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Abstract: Quantum Markov chains (QMCs) on graphs and trees were investigated in connection with
many important models arising from quantum statistical mechanics and quantum information. These
quantum states generate many important properties such as quantum phase transition and clustering
properties. In the present paper, we propose a construction of QMCs associated with an XX-Ising
model over the comb graph N >, Z. Mainly, we prove that the QMC associated with the disordered
phase, enjoys a clustering property.
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1. Introduction

Over the past few decades, quantum Markov chains (QMCs) (see [1,2,7,8,18,21]) have undergone
great development through the vast volume of relevant scientific literature in different research areas
such as computational physics [42], interacting particle systems [10], quantum spin models [19,20,24],
quantum information [15,41], quantum cryptography [21].

In view of the absence of a satisfactory theory of quantum Markovian fields on general graphs,
it is quite natural to restrict the study to special class of graphs for which the considered problem is
more solvable. Thanks to their hierarchical simplified structure consist a natural candidate. Quantum
Markov chains on graphs [3,9,23,44] are multi-dimensional extensions of 1D QMCs. Namely, QMCs
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on the Cayley trees (CT) have been investigated in connection with quantum phase transitions for Pauli
models [4-6, 25,28-30]. This consists a quantum extension of an increasing number of works on
classical Gibbs measures [31, 32]. Types of von Neumann factors associated with QMCs based on
Ising and XY type models have been investigated [27,33]. Moreover, clustering property have been
showed for QMCs on the Cayley trees [26]. The structure of quantum Markov states (QMS) on CT
have been studied in details [34-37]. However, an extension of Fermi Markov states [17] to trees is
still missing.

Recently, the notions of stopping rules and recurrence for QMCs on trees have been introduced [45].
In [13], a bridge between recurrence and phase transition for QMCs on CT have been established.
In [39,40,46] QMCs on CT were associated with open quantum random walks [11, 14] extending the
1D case [16].

QMC:s on Trees have been investigated in connection with interesting phenomena such as quantum
phase transition [28], quantum walks [39] and clustering properties [38]. Namely, the clustering
analysis [22] play a key role in several areas such as data science [47], image segmentation [43].

In this paper, we show a clustering property for QMCs associated with an XX-Ising model on the
comb graph N >, Z. Unlike the CT the underlying comb graph is non-homogeneous. Therefore, we
construct QMCs based on two different types of hamiltonian. We prove the uniqueness of QMCs
associated with the considered model. Notice that the present work extends the clustering property for
QMC:s on CT [26] to non-homogeneous trees. Moreover, it generalizes a previous work [38] that deals
with QMCs on the comb N >, N.

The paper is organized as follows: Section 2, is devoted to some preliminaries. In Section 3, we
provide a construction of QMCs on the comb graph. In Section 4, we investigate QMCs associated with
X X-Ising type model on the comb graph. Moreover, we prove the uniqueness of QMCs associated with
the considered model. Section 5 is devoted to the main result which concerns the clustering property
of the considered QMC.

2. Preliminaries

Let G = (L, E) be a connected, locally finite, infinite graph, here L denotes the set of vertices and
E denotes the vertex set . Each edge [ € E is identified to non ordered pair of vertices ( its endpoints)
[ =< u,v>=<v,u > and E is then identifiable to a part of L X L.

Ec{{uv}:uvell

Let us recall some basic notions on graph theory:
(i) We call nearest-neighbors vertices u and v, and we denote by u ~ v, if =< u,v >€ E.
(ii) A path on the graph is a finite list of vertices u ~ u; ~ -+ ~ ug_; ~ v.

(iii) The distance d(u, v),u,v € L, on the graph, is defined to be the length of the shortest path joining
utov.

Let gV = (LW, EM) and G? = (L®,E?) be two graphs where LV = N and L® = Z with
distinguished vertex 0 € L®. Let
L=NxZ,
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and
E = {(u,v), @'V}, (@,v),w' V) eL,(uv)~w,v)}

where (u,v) ~ (u’,v’) if and only if one of the following assertions is satisfied:
(i) u~u andv =17 =0.
(ii) u=u'and v ~ V.

The graph G = (L,E) is the comb product of GV and G® with a distinguished vertex o € Z
denoted by N > Z.
Let us fix a root 0 = (0, 0). Define the sets

W, ={uel:duo)=m, A,= U W,. 2.1)
k=0

For u € L, define the set of its direct successors
Sw)={veA,:u~v}. (2.2)
One can see that elements of W,, are on the form
u=(kD, k+|l|=m,
where k ={0,...,m} and [={-m,...,m}. It follows the enumeration
™ = (0,-m),... uy = (m,0),....u5" = (0,m). (2.3)

The graph under consideration (see Figure 1) is a tree. There are two types of vertices according
to the number of nearest-neighbors (or also the number of direct successors). We distinguish vertices
with three direct successors and others with only one.

| SEEE (N S A )] 0,0

GH G? GV >, G?
Figure 1. Comb graph: N > Z.
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Define
Ly ={u; €L :|Sup)l =1}, (2.4)

and
Ly ={us € L : |S(u3)| = 3}. (2.5)

It is clear that L = L; U L3. Each element u3 € L3 has the form u; = (k,0) with k € N. Its set of
direct successors is
S(uz) = {uz + ey, uz + es}, (2.6)

whereas, elements of L; have the form v; = (k, ) where [ > 1 and

{vi + e}, ifl>0,
S(vy) = (2.7)
{(vi—e}, 1fl <0,

where ¢; = (1,0) and e, = (0, 1).
Let us define the restriction of the usual addition of the commutative group Z> on comb™ as follows:
for any two elements u = (k,[) and v = (k',[")

uov=_(k+k,l1+1). (2.8)

For these notations, one has

)

uou(o):u ou==u.

Operation (2.8) induces on comb* a semi-group of translation with unit ). With the above
structure of semi-group, we define the translations 7, : comb™ — comb™, g € L; as follows

To(u) =g +u, (2.9)

and To) = id. Let
Ay = {u el : du,u®) = m}

Thanks to the tree structure, one has

MM:LJSW)mm SWNSO) =@, Yuv. (2.10)

uehy,

3. Construction of QMCs on the comb N >, Z

Let C € 8 C A be three unitary C*—algebras. A completely positive identity preserving linear map
E: A — B satisfies
E(ca) = cE(a), ae€ A ceC, 3.1

is called Quasi-conditional expectation (QCE).

Remark 3.1. Any K € A, satisfies
EyK*K) =1 (3.2)
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is called E(-conditional amplitude. where Ey: A — B is a conditional expectation [1]. For any 8 € A
sub—x—algebra, denote by

B i={xeA: xy=yx, Vye B},

the commutant of 8in A, If K € C’ then Eo(K*( - )K) : A — B is a (normalized) QCE w.r.t. the triplet
CcBCA.

Remark 3.2. Every NQCE w.r.t. C C 8 C A satisfies
E(ac) = E(a)c, ae A ceC, 3.3)

ECNA)CC NS (3.4)

To each vertex u € V an algebra of observable B, = B(H,) is associated, where H,, is a finite
dimensional Hilbert space. Consider the quasi-local algebra

B, = ®Bu,

uel

which is obtained as inductive limit of the net

B, = ®BM®IN, AcCL, Al <.

ueA

where for each A’ C L, we denote 1,/ the identity of B,.. See [12] for a systematic study of quasi-local
algebras.

Remark 3.3. Starting from any QCE E,,: B,,.,, — Ba,, Withrespectto B, C By, € By
can derive a transition expectation (TE) from 8B,,,,,,, into B,, by the next restriction

one

m+1] n+l1]

: By, = Ea,

m

& .
A[m,m+l] B[m,m-H]
Conversely, every TE &0 By = Ba,, 18 extendable to a QCE E,,, w.r.t. the given triplet in
the following way
EA = ldg

® Ex, (3.5)

m] m—1] mm+1]*

The reader is referred to [7] for further details about the extendability of transition expectations in a
generalized framework, including both the tensor and the Fermi cases.

Definition 3.4. A backward quantum Markov chain (h-QMC) on the algebra B, is a triplet
00, (Epmm+11s )» (hy))  of  positive linear functional py on B, a sequence of TE
Emm+1] © Bapumy — Ba,, and a sequence h,, € Bzm such that for each a € B;, the limit

@(a) := ml_iglmpo(EAo] (Ery( - (Ery(@®hpin)) ) (3.6)

exists for the weak-#-topology and it defines a state ¢ on the full algebra B, . In this case the limit state
@ is also called QMC. The sequence (4,,) is called sequence of boundary conditions of the QMC.
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Thanks to (3.5), one can immediately check that, ¢ evaluated on the elementa = ay®a; ®---Qa,, €
Bp,-a; €8 Ao is provited by the correlations

w(a) = po (8/\[0,1] (aAo ® 8A[1,2] (al ®---® 8/\["1,m+1] (@ ® hipser) -+ ))) ’

which highlight the quantum Markov structure.

We are going to construct a state on B, with initial state wy € B+ and boundary conditions
{h, € B, uel}

For every n € N, denote

Kovsw = | | Keuws: (3.7)
veS(u)

Kinmoty = | | Kusw 1<m<n, (3.8)
weRon

h1/2 1—[ hl/z, hn — hl/z(hl/Z)*’ (39)

uEA
= wll? ﬂ Kpmmiih'?, (3.10)
W, = K'K,. (3.11)

One can see that W, is positives.
In the sequel, Tr,: B, — B,, denotes the (normalized) partial trace i.e. Tr,(I5,) = I4,, here
I, = X L), for any finite part A,.

ueN,

Let’s set a positive functional ¢ (" ) on B,, by

o %) Tr( W, (a ®1y,,,)), (3.12)

woh

for each a € B,,. Note that, the trace Tr is normalized (i.e. Tr(I,) = 1).
To obtain a state ¢” on B; satisfying

(b)l' (” b)

/\n wo h’

we must impose some constrains on the boundary conditions {wy, 4} so that the positive functionals

{cp(" b)} satisfy the following compatibility condition, i.e.
(n+1,b) (n b)
Puot” T8, = P (3.13)
Theorem 3.5. Let wq € B(O),+ and h = {hu S Bu,+}u€L- If
Tr(wohp) = 1, (3.14)
Truy (Kjvs I ® B “K,saw) = i, Yu € L. (3.15)

Then the sequebce {go } satisfy condition (3.13). Moreover, there exists a unique b-QMC go<b)

B such that
b _ (m,b)
Ponn = hm 0Oy
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Remark 3.6. Theorem 3.5 extends results of [25, 26, 28, 29, 34] where only considered Bethe lattice or
Cayley tree. The first attempt to investigate QMCs on the comb graph was done in [38] by considering
N>y N.

4. QMC associated with XX-Ising type model on the comb graph

In this section, we define the model and study the b-QMC ¢ associated to the XX-Ising model on
the Comb graph N> Z. Let 8, = M,(C), for all u € L. The Pauli spin operators o, 0, 0, are given by

(1o (01 O (1 0
“lo 1) T\ o) T\ o) Z=T\o -1)

The shift of an element a € M,(C) to the u”* component of the infinite tensor product B; = ®x€ . B
will be denoted by
a" = 1,(a).

Define the nearest neighbors interactions: for each u; € L, v € S (uy),
Koy v = cos(B)I™ @ 15 — isin(ﬁ)ofc“l) ® ai(’“), B >0, 4.1)

and for u; € Ly, w € S (u3),

Keiyws = expiBHoy s}, B> 0, (4.2)
where .
Hepp = 5 (101 + 0t @ 0L"). 4.3)

A simple calculation leads to

Kesps = Kol @ 1" + K30 @ 00,

Z

where
+1 -1
K, = SRUB L epUeA) =1
2 2
One finds: for u; € L; and v € S (u;)
Kuyvsw) = Kewy s = cos(BI™ @1V — isin(B)c™ ® o, B> 0. (4.4)

And for v € L3 (its successors S (v) = {v + e1, vV + e,}) one finds,

Kivsw = KavresKavyrer>Kavy-er>
= K1V @1V @ I @ 1" + K{ K30 @ 1) @ 17+ @ !
+Ky K30 @ 1070 @ o) @ 1" + KoK31Y @ IV @ o'+ @ o'
+K;Kjo @ ot @ 1Y @ 1) + KoK31Y @ o) @ 1) @ o'
+KoK31Y @ oV @ o @ 177 + K30 @ oY @ oY @ o
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Recall that, a net {h"} is translation-invariant if
W = ps® gy, gelL.

This means that
K =pY VYu,ve L. 4.5)

In what follows, we consider only translation-invariant solutions of (3.14), (3.15). Put /> = h for

all u € L, where
hll h12 )
h= .
( hy1 ho

Theorem 4.1. For the XX-Ising model (4.1), (4.2) there exists a unique b-QMC ¢, with translation-
invariant boundary condition A, satisfying (3.14). Moreover, for each a € 8, one has

(,Dg))(a) — 2Ty [ﬁ l—[ K{*u}vS(u)a ﬁ rl Kiyvsw

j=0 MEAj j=0 MEA]'

. (4.6)

Proof. Let u; € Ly and v its unique successor (S (#;) = {v}), then (3.15) is reduced to

WY = T (K s 1 © WY Kiyvs )
= Tr,(cos* (@I ® h + sin* (B[ @ o h" o,
+ isingcos(B) () ® o, — o @ o h™)).

One can check that
Tr(o hVo,) = Tr(h™) and Tr(hWo,) = Tr(o h™).

Then, we find that
KU = Tl‘(h(v)) (o0 4.7)

Now for u3 € L3 according to the above computation (3.15) becomes

% S
/’L(MS) = Tru3](K{u3vS(u3)}I(u3)®h (MZ)K{M3VS(M3)})’

Since the boundary condition satisfy (4.5), according to (4.7) we have
A" = B = h = Te(h")] = al,
for some a > 0, then (3.15) is reduced to

* S
h = TI'M3](K{ }I(u3)®h (u3)K{L,3vg(u3)})

uzVS (u3)
3 *
@ Ty (K v )y Ktz vs us)t)
(K3 + K3)'L.

Therefore, @ = (K} + K3) and this is equivalent to

1 23/2

TR AR (@B 1)
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Hence,
h=al 4.8)

is the unique commune solution of (3.15). The initial state w, can be chosen wy = él.
From (3.12) one has

¢P(a) = Tr(Wya) = Tr(woK; ah,K,)

n

n
— A .
= ol 1—[ l_[ Kiupvs @ l_[ 1_[ Kiuvsw |-

J=0 ueA; J=0 ueA;
Since |A,| = 2n + 1 one gets (4.6). This finishes the proof. O

Remark 4.2. The QMC ¢, given in Theorem 4.1 is the state associated with the disordered phase
of the underlying quantum. This state always exists for some fixed point reasons. Therefore, the
existence of phase transition requires a t least one additional state satisfying conditions of under some
conditions (see [28, 39]. Notice that, if the boundary condition is non-homogeneous, phenomena of
phase transitions may appear even for the above considered model.

5. Clustering property

A state ¢ on B is said to enjoy the clustering property if for every a, b € B; one has
éﬂfio platy(b)) = p(a)p(b). (.1

From Theorem 4.1, there is a unique b-QMC cpf,b ) with translation-invariant boundary condition £,

satisfying (3.14). Now, let establish clustering property for this B-QMC 9055”.

A -n -1 0 1 n . b |’ . n,b
n { E\n) U E\n) i\: E\n)’... ’ E\:} ‘ /7 fl’) -(BAn * 7 EI )’

such that ufz € L; and “X) €L,i=+1,%¥2,---+n.
Moreover, to prove Theorem 5.2, we need the following:

Lemma 5.1. Let u,,, € BAmO, for a certain integer my, and f, € 8,, of the form
fo=F @Iy ),
where f = f(”f;). Then one has
Bim ¢, ® ) = ¢ W6 (£)- (5.2)
Proof. For n > my, one has

‘Pfxb’n)(”mo ® f)
Tr(weEp 0 E; o ... 0 Epgy (g ® Epys1(Ia

(Pfyh)(”mo ® f)

® 88 1, ®E(f®I,)) ),

mg+1

AIMS Mathematics Volume 8, Issue 4, 7865-7880.



7874

here, as before, {wy = é, hy = al} is the fixed point of the system with @ = % One finds

Ef®Ir,) = TraKineh) 3 f ®In, h2 K ery)
1/2 1/2 %
= Trn](® KuVS(u)hn./,.lf ® IAn+1hn-/+1 ® Kqu(u))

uen, uen,

= oo Kovsanf @i el e h(u)K;f) vsa) ® Q) TraKuvsil ® K50

ueA U}

= o ((K§ +3K3KDS + (K§ + 3K KDo-fo) e () h™

xeA )

= o ((Kg + 3K§K§)f + (Kg + 3K3K§)o’zfo-z) ® ® H®

ueA N U}
= O’3g”§3) ® ® h(u),

ueA/,\{ui{):l }

where,
= (KS + 3K3K? K® + 3K K?
gugn—( o +3KK3) f + (K3 + 3KgK3)o fo.
n
Hence,
A _ 3 W) g Jy) g
Enip,, ®E(fRIL,.,) = « Tr"fi,l](KHTZ,IVS<“(/?,,,>I”X271 ®g”(/?i Q@ hW @ Bt Kufi,lvs(“fb)
® ® TI'M](KM\/S (M)I ® h(u)KZ\/S (u))
ueh\u) )
= & (Tl +20 KoKsTrogo) e (X) A
ueh\uy) )
3 ol W) 3 23 u(/?) )
= STl e Q) A+ 20 KoKsTr(og)or,
ueR i\ )
e X)) .
ueR, - \(uf) )
Therefore,

Eialls,, @&y, ®E(FOLL, ) =Tl © ) "
n—-2
ueh-i\luy) )
(0)

()
+ 2% KIK I Tr(o.g)o. " ® ® h.

uehu\uy) )
Now iterating n — my — 1 times, we find

Emos1 Emprz - Eni(y,  ®E(F I, )) )

(0)
2(n-mp—1)

o o (MAer)
— 032n_m0_1TI'(gO'Z)Q’ 3 Kn mo lKn mo 1O_Z 0+l ® ® h(u)

0 3
(0)
UEN ;-1 \{uAm0+| }

3 ()
+Tr(g)a’lo  ® &) .

mg+1 0
uehn-\uly )
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Hence, one get

(h) o (U, @ ) Tr(weEp 0 Ey 0 -+ - 0 &y (U @ I))Tr(g)a/2cy|A”’0*1|
(N
+Tr(weEp 0 Ey 0 -+ 0 Epyy (U @ O, Hog1 NTr(go,)
azalz(n—:;u)fl) 0[|Am0+1|2”_m0_1Kg_m0K§_mo_l
= Tr(wo 0 & 0+ 0 Epy Uy, ® D)Tr(f)
(X )
+TT(LL)080 ° 81 0--+0 Smo(umo ® o; g ))Tr(go-z)

2(n— mo

0,’(2 +|Amo+1l)2ﬂ mo— 1K” mgKn mo— 1

One can see that,

. 2JoB _ 1 n
M(KoKs)'a¥ = (e )

€28 + 1
Therefore, by taking the limit n — oo, we obtain,

Tr(weEo 0 81 0 -+ 0 &y (ayny ® D)Tr(F)
O (U D (f).

lim ¢ (1t ® f,)

Thus, this completes the proof.

Now we are ready to satate the main result of this paper.

Theorem 5.2. Let gp(b) be the b-QMC associated with the XX-Ising model on the comb graph N >\ Z.

Then for each g € G*
hm go(b)(arg( M =L@l (),

foralla, f € By.

Proof. Leta, f € By o, thena, f € BA[o./m for a certain integer .
Then, let denote
u,:=ac BA[O,ZO] and f), = f¢€ BA[O’,O].

fi, can be rewritten in the following form

=) fi= (X) e with fa, = (X) fu € Ba,.

UEN, [0.0p] UueNy

Furthermore, one can see that

i) = Q) £ = (K)o € Bry

ueho ) VEAmm+i;]

where
So-mer, v —me; € Ay

1, otherwise.

(5.3)

AIMS Mathematics Volume 8, Issue 4, 7865-7880.
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For k € [0,y], g € G" and b € B,,,,, We denote

(Tg) . *
8[k,k+1](Tg(b)) = ® Try (K{V}VS(V)Tg(b)K{v}vS(v))’ (5.4)

veTg(Ag)
the 7,-shift of the transition expectation &y 4417, in fact one can check that
EL 1 (Te(bi)) = To(Ersr(biy)-
In light of (5.4), one finds

S[m+lo,m+lo+1](fA,n+10))) = ® Tr,) (K{V}VS(v)fvhS(v)K{*v}vS(v)) ® ® h,

VeTgm (AIO ) VEAm+IU \Tgm (AIO )

A1l ©Tem)
atolgrm @ (e ) b

VEAm+l0 \Tgn (AWO)

The comb graph Z >( N satisfies
T, M) = () S

VETg,, (Ak)

Therefore,

Emio-1m 1ol Fasigr ® Etmstgmstor 11, )
+ g (Tgm)
= a,lAlo i ® TI‘M] (K{u}vg(u) (fu ® 8[17:—1,10] (Tgm (fAlo ))) K{u}VS(u)) ® ® hw,

METgm (Alof 1 ) WEAmHOfl \Tgm (Alofl )

— A+l (7, m) (7, m) ®
= a0 (Tgm(f/\to—l) ®E," 1 1) (Tgm(fAlo))) ® hy.

WEAm+1y—1\Tgp, (Asy-1)

An iterative process leads to

Emme1(fa, ® - '8[m+lo—1,m+lo](fAm+10,1 ® Emigm+io fons1)))
— |A + | (Tm) (T m) (T m)
= Mg 0 (0, ) ® 80y (T Uy ) @8 (T ) @ Q)

WEA\Tg,, (Ag)

Let denote

A

fo:= 801 (fao ®  Eutgmvr (g ® Eutnmr (v, ® P ))) € B

Since 7,, (Ag) = {ufl} and 1" = al, for each w € L, one gets

_ . . _ w®)
Epmm+11(fan @+ -1+ Nt (i engr ® St NoamtNol Fmmg)) = fo ™ @ ® Ry

weA\ul) }

This leads to
0y (i, ® Ty, (fiy) = Po(Ero,11(Ung + Sty g1 (g, @ Eptgtgr11(Tayy ® -
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Eimamett Fa, @+ Etsto—tmsto Faag ® Etmetoansts) Frnsin))))))
= po(Epo,11(Ung - - - Epig o+ 11(Un, ® Epi g1 Tay ® -+ Epmmeni(a,,, (ﬁfuf’)") ® hyni1)))))-
Therefore, Lemma 5.1 implies that
Jim ¢(at,, () = lim ¢ 7, (i) = @ w)e (o) = ¢ (@ (f).
and this concludes the proof. m|

6. Conclusions

We investigate an XX-Ising model on the comb graph N > Z. Namely, we show the uniqueness of
QMC with homogeneous boundary condition associated with the model. Indeed, the considered
quantum Markov chain is the one associated with the disordered phase of the system. Our main result
concerns a clustering property for this QMC. Notice that, further relevant open problems can be
investigated such as the recurrence problem for QMCs on the comb graph, the existence of phase
transitions and the QMCs associated with open quantum random walks on the comb graph.
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