be utilized.

    Lemma 4.2. There exist n+1 real numbers d0,d1,,dn such that

    sin2n(t2)=d0+d1cost+d2cos2t++dncosnt,

    where d0=(2n1)!!(2n)!!.

    Proof. It is well known that

    sin2n(t2)span{1,cost,cos2t,,cosnt},

    since

    sin2n(t2)=(sin2(t2))n=(1cost2)n.

    Thus, there are n+1 real numbers d0,d1,,dn such that

    sin2n(t2)=d0+d1cost+d2cos2t++dncosnt.

    We deduce that, based on Euler's formula,

    (eit2eit22i)2n=d0+d1eit+eit2+d2e2it+e2it2++dnenit+enit2. (4.5)

    Expanding the left side of Eq (4.5) using the binomial theorem results in d0=(2n1)!!(2n)!!.

    Lemma 4.3. The function Gi,2n(t) defined in Eq (4.4) lies in Γ2n[T] for any iZ,nZ+.

    Proof. First, according to Lemma 4.2, we obtain

    sin2n2(t2)span{1,cost,cos2t,,cos(n1)t},

    Thus, we have

    sintsin2n2(t2)span{sint,sin2t,,sinnt},

    and

    g2n(tti)T2n for iZ.

    Second, the order of continuity of g2n(tti) at ti is 2n2, because that

    g(l)2n(tti)|t=ti=0,l=0,1,,2n2, and g(2n1)2n(tti)|t=ti0.

    Third, it is easy to see that the order of continuity of Gi,2n(t) is 2nξ1 at ti and is at the other knots.

    In conclusion, Gi,2n(t)Γ2n[T], for iZ.

    Lemma 4.4. The functions Gi,2n(t) for iZ in Eq (4.4) are linearly independent.

    Proof. If ti1<ti=ti+1==ti+mi1<ti+mi, the mi functions Gj,2n(t) for iji+mi1 are linearly independent since they have different continuous orders at ti.

    For the sake of simplicity, let r=i+mi and tr1<tr=tr+1==tr+mr1<tr+mr. We can then similarly conclude that the functions Gj,2n(t) for rjr+mr1 are linearly independent. In addition, it is straightforward to derive that

    span{Gi,2n(t),Gi+1,2n(t),,Gi+mi1,2n(t)}span{Gr,2n(t),Gr+1,2n(t),,Gr+mr1,2n(t)}={0}.

    Thus, Gi,2n(t),Gi+1,2n(t),,Gi+mi1,2n(t),Gr,2n(t),Gr+1,2n(t),,Gr+mr1,2n(t) are linearly independent. Consequently, the functions Gi,2n(t) for iZ are linearly independent.

    From the above lemmas, we conclude that any function in the space Γ2n[ti,ti+2n] can be expressed as a linear combination of Gi,2n(t) for iZ.

    Theorem 4.1. For any function Fi,2n(t)Γ2n[ti,ti+2n], there exist 2nη+1 real numbers νi,νi+1,,νi+2nη such that

    Fi,2n(t)=i+2nηj=iνjGj,2n(t), t[ti,ti+2n),

    where η is the multiplicity of ti+2n in the interval [ti,ti+2n] and the functions Gj,2n(t), where iji+2nη, are defined in Eq (4.4).

    Proof. Since Fi,2n(t) in space Γ2n[ti,ti+2n] is a piecewise function, it can first be linearly represented by the functions Gj,2n(t) for iji+2nη in Eq (4.4) over a non-zero interval within its support interval.

    Suppose ti=ti+1==ti+ξ1<ti+ξti+2nη<ti+2nη+1==ti+2n. We consider that the function Fi,2n(t) can be linearly represented in the interval [ti,ti+ξ). Thus, we prove that there exist ξ real numbers κi,κi+1,,κi+ξ1 such that

    Fi,2n(t)|[ti,ti+ξ)=i+ξ1j=iκjGj,2n(t).

    For simplicity, assume that

    f1(t)=Fi,2n(t)|[ti,ti+ξ), t[ti,ti+ξ).

    Based on the definition of the space Γ2n[ti,ti+2n], we know that f1(t)T2n, which means that there exist 2n real numbers x1,x2,,x2n such that

    f1(t)=x1cost+x2sint++x2n1cosnt+x2nsinnt,

    and

    f(s)1(ti)=f(s)1(ti)=f(s)1(ti+), 0s2nξ1,

    which implies that

    f(s)1(ti)=0, 0s2nξ1.

    Let ρ=2nξ1, Ωρ:={f1(t)|f1(t)T2n,f(s)1(ti)=0,0sρ}, and Ψρ:=span{g2n(tti),g2n(tti+1),,g(2nρ2)2n(tti+ξ1)}=span{g2n(tti),g2n(tti),,g(2nρ2)2n(tti)}.

    Since g2n(tti),g2n(tti),,g(2nρ2)2n(tti) are linearly independent, we conclude that the dimension of Ψρ is 2nρ1. According to the definition of the function g2n(t), we obtain that g(l)2n(tti)Ωρ, l=0,1,,2nρ2. Hence, it follows naturally that Ψρ is the subspace of Ωρ.

    The dimension of the space Ωρ is equal to the dimension of the solution space corresponding to the following linear equations.

    {f1(ti)=0,f1(ti)=0,f(ρ)1(ti)=0. (4.6)

    Thus, the following linear equations holds:

    {x1costi+x2sinti+x3cos2ti+x4sin2ti++x2n1cosnti+x2nsinnti=0,x1sinti+x2costix32sin2ti+x42cos2ti+x2n1nsinnti+x2nncosnti=0,x1costix2sintix322cos2tix422sin2ti+x2n1n2cosntix2nn2sinnti=0,x1sintix2costi+x323sin2tix423cos2ti++x2n1n3sinntix2nn3cosnti=0,x1cos(π2ρ+ti)+x2sin(π2ρ+ti)++x2n1nρcos(π2ρ+nti)+x2nnρsin(π2ρ+nti)=0, (4.7)

    where the corresponding coefficient matrix is given as

    (costisinticos2tisin2ticosntisinntisinticosti2sin2ti2cos2tinsinntincosnticostisinti22cos2ti22sin2tin2cosntin2sinntisinticosti23sin2ti23cos2tin3sinntin3cosnticos(π2ρ+ti)sin(π2ρ+ti)2ρcos(π2ρ+2ti)2ρsin(π2ρ+2ti)nρcos(π2ρ+nti)nρsin(π2ρ+nti)). (4.8)

    By performing elementary row operations, it is demonstrated that the matrix (4.8) maintains full row rank, independent of the parity of ρ. This result establishes that the dimension of the solution space for the linear system (4.7) is

    2n(ρ+1)=2nρ1.

    The dimension of Ωρ is determined to be 2nρ1. Consequently, it follows that Ωρ=Ψρ. In other words, we know that there exist 2nρ1=2n(2nξ1)1=ξ real numbers κi,κi+1,,κi+ξ1 such that

    f1(t)=i+ξ1j=iκjg(ji)2n(ttj).

    According to the definition of Gi,2n(t), the function \(f_1(t)\) can be expressed as

    f1(t)=i+ξ1j=iκjGj,2n(t).

    Consider the non-zero interval [ti+ξ,ti+ξ+mi+ξ). We define

    f2(t)=Fi,2n(t)|[ti+ξ,ti+ξ+mi+ξ),t[ti+ξ,ti+ξ+mi+ξ).

    According to the continuous order of Fi,2n(t) at ti+ξ, we deduce that

    f(s)1(ti+ξ)=f(s)1(ti+ξ)=f(s)2(ti+ξ+)=f(s)2(ti+ξ),0s2nmi+ξ1.

    This implies that

    f(s)2(ti+ξ)f(s)1(ti+ξ)=0,0s2nmi+ξ1.

    Thus, from the above analysis, it follows that there are mi+ξ real numbers κi+ξ,κi+ξ+1,,κi+ξ+mi+ξ1 such that

    f2(t)f1(t)=i+ξ+mi+ξ1j=i+ξκjGj,2n(t).

    Consequently, we have

    f2(t)=i+ξ+mi+ξ1j=iκjGj,2n(t).

    For every non-zero subinterval of the support interval of F_{i, 2n}(t) , we consider it this way. It can be concluded that there exist 2n-\eta+1 real numbers \nu_i, \nu_{i+1}, {\cdots}, \nu_{i+2n-\eta} such that

    F_{i, 2n}(t) = \sum\limits_{j = i}^{i+2n-\eta}\nu_jG_{j, 2n}(t), \ t\in[t_i, t_{i+2n-\eta+1}) = [t_i, t_{i+2n}),

    where \nu_j for i\le j\le i+2n-\eta is expressed as a linear combination of \kappa_i, \kappa_{i+1}, {\cdots}, \kappa_{i+2n-\eta} .

    The subsection demonstrates that the dimension of \Gamma_{2n}[t_i, t_{i+2n}] is 1. To support this, we first require the following lemma.

    Lemma 4.5. Given an integer {\mit i} and positive integers {n, \eta} such that \eta\le 2n-1 , then the determinant

    \left| \begin{array}{*{20}c} G_{i, 2n}(t_{i+2n}) & G_{i+1, 2n}(t_{i+2n}) & \ldots & G_{i+2n-\eta-1, 2n}(t_{i+2n}) \\ G_{i, 2n}'(t_{i+2n}) & G_{i+1, 2n}'(t_{i+2n}) & \ldots & G_{i+2n-\eta-1, 2n}'(t_{i+2n}) \\ \vdots & \vdots & \vdots & \vdots \\ G_{i, 2n}^{(2n-\eta-1)}(t_{i+2n}) & G_{i+1, 2n}^{(2n-\eta-1)}(t_{i+2n}) & \ldots & G_{i+2n-\eta-1, 2n}^{(2n-\eta-1)}(t_{i+2n})\\ \end{array} \right|\ne 0,

    where the functions G_{j, 2n}(t) for i\le j\le i+2n-\eta-1 are defined in Eq (4.4).

    Proof. Use reduction to absurdity. Assume that the determinant is equal to zero. Then, there are 2n-\eta real numbers z_i, z_{i+1}, {\cdots}, z_{i+2n-\eta-1} , which are not all equal to zero, satisfying

    \sum\limits_{l = i}^{i+2n-\eta-1}z_l{\left( \begin{array}{*{20}c} G_{l, 2n}(t_{i+2n}) \\ G_{l, 2n}'(t_{i+2n}) \\ \vdots \\ G_{l, 2n}^{(2n-\eta-1)}(t_{i+2n}) \\ \end{array} \right)} = {\bf 0}.

    Let Y(t) = \sum\limits_{l = i}^{i+2n-\eta-1}z_lG_{l, 2n}(t) . Then, we find that the first 2n-\eta-1 derivatives of Y(t) at t_{i+2n} are all zero. According to Theorem 4.1, there exist m_{i+2n} real numbers, such that

    Y(t) = \sum\limits_{u = i+2n-\eta}^{i+2n+m_{i+2n}-\eta-1}z_uG_{u, 2n}(t).

    Therefore,

    Y(t) = \sum\limits_{l = i}^{i+2n-\eta-1}z_lG_{l, 2n}(t) = \sum\limits_{u = i+2n-\eta}^{i+2n+m_{i+2n}-\eta-1}z_uG_{u, 2n}(t),

    and

    \sum\limits_{l = i}^{i+2n-\eta-1}z_lG_{l, 2n}(t)-\sum\limits_{u = i+2n-\eta}^{i+2n+m_{i+2n}-\eta-1}z_uG_{u, 2n}(t) = 0.

    According to Lemma 4.4, we obtain that z_i = {\cdots} = z_{i+2n-\eta-1} = 0 . This conflicts with the assumption. So, the lemma is proved.

    From Theorem 4.1 and Lemma 4.5, we obtain the dimension of \Gamma_{2n}[t_i, t_{i+2n}] .

    Theorem 4.2. The dimension of the linear space \Gamma_{2n}[t_i, t_{i+2n}] is 1 .

    Proof. Suppose that u(t) is an arbitrary function in \Gamma_{2n}[t_i, t_{i+2n}] . Thus, according to Theorem 4.1, there are 2n-\eta+1 real numbers \nu_i, \nu_{i+1}, {\cdots}, \nu_{i+2n-\eta} such that

    u(t) = \sum\limits_{j = i}^{i+2n-\eta}\nu_jG_{j, 2n}(t), t\in[t_i, t_{i+2n}) = [t_i, t_{i+2n-\eta+1}),

    where \eta denotes the multiplicity of t_{i+2n} in the interval [t_i, t_{i+2n}] . Consider the continuous order of function u(t) at t_{i+2n} . We have

    u^{(l)}(t_{i+2n}-) = u^{(l)}(t_{i+2n}) = u^{(l)}(t_{i+2n}+) = 0, l = 0, 1, 2, {\cdots}, 2n-\eta-1,

    which implies that

    u^{(l)}(t_{i+2n}) = 0, l = 0, 1, 2, {\cdots}, 2n-\eta-1.

    Thus, the equation representing the continuous order of u(t) s at t_{i+2n} is given by

    \begin{equation} \left \{ \begin{array}{*{20}c} u(t_{i+2n}) = 0, \hfill \\ u'(t_{i+2n}) = 0, \hfill \\ \vdots \\ u^{(2n-\eta-1)}(t_{i+2n}) = 0. \hfill \\ \end{array} \right. \end{equation} (4.9)

    which can be expressed in matrix form as follows:

    \begin{equation} \left(\begin{array}{*{20}c} G_{i, 2n}(t_{i+2n}) & G_{i+1, 2n}(t_{i+2n}) & \ldots & G_{i+2n-\eta, 2n}(t_{i+2n}) \\ G_{i, 2n}'(t_{i+2n}) & G_{i+1, 2n}'(t_{i+2n}) & \ldots & G_{i+2n-\eta, 2n}'(t_{i+2n}) \\ \vdots & \vdots & \vdots & \vdots \\ G_{i, 2n}^{(2n-\eta-1)}(t_{i+2n}) & G_{i+1, 2n}^{(2n-\eta-1)}(t_{i+2n}) & \ldots & G_{i+2n-\eta, 2n}^{(2n-\eta-1)}(t_{i+2n})\\ \end{array} \right) \left(\begin{array}{*{20}c} \nu_i \\ \nu_{i+1} \\ \vdots \\ \nu_{i+2n-\eta} \\ \end{array} \right) = {\bf 0}. \end{equation} (4.10)

    This system consists of linear equations with \nu_i, \nu_{i+1}, {\cdots}, \nu_{i+2n-\eta} as variables. Based on Lemma 4.5, the coefficient matrix of these linear equations is full row rank, with a rank of 2n-\eta+1-(2n-\eta) = 1 . This indicates that the dimension of \Gamma_{2n}[t_i, t_{i+2n}] is 1 .

    In this subsection, we consider single knots and assume that t_i < t_{i+1} for any i\in\mathbb Z . Then the even-order trigonometric spline basis functions corresponding to the DC component-free space \mathcal T_{2n} , and the integral expression for the trigonometric B-spline basis K_{i, 2n+1}(t) are presented.

    According to Theorem 4.2 and the definition of \Gamma_{2n}[t_i, t_{i+2n}] , it is established that F_{i, 2n}(t)\in\Gamma_{2n}[t_i, t_{i+2n}] and the dimension of \Gamma_{2n}[t_i, t_{i+2n}] is 1. If we find a function H(t)\in\Gamma_{2n}[t_i, t_{i+2n}] , then it follows that F_{i, 2n}(t) = \alpha H(t), t\in[t_i, t_{i+2n}) for some real number \alpha . Thus, the following theorem is provided.

    Theorem 4.3. (The function expression in the space \Gamma_{2n}[t_i, t_{i+2n}] over single knots) For any function F_{i, 2n}(t)\in\Gamma_{2n}[t_i, t_{i+2n}] , there exists a real number \alpha such that

    \begin{equation*} \label{eq:exRe_F} F_{i, 2n}(t) = \alpha H(t), t\in[t_i, t_{i+2n}), \end{equation*}

    where

    \begin{equation*} \label{eq:exRe_H} H(t) = \left| \begin{array}{*{20}c} G_{i, 2n}(t) & G_{i+1, 2n}(t) & \ldots & G_{i+2n-1, 2n}(t) & G_{i+2n, 2n}(t)\\ \cos t_i & \cos t_{i+1} & \ldots & \cos t_{i+2n-1} & \cos t_{i+2n}\\ \sin t_i & \sin t_{i+1} & \ldots & \sin t_{i+2n-1} & \sin t_{i+2n}\\ \cos2t_i & \cos2t_{i+1} & \ldots & \cos2t_{i+2n-1} & \cos 2t_{i+2n}\\ \sin2t_i & \sin2t_{i+1} & \ldots & \sin2t_{i+2n-1} & \sin 2t_{i+2n}\\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \cos nt_i & \cos nt_{i+1} & \ldots & \cos nt_{i+2n-1} & \cos nt_{i+2n}\\ \sin nt_i & \sin nt_{i+1} & \ldots & \sin nt_{i+2n-1} & \sin nt_{i+2n}\\ \end{array} \right|, \end{equation*}

    and \alpha = -\frac{1}{D(t_i, t_{i+1}, \cdots, t_{i+2n-1})} . Here D(t_i, t_{i+1}, \cdots, t_{i+2n-1}) and the functions G_{j, 2n}(t) for i\le j\le i+2n are defined in Eqs (4.1) and (4.4), respectively.

    Proof. According to Theorem 4.1, there exist 2{\mit n} real numbers \alpha_i, \alpha_{i+1}, {\cdots}, \alpha_{i+2n-1} such that

    \begin{equation} F_{i, 2n}(t) = \sum\limits_{j = i}^{i+2n-1}\alpha_jG_{j, 2n}(t), t\in[t_i, t_{i+2n}), \end{equation} (4.11)

    By the continuous order of F_{i, 2n}(t) at t_{i+2n} , it follows that

    \begin{equation} F^{(d)}_{i, 2n}(t_{i+2n}) = \sum\limits_{j = i}^{i+2n-1}\alpha_jG^{(d)}_{j, 2n}(t_{i+2n}) = 0, t\in[t_i, t_{i+2n}), d = 0, 1, 2, {\cdots}, 2n-2. \end{equation} (4.12)

    This can be expressed equivalently as a system of equations

    \begin{equation} \left \{ \begin{array}{*{20}c} \sum\limits_{j = i}^{i+2n-1}\alpha_jG_{j, 2n}(t_{i+2n}) = 0, \hfill \\ \sum\limits_{j = i}^{i+2n-1}\alpha_jG'_{j, 2n}(t_{i+2n}) = 0, \hfill \\ \vdots \\ \sum\limits_{j = i}^{i+2n-1}\alpha_jG^{(2n-2)}_{j, 2n}(t_{i+2n}) = 0. \hfill \\ \end{array} \right. \end{equation} (4.13)

    In addition, we have

    \begin{equation} \sin{({\mit t}-{{\mit t}_{i+2n})}}\sin^{2n-2}\left(\frac{{\mit t}-t_{i+2n}}{2}\right) = \sum\limits_{j = i}^{i+2n-1}\beta_j\sin{({\mit t}-t_j)}\sin^{2n-2}\left(\frac{\mit t-t_j}{2}\right), \end{equation} (4.14)

    where \beta_i, \beta_{i+1}, \cdots, \beta_{i+2n-1} are real numbers. Since Eq (4.14) when t = t_{i+2n} is equivalent to Eq (4.13). We obtain that \alpha_j = \beta_j, j = i, {\cdots}, i+2n-1 . Thus, we only focus on \beta_j, i\le j\le i+2n-1 . By proving Lemma 4.3, it can be concluded that there exist n numbers \eta_{1}, \eta_2, {\cdots}, \eta_n such that

    \begin{equation} \sin{\mit (t-t_j)}\sin^{2n-2}\left(\frac{\mit t-t_j}{2}\right) = \sum\limits_{l = 1}^n\eta_l\sin l({\mit t-t_j}), j = i, i+1, {\cdots}, i+2n. \end{equation} (4.15)

    So we can rewrite (4.14) as follows:

    \begin{equation} \begin{split} & \left(\begin{array}{*{20}c} \cos t &\sin t & \ldots &\cos nt &\sin nt \\ \end{array} \right) \left(\begin{array}{*{20}c} -\eta_1\sin t_{i+2n} \\ \eta_1\cos t_{i+2n} \\ -\eta_2\sin 2t_{i+2n} \\ \eta_2\cos 2t_{i+2n} \\ \vdots \\ -\eta_n\sin nt_{i+2n} \\ \eta_n\cos nt_{i+2n} \\ \end{array} \right)\\ = &\left(\begin{array}{*{20}c} \cos t &\sin t & \ldots &\cos nt &\sin nt \\ \end{array} \right) \left(\begin{array}{*{20}c} -\eta_1\sin t_i & \ldots & -\eta_1\sin t_{i+2n-1} \\ \eta_1\cos t_i & \ldots & \eta_1\cos t_{i+2n-1} \\ -\eta_2\sin2t_i & \ldots & -\eta_2\sin2t_{i+2n-1} \\ \eta_2\cos2t_i & \ldots & \eta_2\cos2t_{i+2n-1} \\ \vdots & \vdots & \vdots \\ -\eta_n\sin nt_i & \ldots & -\eta_n\sin nt_{i+2n-1} \\ \eta_n\cos nt_i & \ldots & \eta_n\cos nt_{i+2n-1} \\ \end{array} \right) \left(\begin{array}{*{20}c} \beta_i \\ \beta_{i+1} \\ \vdots \\ \beta_{i+2n-2} \\ \beta_{i+2n-1} \\ \end{array} \right).\\ \end{split} \end{equation} (4.16)

    Based on the properties of matrix operations, we deduce that

    \begin{equation} \left(\begin{array}{*{20}c} -\eta_1\sin t_i & \ldots & -\eta_1\sin t_{i+2n-1} \\ \eta_1\cos t_i & \ldots & \eta_1\cos t_{i+2n-1} \\ -\eta_2\sin2t_i & \ldots & -\eta_2\sin2t_{i+2n-1} \\ \eta_2\cos2t_i & \ldots & \eta_2\cos2t_{i+2n-1} \\ \vdots & \vdots & \vdots \\ -\eta_n\sin nt_i & \ldots & -\eta_n\sin nt_{i+2n-1} \\ \eta_n\cos nt_i & \ldots & \eta_n\cos nt_{i+2n-1} \\ \end{array} \right) \left(\begin{array}{*{20}c} \beta_i \\ \beta_{i+1} \\ \vdots \\ \beta_{i+2n-2} \\ \beta_{i+2n-1} \\ \end{array} \right) = \left(\begin{array}{*{20}c} -\eta_1\sin t_{i+2n} \\ \eta_1\cos t_{i+2n} \\ -\eta_2\sin 2t_{i+2n} \\ \eta_2\cos 2t_{i+2n} \\ \vdots \\ -\eta_n\sin nt_{i+2n} \\ \eta_n\cos nt_{i+2n} \\ \end{array} \right). \end{equation} (4.17)

    The coefficient matrix of (4.17) is non-zero due to the linear independence of the functions \cos t, \sin t, {\cdots}, \cos nt, \sin nt . According to Cramer's Rule, we have

    \begin{aligned} \beta_{i+j-1} = \frac{D\left(t_i, \cdots, t_{i+j-2}, t_{i+2n}, t_{i+j}, \cdots, t_{i+2n-1}\right)}{D\left(t_i, t_{i+1}, \cdots, t_{i+2n-1}\right)}, \text{ for } j = 1, 2, {\cdots}, 2n. \end{aligned}

    We apply this result to Eq (4.11) to yield

    \begin{equation*} \begin{aligned} F_{i, 2n}(t) & = \sum\limits_{j = 1}^{2n}\alpha_{i+j-1}G_{i+j-1, 2n}(t)\\ & = \sum\limits_{j = 1}^{2n}\frac{D\left(t_i, \cdots, t_{i+j-2}, t_{i+2n}, t_{i+j}, \cdots, t_{i+2n-1}\right)}{D\left(t_i, t_{i+1}, \cdots, t_{i+2n-1}\right)}G_{i+j-1, 2n}(t)\\ & = \frac{D\left(t_{i+2n}, t_{i+1}, \cdots, t_{i+2n-1}\right)}{D\left(t_i, t_{i+1}, \cdots, t_{i+2n-1}\right)}G_{i, 2n}(t)+\frac{D\left(t_{i}, t_{i+2n}, t_{i+2}, \cdots, t_{i+2n-1}\right)}{D\left(t_i, t_{i+1}, \cdots, t_{i+2n-1}\right)}G_{i+1, 2n}(t)\\ & +{\cdots}+\frac{D\left(t_{i}, {\cdots}, t_{i+2n-2}, t_{i+2n}\right)}{D\left(t_i, t_{i+1}, \cdots, t_{i+2n-1}\right)}G_{i+2n-1, 2n}(t)\\ & = (-1)^{2n-1}\frac{D\left(t_{i+1}, \cdots, t_{i+2n}\right)}{D\left(t_i, t_{i+1}, \cdots, t_{i+2n-1}\right)}G_{i, 2n}(t)+(-1)^{2n-2}\frac{D\left(t_{i}, t_{i+2}, \cdots, t_{i+2n}\right)}{D\left(t_i, t_{i+1}, \cdots, t_{i+2n-1}\right)}G_{i+1, 2n}(t)\\ & +{\cdots}+\frac{D\left(t_{i}, \cdots, t_{i+2n-2}, t_{i+2n}\right)}{D\left(t_i, t_{i+1}, \cdots, t_{i+2n-1}\right)}G_{i+2n-1, 2n}(t) +\frac{D\left(t_{i}, \cdots, t_{i+2n-2}, t_{i+2n-1}\right)}{D\left(t_i, t_{i+1}, \cdots, t_{i+2n-1}\right)}G_{i+2n, 2n}(t)\\ & = {-\frac{1}{D(t_i, t_{i+1}, \cdots, t_{i+2n-1})}}H(t), \ t\in[t_i, t_{i+2n}), \end{aligned} \end{equation*}

    where G_{i+2n, 2n}(t) = 0, t\in[t_i, t_{i+2n}) .

    The linear space \Gamma_{2n}[t_i, t_{i+2n}] corresponds to space \mathcal T_{2n} . Similarly, the space \Gamma_{2n+1}[t_i, t_{i+2n+1}] , which corresponds to space \mathcal T_{2n+1} , can be defined as follows:

    \begin{array}{l} \Gamma_{2n+1}[t_i, t_{i+2n+1}]: = \{M_{i, 2n+1}(t)\in \Gamma_{2n+1}[{\mathit{\boldsymbol{T}}}]|M_{i, 2n+1}(t) = 0, t\notin [t_i, t_{i+2n+1}]\text{ and }M_{i, 2n+1}(t)\ne0, \\ \quad \quad \quad \quad\quad \quad t\in (t_i, t_{i+2n+1}), \ M^{(l)}_{i, 2n+1}(t_j-) = M^{(l)}_{i, 2n+1}(t_j+), l = 0, 1, {\cdots}, k_{i, 2n+1}^j, \ i\le j\le i+2n+1.\} \end{array}

    We can derive the following theorem analogously.

    Theorem 4.4. The dimension of the linear space \Gamma_{2n+1}[t_i, t_{i+2n+1}] is 1 .

    The proof is similar to the proof of Theorem 4.2.

    Inspired by the method for constructing normalized B-basis in extended Chebyshev space presented in [10], we use the functions F_{i, 2n}(t) , where i\in \mathbb{Z} , to construct the normalized function M_{i, 2n+1}(t) . Therefore, the following theorem holds.

    Theorem 4.5. (The normalized function) Suppose that

    \begin{equation} M_{i, 2n+1}(t) = \frac{\int_{-{\infty}}^tF_{i, 2n}(s)ds}{\int_{-{\infty}}^{+{\infty}}F_{i, 2n}(t)dt}-\frac{\int_{-{\infty}}^tF_{i+1, 2n}(s)ds}{\int_{-{\infty}}^{+{\infty}}F_{i+1, 2n}(t)dt}, \end{equation} (4.18)

    where F_{i, 2n}(t)\in\Gamma_{2n}[t_i, t_{i+2n}] and F_{i+1, 2n}(t)\in\Gamma_{2n}[t_{i+1}, t_{i+2n+1}] are defined in Theorem 4.3, with i\in \mathbb{Z} and n\in \mathbb{Z}^{+} . Then we have

    \begin{equation*} \sum\limits_{i = -{\infty}}^{+{\infty}}M_{i, 2n+1}(t)\equiv1, \ t \in [t_j, t_{j+1}). \end{equation*}

    Proof. For t \in [t_j, t_{j+1}) , there exists

    \begin{equation*} \begin{array}{l} \sum\limits_{i = -{\infty}}^{+{\infty}}M_{i, 2n+1}(t) = \sum\limits_{i = -{\infty}}^{+{\infty}}\left(\frac{\int_{-{\infty}}^tF_{i, 2n}(s)ds}{\int_{-{\infty}}^{+{\infty}}F_{i, 2n}(t)dt}-\frac{\int_{-{\infty}}^tF_{i+1, 2n}(s)ds}{\int_{-{\infty}}^{+{\infty}}F_{i+1, 2n}(t)dt}\right)\\ \quad\quad\quad\quad\quad\; \; = \sum\limits_{i = j-2n}^j\left(\frac{\int_{-{\infty}}^tF_{i, 2n}(s)ds}{\int_{-{\infty}}^{+{\infty}}F_{i, 2n}(t)dt}-\frac{\int_{-{\infty}}^tF_{i+1, 2n}(s)ds}{\int_{-{\infty}}^{+{\infty}}F_{i+1, 2n}(t)dt}\right)\\ \quad\quad\quad\quad\quad\; \; = \sum\limits_{i = j-2n}^j\left(\frac{\int_{t_i}^tF_{i, 2n}(s)ds}{\int_{t_i}^{t_{i+2 n}}F_{i, 2n}(t)dt}-\frac{\int_{t_{i+1}}^t F_{i+1, 2n}(s)ds}{\int_{t_{i+1}}^{t_{i+2 n+1}}F_{i+1, 2n}(t)dt}\right)\\ \quad\quad\quad\quad\quad\; \; = \frac{\int_{t_{j-2n}}^t F_{j-2n, 2n}(s)ds}{\int_{t_{j-2n}}^{t_j}F_{j-2n, 2n(t)}dt}-\frac{\int_{t_{j+1}}^t F_{j+1, 2n}(s)ds}{\int_{t_{j+1}}^{t_{j+2n+1}}F_{j+1, 2n}(t)dt}\\ \quad\quad\quad\quad\quad\; \; = \frac{\int_{t_{j-2n}}^{t_j}F_{j-2n, 2n}(s)ds+\int_{t_j}^tF_{j-2n, 2n}(s)ds}{\int_{t_{j-2n}}^{t_j}F_{j-2n, 2n(t)}dt}-0\\ \quad\quad\quad\quad\quad\; \; = 1+\frac{\int_{t_j}^t F_{j-2n\cdot 2n}(s)ds}{\int_{t_{j-2n}}^{t_j}F_{j-2n\cdot 2n}(t)dt}-0 = 1. \end{array} \end{equation*}

    Lemma 4.6. The function M_{i, 2n+1}(t) in Eq (4.18) lies in the space \Gamma_{2n+1}[t_i, t_{i+2n+1}].

    Proof. First, Eq (4.18) indicates that the support interval of the function M_{i, 2n+1}(t) is the union of the interval of F_{i, 2n}(t) and F_{i+1, 2n}(t) , denoted as [t_i, t_{i+2n+1}) .

    Second, since the integral operator increases the continuous order by 1, the continuous order of M_{i, 2n+1}(t) at t_j is greater than or equal to

    k_{i, 2n}^j+1 = k_{i, 2n+1}^j, i\le j\le i+2n+1.

    So, it is natural that

    M_{i, 2n+1}(t)\in\Gamma_{2n+1}[t_i, t_{i+2n+1}].

    According to Theorem 4.4 and Lemma 4.6, the normalized function M_{i, 2n+1}(t) in Eq (4.18) must be equal to the trigonometric B-spline function N_{i, 2n+1}(t) in Eq (2.5) multiplied by a constant. Therefore, the following theorem is established.

    Theorem 4.6. (Integral representation of the normalized trigonometric B-spline basis) Given a knot sequence {\mathit{\boldsymbol{T}}} = \{t_i\}^{+\infty}_{i = -\infty} satisfying

    t_i < t_{i+1}, \ 0 < t_{i+2n}-t_i < 2\pi\ and\ 0\le t_{i+2n-1}-t_{i} < \pi, \ i\in \mathbb{Z}, n\in \mathbb{Z}^{+},

    then there holds

    K_{i, 2n+1}(t) = M_{i, 2n+1}(t), \ t\in[t_i, t_{i+2n+1}),

    where K_{i, 2n+1}(t) and M_{i, 2n+1}(t) are separately defined in Definition 3.1 and Eq (4.18).

    Proof. We will demonstrate that the expression of M_{i, 2n+1}(t) , as defined in Eq (4.18), is identical to that of K_{i, 2n+1}(t) defined in Definition 3.1. The notations C(t_{i+1}, t_{i+2}, {\cdots}, t_{i+2n}) in Lemma 4.1 and U(t_i, t_{i+1}, {\cdots}, t_{i+2n}) (see [17]) are used in the following proof, where

    \begin{equation} \begin{split} U(t_i, t_{i+1}, {\cdots}, t_{i+2n})& = \left| {\begin{array}{*{20}c} 1 & 1 & \ldots & 1 & 1\\ \cos t_i & \cos t_{i+1} & \ldots & \cos t_{i+2n-1} & \cos t_{i+2n} \\ \sin t_i & \sin t_{i+1} & \ldots & \sin t_{i+2n-1} & \sin t_{i+2n}\\ \cos2t_i & \cos2t_{i+1} & \ldots & \cos2t_{i+2n-1} & \cos 2t_{i+2n}\\ \sin2t_i & \sin2t_{i+1} & \ldots & \sin2t_{i+2n-1} & \sin 2t_{i+2n}\\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \cos nt_i & \cos nt_{i+1} & \ldots & \cos nt_{i+2n-1} & \cos nt_{i+2n}\\ \sin nt_i & \sin nt_{i+1} & \ldots & \sin nt_{i+2n-1} & \sin nt_{i+2n}\\ \end{array}}\right|\\ & = 2^{2n^2}\prod\limits_{i\le l < j\le i+2n}\sin \frac{t_{j}-t_{l}}{2}. \end{split} \end{equation} (4.19)

    Based on Definition 2.1, it suffices to prove the explicit expression of the function M_{i, 2n+1}(t) over a non-zero subinterval within its support interval. Therefore, according to Lemmas 3.1, 4.1, and 4.2, and Theorems 4.3 and 4.5, we deduce that

    \begin{equation*} \begin{split} M_{i, 2n+1}(t)& = \frac{\int_{t_i}^tF_{i, 2n}(s)ds}{\int_{t_i}^{t_{i+2n}}F_{i, 2n}(t)dt}\\ & = \frac{D(t_{i+1}, t_{i+2}, {\cdots}, t_{i+2n})}{\frac{(2n-1)!!}{(2n)!!}U(t_i, t_{i+1}, {\cdots}, t_{i+2n})}\sin ^{2n}\left(\frac{t-t_i}{2}\right) \\ & = \frac{\frac{2^{2n^2-n}}{n!}\prod\limits_{i+1\le l < j\le i+2n}\sin \frac{t_{j}-t_{l}}{2}C(t_{i+1}, t_{i+2}, {\cdots}, t_{i+2n})}{\frac{(2n-1)!!}{(2n)!!}2^{2n^2}\prod\limits_{i\le l < j\le i+2n}\sin \frac{t_{j}-t_{l}}{2}}\sin ^{2n}\left(\frac{t-t_i}{2}\right)\\ & = \frac{C(t_{i+1}, t_{i+2}, {\cdots}, t_{i+2n})}{(2n-1)!!\prod\limits_{j = 1, 2, {\cdots}, 2n}\sin \frac{t_{i+j}-t_i}{2}}\sin ^{2n}\left(\frac{t-t_i}{2}\right)\\ & = \frac{C_{i, 2n+1}}{\prod\limits_{j = 1, 2, {\cdots}, 2n}\sin \frac{t_{i+j}-t_i}{2}}\sin ^{2n}\left(\frac{t-t_i}{2}\right), \ t\in[t_i, t_{i+1}). \end{split} \end{equation*}

    Since

    N_{i, 2n+1}(t) = \frac{\sin ^{2n}\left(\frac{t-t_i}{2}\right)}{\prod\limits_{j = 1, 2, {\cdots}, 2n}\sin \frac{t_{i+j}-t_i}{2}}, \ t\in[t_i, t_{i+1}),

    we have

    M_{i, 2n+1}(t) = C_{i, 2n+1}N_{i, 2n+1}(t), \ t\in[t_i, t_{i+1}),

    consequently

    M_{i, 2n+1}(t) = C_{i, 2n+1}N_{i, 2n+1}(t) = K_{i, 2n+1}(t), \ t\in[t_i, t_{i+2n+1}).

    In this subsection, we consider multiple knots and assume that the multiplicity of the knot t_i in the interval [t_i, t_{i+2n}) is \xi , while the multiplicity of the knot t_{i+2n} in the same interval is \eta . Similarly to the single knot case, there exist the following theorems.

    Theorem 4.7. (The function expression in the space \Gamma_{2n}[t_i, t_{i+2n}] over multiple knots) Let

    A_{u, v} = \left(\begin{array}{*{20}c} (\cos (t+\frac{\pi}{2}u)) \bigg|_{t = t_v}, \ (\sin (t+\frac{\pi}{2}u)) \bigg|_{t = t_v}, \ \cdots, n^{u}(\cos (nt+\frac{\pi}{2}u)) \bigg|_{t = t_v}, \ n^{u}(\sin (nt+\frac{\pi}{2}u)) \bigg|_{t = t_v}\ \end{array}\right)^{\mathbf T},
    B_{u, v} = \left(\begin{array}{*{20}c} (-1)^{u-1}A_{u-1, v}, \ (-1)^{u-2}A_{u-2, v}, \ \cdots, (-1)^{1}A_{1, v}, \ (-1)^{0}A_{0, v}\ \end{array}\right),
    E_{u, v} = \left(\begin{array}{*{20}c} G^{(u-1)}_{v, 2n}(t), \ G^{(u-2)}_{v, 2n}(t), \ \cdots, G^\prime_{v, 2n}(t), \ G_{v, 2n}(t)\ \end{array}\right).

    For any function F_{i, 2n}(t)\in\Gamma_{2n}[t_i, t_{i+2n}] , there exists a real number \alpha such that

    \begin{equation*} F_{i, 2n}(t) = \alpha H(t), t\in[t_i, t_{i+2n}), \end{equation*}

    where

    \alpha = \frac{(-1)^{{\eta}}}{\left| \begin{array}{*{20}c} B_{\xi, i}&B_{m_{i+\xi}, i+\xi}&B_{m_{i+\xi+m_{i+\xi}}, i+\xi+m_{i+\xi}}&\cdots&B_{m_{i+2n-\eta}, i+2n-\eta}& B_{\eta-1, i+2n}\\ \end{array} \right|},

    and

    \begin{equation*} H(t) = \left| \begin{array}{*{20}c} E_{\xi, i}&E_{m_{i+\xi}, i+\xi}&E_{m_{i+\xi+m_{i+\xi}}, i+\xi+m_{i+\xi}}&\cdots&E_{m_{i+2n-\eta}, i+2n-\eta}& E_{\eta, i+2n}\\ B_{\xi, i}&B_{m_{i+\xi}, i+\xi}&B_{m_{i+\xi+m_{i+\xi}}, i+\xi+m_{i+\xi}}&\cdots&B_{m_{i+2n-\eta}, i+2n-\eta}& B_{\eta, i+2n}\\ \end{array} \right|. \end{equation*}

    Here the functions G_{j, 2n}(t) for i\le j\le i+2n are defined in Eq (4.4).

    Proof. To simplify the notation, we define

    \varphi_{u, v} = \left(\sin{({\mit t}-{{\mit t}_{v})}}\sin^{2n-2}\left(\frac{{\mit t}-t_{v}}{2}\right)\right)^{(u)}.

    Thus, we conclude that

    \begin{equation} \begin{split} \varphi_{\eta-1, i+2n} = & \beta_i \varphi_{\xi-1, i} + \beta_{i+1} \varphi_{\xi-2, i} + \cdots + \beta_{i+\xi-1} \varphi_{0, i} + \beta_{i+\xi} \varphi_{m_{i+\xi}-1, i+\xi} + \cdots+ \beta_{i+\xi+m_{i+\xi}-1} \varphi_{0, i+\xi} \\ & + \cdots + \beta_{i+2n+1-\eta-m_{i+2n-\eta}} \varphi_{m_{i+2n-\eta}-1, i+2n-\eta} + \cdots + \beta_{i+2n-\eta} \varphi_{0, i+2n-\eta}\\ & +\beta_{i+2n-\eta+1} \varphi_{0, i+2n} + \cdots + \beta_{i+2n-1} \varphi_{\eta-2, i+2n}. \end{split} \end{equation} (4.20)

    Similar to Theorem 4.3, there exist

    \begin{equation} F_{i, 2n}(t) = \sum\limits_{j = i}^{i+2n-\eta}\alpha_jG_{j, 2n}(t), t\in[t_i, t_{i+2n}) = [t_i, t_{i+2n+1-\eta}), \end{equation} (4.21)
    \begin{equation} F^{(d)}_{i, 2n}(t_{i+2n}) = \sum\limits_{j = i}^{i+2n-\eta}\alpha_jG^{(d)}_{j, 2n}(t_{i+2n}) = 0, t\in[t_i, t_{i+2n+1-\eta}), d = 0, 1, 2, {\cdots}, 2n-1-\eta. \end{equation} (4.22)

    Additionally, it follows that Eq (4.20) is equivalent to Eq (4.22) when t = t_{i+2n} . Thus, by applying the proof strategy from Theorem 4.3, we derive that

    F_{i, 2n}(t) = (-1)^{\eta}\frac{\left| \begin{array}{*{20}c} E_{\xi, i}&E_{m_{i+\xi}, i+\xi}&E_{m_{i+\xi+m_{i+\xi}}, i+\xi+m_{i+\xi}}&\cdots&E_{m_{i+2n-\eta}, i+2n-\eta}& E_{\eta, i+2n}\\ B_{\xi, i}&B_{m_{i+\xi}, i+\xi}&B_{m_{i+\xi+m_{i+\xi}}, i+\xi+m_{i+\xi}}&\cdots&B_{m_{i+2n-\eta}, i+2n-\eta}& B_{\eta, i+2n}\\ \end{array} \right|}{\left| \begin{array}{*{20}c} B_{\xi, i}&B_{m_{i+\xi}, i+\xi}&B_{m_{i+\xi+m_{i+\xi}}, i+\xi+m_{i+\xi}}&\cdots&B_{m_{i+2n-\eta}, i+2n-\eta}& B_{\eta-1, i+2n} \end{array} \right|}.

    Theorem 4.8. (The normalized function over generalized knots) Suppose that Eq (4.18) still holds, where F_{i, 2n}(t)\in\Gamma_{2n}[t_i, t_{i+2n}] and F_{i+1, 2n}(t)\in\Gamma_{2n}[t_{i+1}, t_{i+2n+1}] are defined in Theorem 4.7, with i\in \mathbb{Z} and n\in \mathbb{Z}^{+}, then

    \begin{equation*} \sum\limits_{i = -{\infty}}^{+{\infty}}M_{i, 2n+1}(t)\equiv1, \ t \in [t_j, t_{j+1}). \end{equation*}

    In addition, when F_{i, 2n}(t) = 0 , we set

    \int_{-\infty}^{t} \left(\int_{-{\infty}}^{+{\infty}}F_{i, 2n}(s)ds\right)^{-1} F_{i, 2n}(s) \, ds = \begin{cases} 0 & t < t_i, \\ 1 & t \geq t_i. \end{cases}

    Theorem 4.9. (Integral representation of the normalized trigonometric B-spline basis over generalized knots) Given a knot sequence {\mathit{\boldsymbol{T}}} = \{t_i\}^{+\infty}_{i = -\infty} satisfying condition (3.4), then there holds

    K_{i, 2n+1}(t) = M_{i, 2n+1}(t), \ t\in[t_i, t_{i+2n+1}),

    where K_{i, 2n+1}(t) and M_{i, 2n+1}(t) are separately defined in Definition 3.1 and Theorem 4.8.

    This subsection presents examples of curve modeling to demonstrate that a curve possesses the convex hull property when the knot sequence satisfies condition (3.4).

    Figures 3 and 4 illustrate examples of open and closed curves over different knot sequences, respectively. The red curves correspond to the knot sequences that satisfy condition (3.4) as defined in Definition 3.1, while the orange curves correspond to the knot sequences that satisfy condition (2.1) as defined in Definition 2.1. Additionally, the knot sequences in Figure 3 are {\mathit{\boldsymbol{T}}} = \{0, 2, 3, 3, 3.5, 5.3, 6.1, 6.6, 8.4, 9.1, 9.5, 11.2, 12.2, 12.6, 14.2, 15\} , and {\mathit{\boldsymbol{T}}} = \{0, 0.8, 3, 3, 3.5, 5.3, 6.6, 8.6, 9.1, 9.1, 10, 12.2, 12.2, 13, 14.2, 15\} , while those in Figure 4 are {\mathit{\boldsymbol{T}}} = \{-8, -8, -8, -8, -8, -7, -6.3, -5.6, -4.9, -4.5, -1.2, -1.2, -1.2, 0, 1.2, 1.2, 1.2, 4.5, 4.9, 5.6, 6.3, 7, 8, 8, 8, 8, 8\} , and {\mathit{\boldsymbol{T}}} = \{-8, -8, -8, -8, -8, -7, -6.3, -5.3, -4, -3.3, -1.2, -1.2, -1.2, 0, 1.2, 1.2, 1.2, 3.3, 4, 5.3, 6.3, 7, 8, 8, 8, 8, 8\} . Clearly, if the knot sequence only satisfies condition (2.1), the convex hull property of the curve cannot be guaranteed.

    Figure 3.  Open curve.
    Figure 4.  Closed curve.

    In the Chebyshev system, due to the integral properties of sine and cosine in the trigonometric B-spline basis, the trigonometric B-spline basis cannot be directly derived from lower-order bases through integration, which leads to an unnormal Chebyshev system. This paper successfully derives the integral formula for the normalized odd-order trigonometric B-spline basis by constructing a new set of even-order trigonometric B-spline bases. This integral formula allows for the transition from even-order to odd-order bases but cannot be obtained through stepwise integration, indicating that it is only similar to a segment of the integral formula in the Chebyshev system. Although we are currently unable to provide a direct recursive formula for integrating from lower-order trigonometric spline bases to higher-order ones, we hope to use this as a foundation for further exploration of this issue in future work.

    Mei Li: Investigation, methodology, software, validation, writing—original draft preparation, writing—review and editing; Wanqiang Shen: Conceptualization, methodology, software, writing—original draft preparation, writing—review and editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research is supported in part by the National Natural Science Foundation of China (Grant No. 61772013).

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] L. Accardi, Noncommutative Markov chains, Proc. Int. Sch. Math. Phys., 1974,268–295.
    [2] L. Accardi, A. Frigerio, Markovian cocycles, Proc. R. Ir. Acad., 83 (1983), 251–263.
    [3] L. Accardi, F. Mukhamedov, A. Souissi, Construction of a new class of quantum Markov fields, Adv. Oper. Theory, 1 (2016), 206–218. https://doi.org/10.22034/aot.1610.1031 doi: 10.22034/aot.1610.1031
    [4] L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cayley tree Ⅰ: niqueness of the associated chain with XY-model on the Cayley tree of order two, Inf. Dimens. Anal., 14 (2011), 443–463. https://doi.org/10.1142/S021902571100447X doi: 10.1142/S021902571100447X
    [5] L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cayley tree Ⅱ: phase transitions for the associated chain with XY-model on the Cayley tree of order three, Ann. Henri Poincaré, 12 (2011), 1109–1144. https://doi.org/10.1007/s00023-011-0107-2 doi: 10.1007/s00023-011-0107-2
    [6] L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cayley tree Ⅲ: Ising model, J. Stat. Phys., 157 (2014), 303–329. https://doi.org/10.1007/s10955-014-1083-y doi: 10.1007/s10955-014-1083-y
    [7] L. Accardi, A. Souissi, E. G. Soueidy, Quantum Markov chains: a unification approach, Inf. Dimens. Anal., 23 (2020), 2050016. https://doi.org/10.1142/S0219025720500162 doi: 10.1142/S0219025720500162
    [8] L. Accardi, Y. G. Lu, A. Souissi, A Markov–Dobrushin inequality for quantum channels, Open Sys. Inf. Dyn., 28 (2021), 2150018. https://doi.org/10.1142/S1230161221500189 doi: 10.1142/S1230161221500189
    [9] L. Accardi, H. Ohno, F. Mukhamedov, Quantum Markov fields on graphs, Inf. Dimens. Anal., 13 (2010), 165–189. https://doi.org/10.1142/S0219025710004000 doi: 10.1142/S0219025710004000
    [10] L. Accardi, F. Fagnola, Quantum interacting particle systems, World Scientific, 2002.
    [11] S. Attal, F. Petruccione, C. Sabot, I. Sinayskiy, Open quantum random walks, J. Stat. Phys., 147 (2012), 832–852. https://doi.org/10.1007/s10955-012-0491-0 doi: 10.1007/s10955-012-0491-0
    [12] O. Bratteli, D. W. Robinson, Operator algebras and quantum statistical mechanics I, Springer Verlag, 1987.
    [13] A. Barhoumi, A. Souissi, Recurrence of a class of quantum Markov chains on trees, Chaos Solitons Fract., 164 (2022), 112644. https://doi.org/10.1016/j.chaos.2022.112644 doi: 10.1016/j.chaos.2022.112644
    [14] R. Carbone, Y. Pautrat, Open quantum random walks: reducibility, period, ergodic properties, Ann. Henri Poincaré, 17 (2016), 99–135.
    [15] J. I. Cirac, D. Perez-Garcia, N. Schuch, F. Verstraete, Matrix product unitaries, structure, symmetries, and topological invariants, J. Stat. Mech. Theory Exp., 2017 (2017), 083105. https://doi.org/10.1088/1742-5468/aa7e55 doi: 10.1088/1742-5468/aa7e55
    [16] A. Dhahri, F. Mukhamedov, Open quantum random walks, quantum Markov chains and recurrence, Rev. Math. Phys., 31 (2019), 1950020. https://doi.org/10.1142/S0129055X1950020X doi: 10.1142/S0129055X1950020X
    [17] F. Fidaleo, Fermi Markov states, J. Oper. Theory, 66 (2011), 385–414.
    [18] F. Fidaleo, F. Mukhamedov, Diagonalizability of non homogeneous quantum Markov states and associated von Neumann algebras, arXiv, 24 (2004), 401–418. https://doi.org/10.48550/arXiv.math/0411200 doi: 10.48550/arXiv.math/0411200
    [19] M. Fannes, B. Nachtergaele, R. F. Werner, Finitely correlated states on quantum spin chains, Commun. Math. Phys., 144 (1992), 443–490. https://doi.org/10.1007/BF02099178 doi: 10.1007/BF02099178
    [20] M. Fannes, B. Nachtergaele, R. F. Werner, Ground states of VBS models on Cayley trees, J. Stat. Phys., 66 (1992), 939–973. https://doi.org/10.1007/BF01055710 doi: 10.1007/BF01055710
    [21] Y. Feng, N. Yu, M. Ying, Model checking quantum Markov chains, J. Comput. Sys. Sci., 79 (2013), 1181–1198. https://doi.org/10.1016/j.jcss.2013.04.002 doi: 10.1016/j.jcss.2013.04.002
    [22] J. A. Hartigan, Statistical theory in clustering, J. Classif., 2 (1985), 63–76. https://doi.org/10.1007/BF01908064 doi: 10.1007/BF01908064
    [23] V. Liebscher, Markovianity of quantum random fields, Quantum Probab. White Noise Anal., 15 (2003), 151–159. https://doi.org/10.1142/9789812704290-0011 doi: 10.1142/9789812704290-0011
    [24] A. Mohari, Spontaneous SU2(C) symmetry breaking in the ground states of quantum spin chain, J. Math. Phys., 59 (2018), 111701. https://doi.org/10.1063/1.5078597 doi: 10.1063/1.5078597
    [25] F. Mukhamedov, S. El Gheteb, Uniqueness of quantum Markov chain associated with XY-Ising model on the Cayley tree of order two, Open Syst. Inf. Dyn., 24 (2017), 175010. https://doi.org/10.1142/S123016121750010X doi: 10.1142/S123016121750010X
    [26] F. Mukhamedov, S. El Gheteb, Clustering property of quantum Markov chain associated to XY-model with competing Ising interactions on the Cayley tree of order two, Math. Phys. Anal. Geom., 22 (2019), 10. https://doi.org/10.1007/s11040-019-9308-6 doi: 10.1007/s11040-019-9308-6
    [27] F. Mukhamedov, S. El Gheteb, Factors generated by XY-model with competing Ising interactions on the Cayley tree, Ann. Henri Poincaré, 21 (2020), 241–253. https://doi.org/10.1007/s00023-019-00853-9 doi: 10.1007/s00023-019-00853-9
    [28] F. Mukhamedov, A. Barhoumi, A. Souissi, Phase transitions for quantum Markov chains associated with Ising type models on a Cayley tree, J. Stat. Phys., 163 (2016), 544–567. https://doi.org/10.1007/s10955-016-1495-y doi: 10.1007/s10955-016-1495-y
    [29] F. Mukhamedov, A. Barhoumi, A. Souissi, On an algebraic property of the disordered phase of the Ising model with competing interactions on a Cayley tree, Math. Phys. Anal. Geom., 19 (2016), 21. https://doi.org/10.1007/s11040-016-9225-x doi: 10.1007/s11040-016-9225-x
    [30] F. Mukhamedov, A. Barhoumi, A. Souissi, S. El Gheteb, A quantum Markov chain approach to phase transitions for quantum Ising model with competing XY-interactions on a Cayley tree, J. Math. Phys., 61 (2020), 093505. https://doi.org/10.1063/5.0004889 doi: 10.1063/5.0004889
    [31] F. Mukhamedov, U. Rozikov, On Gibbs measures of models with competing ternary and binary interactions on a Cayley tree and corresponding von Neumann algebras, J. Stat. Phys., 114 (2004), 825–848. https://doi.org/10.1023/B:JOSS.0000012509.10642.83 doi: 10.1023/B:JOSS.0000012509.10642.83
    [32] F. Mukhamedov, U. A. Rozikov, On Gibbs measures of models with competing ternary and binary interactions on a Cayley tree and corresponding von Neumann algebras Ⅱ, J. Stat. Phys., 119 (2005), 427–446. https://doi.org/10.1007/s10955-004-2056-3 doi: 10.1007/s10955-004-2056-3
    [33] F. Mukhamedov, A. Souissi, Types of factors generated by quantum Markov states of Ising model with competing interactions on the Cayley tree, Inf. Dimens. Anal., 23 (2020), 2050019. https://doi.org/10.1142/S0219025720500198 doi: 10.1142/S0219025720500198
    [34] F. Mukhamedov, A. Souissi, Quantum Markov states on Cayley trees, J. Math. Anal. Appl., 473 (2019), 313–333. https://doi.org/10.1016/j.jmaa.2018.12.050 doi: 10.1016/j.jmaa.2018.12.050
    [35] F. Mukhamedov, A. Souissi, Diagonalizability of quantum Markov states on trees, J. Stat. Phys., 182, (2021), 9. https://doi.org/10.1007/s10955-020-02674-1 doi: 10.1007/s10955-020-02674-1
    [36] F. Mukhamedov, A. Souissi, Refinement of quantum Markov states on trees, J. Stat. Mech., 2021 (2021), 083103. https://doi.org/10.1088/1742-5468/ac150b doi: 10.1088/1742-5468/ac150b
    [37] F. Mukhamedov, A. Souissi, Entropy for quantum Markov states on trees, J. Stat. Mech., 2022 (2022), 093101. https://doi.org/10.1088/1742-5468/ac8740 doi: 10.1088/1742-5468/ac8740
    [38] F. Mukhamedov, A. Souissi, T. Hamdi, Quantum Markov chains on comb graphs: Ising model, Proc. Steklov Inst. Math., 313 (2021), 178–192. https://doi.org/10.1134/S0081543821020176 doi: 10.1134/S0081543821020176
    [39] F. Mukhamedov, A. Souissi, T. Hamdi, Open quantum random walks and quantum Markov chains on trees Ⅰ: phase transitions, Open Syst. Inf. Dyn., 29 (2022), 2250003. https://doi.org/10.1142/S1230161222500032 doi: 10.1142/S1230161222500032
    [40] F. Mukhamedov, A. Souissi, T. Hamdi, A. A. Andolsi, Open quantum random walks and quantum Markov chains on trees Ⅱ: the recurrence, arXiv, 2022. https://doi.org/10.48550/arXiv.2208.04320 doi: 10.48550/arXiv.2208.04320
    [41] R. Orús, A practical introduction of tensor networks: matrix product states and projected entangled pair states, Ann. Phys., 349 (2014), 117–158. https://doi.org/10.1016/j.aop.2014.06.013 doi: 10.1016/j.aop.2014.06.013
    [42] S. Rommer, S. Ostlund, A class of ansatz wave functions for 1D spin systems and their relation to DMRG, Phys. Rev., 55 (1997), 2164. https://doi.org/10.1103/PhysRevB.55.2164 doi: 10.1103/PhysRevB.55.2164
    [43] P. Singh, S. S. Bose, A quantum-clustering optimization method for COVID-19 CT scan image segmentation, Expert Syst. Appl., 185 (2021), 115637. https://doi.org/10.1016/j.eswa.2021.115637 doi: 10.1016/j.eswa.2021.115637
    [44] A. Souissi, A class of quantum Markov fields on tree-like graphs: Ising-type model on a Husimi tree, Open Syst. Inf. Dyn., 28 (2021), 2150004. https://doi.org/10.1142/S1230161221500049 doi: 10.1142/S1230161221500049
    [45] A. Souissi, On stopping rules for tree-indexed quantum Markov chains, Inf. Dim. Anal., (2022). https://doi.org/10.1142/S0219025722500308 doi: 10.1142/S0219025722500308
    [46] A. Souissi, M. Mukhamedov, A. Barhoumi, Tree-homogeneous quantum Markov chains, Int. J. Theor. Phys., 62 (2023), 19. https://doi.org/10.1007/s10773-023-05276-1 doi: 10.1007/s10773-023-05276-1
    [47] O. R. Zaïane, A. Foss, C. H. Lee, W. Wang, On data clustering analysis: scalability, constraints, and validation, Adv. Knowl. Discovery Data Min., 28 (2022), 2030. https://doi.org/10.1007/3-540-47887-6-4 doi: 10.1007/3-540-47887-6-4
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1380) PDF downloads(75) Cited by(6)

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog