http://www.aimspress.com/journal/Math

Research article

Clustering property for quantum Markov chains on the comb graph

Abdessatar Souissi ${ }^{1,4, *}$, El Gheteb Soueidy ${ }^{2}$ and Mohamed Rhaima ${ }^{3}$
${ }^{1}$ Department of Management Information Systems, College of Business Management, Qassim University, ArRass, Saudi Arabia
${ }^{2}$ Department of Mathematics and Informatics, Faculty of Sciences and Technologies, University of Nouakchott, Nouakchott, Mauritania
${ }^{3}$ Department of Statistics and Operations Research, College of Sciences, King Saud University, P. O. Box, Riyadh 11451, Saudi Arabia
${ }^{4}$ Preparatory Institute for Scientific and Technical Studies, University of Carthage, Av. of the Republic, Carthage 1054, Tunisia

* Correspondence: Email: a.souaissi@qu.edu.sa.

Abstract

Quantum Markov chains (QMCs) on graphs and trees were investigated in connection with many important models arising from quantum statistical mechanics and quantum information. These quantum states generate many important properties such as quantum phase transition and clustering properties. In the present paper, we propose a construction of QMCs associated with an $X X$-Ising model over the comb graph $\mathbb{N} \triangleright_{0} \mathbb{Z}$. Mainly, we prove that the QMC associated with the disordered phase, enjoys a clustering property.

Keywords: quantum Markov chain; Ising model; comb graph; clustering property
Mathematics Subject Classification: 46L53, 46L60, 82B10, 81Q10

1. Introduction

Over the past few decades, quantum Markov chains (QMCs) (see [1,2,7, 8, 18, 21]) have undergone great development through the vast volume of relevant scientific literature in different research areas such as computational physics [42], interacting particle systems [10], quantum spin models [19,20,24], quantum information [15,41], quantum cryptography [21].

In view of the absence of a satisfactory theory of quantum Markovian fields on general graphs, it is quite natural to restrict the study to special class of graphs for which the considered problem is more solvable. Thanks to their hierarchical simplified structure consist a natural candidate. Quantum Markov chains on graphs $[3,9,23,44]$ are multi-dimensional extensions of 1D QMCs. Namely, QMCs
on the Cayley trees (CT) have been investigated in connection with quantum phase transitions for Pauli models [4-6, 25, 28-30]. This consists a quantum extension of an increasing number of works on classical Gibbs measures [31,32]. Types of von Neumann factors associated with QMCs based on Ising and XY type models have been investigated [27,33]. Moreover, clustering property have been showed for QMCs on the Cayley trees [26]. The structure of quantum Markov states (QMS) on CT have been studied in details [34-37]. However, an extension of Fermi Markov states [17] to trees is still missing.

Recently, the notions of stopping rules and recurrence for QMCs on trees have been introduced [45]. In [13], a bridge between recurrence and phase transition for QMCs on CT have been established. In [39, 40, 46] QMCs on CT were associated with open quantum random walks [11,14] extending the 1D case [16].

QMCs on Trees have been investigated in connection with interesting phenomena such as quantum phase transition [28], quantum walks [39] and clustering properties [38]. Namely, the clustering analysis [22] play a key role in several areas such as data science [47], image segmentation [43].

In this paper, we show a clustering property for QMCs associated with an $X X$-Ising model on the comb graph $\mathbb{N} \triangleright_{o} \mathbb{Z}$. Unlike the CT the underlying comb graph is non-homogeneous. Therefore, we construct QMCs based on two different types of hamiltonian. We prove the uniqueness of QMCs associated with the considered model. Notice that the present work extends the clustering property for QMCs on CT [26] to non-homogeneous trees. Moreover, it generalizes a previous work [38] that deals with QMCs on the comb $\mathbb{N} \triangleright_{o} \mathbb{N}$.

The paper is organized as follows: Section 2, is devoted to some preliminaries. In Section 3, we provide a construction of QMCs on the comb graph. In Section 4, we investigate QMCs associated with $X X$-Ising type model on the comb graph. Moreover, we prove the uniqueness of QMCs associated with the considered model. Section 5 is devoted to the main result which concerns the clustering property of the considered QMC.

2. Preliminaries

Let $G=(L, E)$ be a connected, locally finite, infinite graph, here L denotes the set of vertices and E denotes the vertex set. Each edge $l \in E$ is identified to non ordered pair of vertices (its endpoints) $l=\langle u, v\rangle=\langle v, u\rangle$ and E is then identifiable to a part of $L \times L$.

$$
E \subset\{\{u, v\}: u, v \in L\} .
$$

Let us recall some basic notions on graph theory:
(i) We call nearest-neighbors vertices u and v, and we denote by $u \sim v$, if $l=<u, v>\in E$.
(ii) A path on the graph is a finite list of vertices $u \sim u_{1} \sim \cdots \sim u_{d-1} \sim v$.
(iii) The distance $d(u, v), u, v \in L$, on the graph, is defined to be the length of the shortest path joining u to v.

Let $\mathcal{G}^{(1)}=\left(L^{(1)}, E^{(1)}\right)$ and $\mathcal{G}^{(2)}=\left(L^{(2)}, E^{(2)}\right)$ be two graphs where $L^{(1)}=\mathbb{N}$ and $L^{(2)}=\mathbb{Z}$ with distinguished vertex $0 \in L^{(2)}$. Let

$$
L=\mathbb{N} \times Z
$$

and

$$
E=\left\{\left\{(u, v),\left(u^{\prime}, v^{\prime}\right)\right\}, \quad(u, v),\left(u^{\prime}, v^{\prime}\right) \in L,(u, v) \sim\left(u^{\prime}, v^{\prime}\right)\right\},
$$

where $(u, v) \sim\left(u^{\prime}, v^{\prime}\right)$ if and only if one of the following assertions is satisfied:
(i) $u \sim u^{\prime}$ and $v=v^{\prime}=0$.
(ii) $u=u^{\prime}$ and $v \sim v^{\prime}$.

The graph $\mathcal{G}=(L, E)$ is the comb product of $\mathcal{G}^{(1)}$ and $\mathcal{G}^{(2)}$ with a distinguished vertex $o \in \mathbb{Z}$ denoted by $\mathbb{N} \triangleright_{0} \mathbb{Z}$.

Let us fix a root $o=(0,0)$. Define the sets

$$
\begin{equation*}
W_{m}=\{u \in L: d(u, o)=m\}, \quad \Lambda_{m}=\bigcup_{k=0}^{m} W_{k} . \tag{2.1}
\end{equation*}
$$

For $u \in L$, define the set of its direct successors

$$
\begin{equation*}
\mathcal{S}(u)=\left\{v \in \Lambda_{m}^{c}: u \sim v\right\} . \tag{2.2}
\end{equation*}
$$

One can see that elements of W_{m} are on the form

$$
u=(k, l), \quad k+|l|=m,
$$

where $k=\{0, \ldots, m\}$ and $l=\{-m, \ldots, m\}$. It follows the enumeration

$$
\begin{equation*}
u_{W_{m}}^{(-m)}=(0,-m), \ldots, u_{W_{m}}^{(0)}=(m, 0), \ldots, u_{W_{m}}^{(m)}=(0, m) . \tag{2.3}
\end{equation*}
$$

The graph under consideration (see Figure 1) is a tree. There are two types of vertices according to the number of nearest-neighbors (or also the number of direct successors). We distinguish vertices with three direct successors and others with only one.

Figure 1. Comb graph: $\mathbb{N} \triangleright_{0} \mathbb{Z}$.

Define

$$
\begin{equation*}
L_{1}=\left\{u_{1} \in L:\left|\mathcal{S}\left(u_{1}\right)\right|=1\right\}, \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{3}=\left\{u_{3} \in L:\left|\mathcal{S}\left(u_{3}\right)\right|=3\right\} . \tag{2.5}
\end{equation*}
$$

It is clear that $L=L_{1} \cup L_{3}$. Each element $u_{3} \in L_{3}$ has the form $u_{3}=(k, 0)$ with $k \in \mathbb{N}$. Its set of direct successors is

$$
\begin{equation*}
\mathcal{S}\left(u_{3}\right)=\left\{u_{3}+e_{1}, u_{3} \pm e_{2}\right\}, \tag{2.6}
\end{equation*}
$$

whereas, elements of L_{1} have the form $v_{1}=(k, l)$ where $l \geq 1$ and

$$
\mathcal{S}\left(v_{1}\right)= \begin{cases}\left\{v_{1}+e_{2}\right\}, & \text { if } l>0, \tag{2.7}\\ \left\{v_{1}-e_{2}\right\}, & \text { if } l<0,\end{cases}
$$

where $e_{1}=(1,0)$ and $e_{2}=(0,1)$.
Let us define the restriction of the usual addition of the commutative group \mathbb{Z}^{2} on comb ${ }^{+}$as follows: for any two elements $u=(k, l)$ and $v=\left(k^{\prime}, l^{\prime}\right)$

$$
\begin{equation*}
u \circ v=\left(k+k^{\prime}, l+l^{\prime}\right) . \tag{2.8}
\end{equation*}
$$

For these notations, one has

$$
u \circ u^{(0)}=u^{(0)} \circ u=u .
$$

Operation (2.8) induces on comb ${ }^{+}$a semi-group of translation with unit $u^{(0)}$. With the above structure of semi-group, we define the translations $\tau_{g}:$ comb $^{+} \rightarrow$ comb $^{+}, g \in L_{3}$ as follows

$$
\begin{equation*}
\tau_{g}(u)=g+u, \tag{2.9}
\end{equation*}
$$

and $\tau_{(0)}=i d$. Let

$$
\Lambda_{m}=\left\{u \in L: d\left(u, u^{(0)}\right)=m\right\} .
$$

Thanks to the tree structure, one has

$$
\begin{equation*}
\Lambda_{m+1}=\bigcup_{u \in \Lambda_{m}} \mathcal{S}(u) \quad \text { and } \quad \mathcal{S}(u) \cap S(v)=\varnothing, \quad \forall u \neq v \tag{2.10}
\end{equation*}
$$

3. Construction of $Q M C s$ on the $\operatorname{comb} \mathbb{N} \triangleright_{0} \mathbb{Z}$

Let $C \subseteq \mathcal{B} \subseteq \mathcal{A}$ be three unitary C^{*}-algebras. A completely positive identity preserving linear map $E: \mathcal{A} \rightarrow \mathcal{B}$ satisfies

$$
\begin{equation*}
E(c a)=c E(a), \quad a \in \mathcal{A}, c \in C \tag{3.1}
\end{equation*}
$$

is called Quasi-conditional expectation (QCE).
Remark 3.1. Any $K \in \mathcal{A}$, satisfies

$$
\begin{equation*}
E_{0}\left(K^{*} K\right)=\mathrm{I} \tag{3.2}
\end{equation*}
$$

is called E_{0}-conditional amplitude. where $E_{0}: \mathcal{A} \rightarrow \mathcal{B}$ is a conditional expectation [1]. For any $\mathcal{B} \subseteq \mathcal{A}$ sub-*-algebra, denote by

$$
\mathcal{B}^{\prime}:=\{x \in \mathcal{A}: x y=y x, \forall y \in \mathcal{B}\},
$$

the commutant of \mathcal{B} in \mathcal{A}, If $K \in C^{\prime}$ then $E_{0}\left(K^{*}(\cdot) K\right): \mathcal{A} \rightarrow \mathcal{B}$ is a (normalized) QCE w.r.t. the triplet $\mathcal{C} \subseteq \mathcal{B} \subseteq \mathcal{A}$.

Remark 3.2. Every NQCE w.r.t. $\mathcal{C} \subseteq \mathcal{B} \subseteq \mathcal{A}$ satisfies

$$
\begin{gather*}
E(a c)=E(a) c, \quad a \in \mathcal{A}, c \in C, \tag{3.3}\\
E\left(C^{\prime} \cap \mathcal{A}\right) \subseteq C^{\prime} \cap \mathcal{B} . \tag{3.4}
\end{gather*}
$$

To each vertex $u \in V$ an algebra of observable $\mathcal{B}_{u} \equiv \mathcal{B}\left(\mathcal{H}_{u}\right)$ is associated, where \mathcal{H}_{u} is a finite dimensional Hilbert space. Consider the quasi-local algebra

$$
\mathcal{B}_{L}:=\bigotimes_{u \in L} \mathcal{B}_{u}
$$

which is obtained as inductive limit of the net

$$
\mathcal{B}_{\Lambda}:=\bigotimes_{u \in \Lambda} \mathcal{B}_{u} \otimes \mathrm{I}_{\Lambda^{c}}, \quad \Lambda \subset L,|\Lambda|<\infty .
$$

where for each $\Lambda^{\prime} \subset L$, we denote $\mathrm{I}_{\Lambda^{\prime}}$ the identity of $\mathcal{B}_{\Lambda^{\prime}}$. See [12] for a systematic study of quasi-local algebras.

Remark 3.3. Starting from any QCE $E_{\left.\Lambda_{m}\right]}$: $\mathcal{B}_{\Lambda_{m+1]}} \rightarrow \mathcal{B}_{\Lambda_{m]}}$ with respect to $\mathcal{B}_{\Lambda_{n-1]}} \subseteq \mathcal{B}_{\Lambda_{n]}} \subseteq \mathcal{B}_{\Lambda_{n+1]}}$ one can derive a transition expectation (TE) from $\mathcal{B}_{\Lambda_{[n, n+1]}}$ into $\mathcal{B}_{\Lambda_{n}}$ by the next restriction

$$
\mathcal{E}_{\Lambda_{[m, m+1]}}: \mathcal{B}_{\Lambda_{m}}:=\left.E_{\Lambda_{m]} \mid}\right|_{\mathcal{S}_{[m, m+1]}}
$$

Conversely, every TE $\mathcal{E}_{\Lambda_{[m, m+1]}:} \mathcal{B}_{\Lambda_{[m, m+1]}} \rightarrow \mathcal{B}_{\Lambda_{m}}$ is extendable to a QCE $E_{\Lambda_{n]}}$ w.r.t. the given triplet in the following way

$$
\begin{equation*}
E_{\Lambda_{m]}}:=i d_{\mathcal{B}_{m-1]}} \otimes \mathcal{E}_{\Lambda_{[m, m+1]}} . \tag{3.5}
\end{equation*}
$$

The reader is referred to [7] for further details about the extendability of transition expectations in a generalized framework, including both the tensor and the Fermi cases.

Definition 3.4. A backward quantum Markov chain ($b-\mathrm{QMC}$) on the algebra \mathcal{B}_{L} is a triplet $\left(\rho_{0},\left(\mathcal{E}_{[m, m+1]},\right),\left(h_{m}\right)\right)$ of positive linear functional ρ_{0} on $\mathcal{B}_{\left(u_{0}\right)}$, a sequence of TE $\mathcal{E}_{[m, m+1]}: \mathcal{B}_{\Lambda_{[m, m+1]}} \rightarrow \mathcal{B}_{\Lambda_{m}}$ and a sequence $h_{m} \in \mathcal{B}_{\Lambda_{m}}^{+}$such that for each $a \in \mathcal{B}_{L}$, the limit

$$
\begin{equation*}
\varphi(a):=\lim _{m \rightarrow+\infty} \rho_{0}\left(E_{\Lambda_{01}}\left(E_{\Lambda_{1]}}\left(\cdots\left(E_{\Lambda_{m 1}}\left(a \otimes h_{m+1}\right)\right) \cdots\right)\right)\right) \tag{3.6}
\end{equation*}
$$

exists for the weak-*-topology and it defines a state φ on the full algebra \mathcal{B}_{L}. In this case the limit state φ is also called QMC. The sequence $\left(h_{m}\right)$ is called sequence of boundary conditions of the QMC.

Thanks to (3.5), one can immediately check that, φ evaluated on the element $a=a_{0} \otimes a_{1} \otimes \cdots \otimes a_{m} \in$ $\mathcal{B}_{\Lambda_{m l}}, a_{j} \in \mathcal{B}_{\Lambda_{j}}$, is provited by the correlations

$$
\varphi(a)=\rho_{0}\left(\mathcal{E}_{\Lambda_{[0,1]}}\left(a_{\Lambda_{0}} \otimes \mathcal{E}_{\Lambda_{[1,2]}}\left(a_{1} \otimes \cdots \otimes \mathcal{E}_{\Lambda_{[m, m+1]}}\left(a_{m} \otimes h_{m+1}\right) \cdots\right)\right)\right),
$$

which highlight the quantum Markov structure.
We are going to construct a state on $\mathcal{B}_{\Lambda_{m]}}$ with initial state $\omega_{0} \in \mathcal{B}_{(0),+}$ and boundary conditions $\left\{h_{u} \in \mathcal{B}_{u,+}: u \in L\right\}$.

For every $n \in \mathbb{N}$, denote

$$
\begin{align*}
& K_{u \vee S(u)}:=\prod_{v \in \mathcal{S}(u)} K_{<u, v>}, \tag{3.7}\\
& K_{[m, m+1]}:=\prod_{u \in \vec{\Lambda}_{m}} K_{u \cup S(u)}, \quad 1 \leq m \leq n, \tag{3.8}\\
& h_{n}^{1 / 2}:=\prod_{u \in \vec{\Lambda}_{n}} h_{u}^{1 / 2}, h_{n}=h_{n}^{1 / 2}\left(h_{n}^{1 / 2}\right)^{*}, \tag{3.9}\\
& K_{n}:=\omega_{0}^{1 / 2} \prod_{m=1}^{n-1} K_{[m, m+1]} h_{n}^{1 / 2}, \tag{3.10}\\
& W_{n]}:=K_{n}^{*} K_{n} . \tag{3.11}
\end{align*}
$$

One can see that $W_{n]}$ is positives.
In the sequel, $\operatorname{Tr}_{n]}: \mathcal{B}_{L} \rightarrow \mathcal{B}_{\Lambda_{n}}$ denotes the (normalized) partial trace i.e. $\operatorname{Tr}_{n]}\left(\mathrm{I}_{\Lambda_{n}}\right)=\mathrm{I}_{\Lambda_{n}}$, here $\mathrm{I}_{\Lambda_{n}}=\bigotimes_{u \in \Lambda_{n}} \mathrm{I}_{u}$, for any finite part Λ_{n}.

Let's set a positive functional $\varphi_{w_{0}, h}^{(n, b)}$ on $\mathcal{B}_{\Lambda_{n}}$ by

$$
\begin{equation*}
\varphi_{w_{0}, h}^{(n, b)}(a)=\operatorname{Tr}\left(\mathcal{W}_{n+1]}\left(a \otimes \mathrm{I}_{W_{n+1}}\right)\right), \tag{3.12}
\end{equation*}
$$

for each $a \in B_{\Lambda_{n}}$. Note that, the trace Tr is normalized (i.e. $\operatorname{Tr}\left(\mathrm{I}_{u}\right)=1$).
To obtain a state $\varphi^{(b)}$ on \mathcal{B}_{L} satisfying

$$
\varphi^{(b)} \Gamma_{\mathcal{B}_{\Lambda n}}=\varphi_{w_{0}, h}^{(n, b)},
$$

we must impose some constrains on the boundary conditions $\left\{w_{0}, h\right\}$ so that the positive functionals $\left\{\varphi_{w_{0}, h}^{(n, b)}\right\}$ satisfy the following compatibility condition, i.e.

$$
\begin{equation*}
\varphi_{w_{0}, h}^{(n+1, b)} \Gamma_{\mathcal{B}_{\Lambda_{n}}}=\varphi_{w_{0}, h}^{(n, b)} . \tag{3.13}
\end{equation*}
$$

Theorem 3.5. Let $w_{0} \in \mathcal{B}_{(0),+}$ and $h=\left\{h_{u} \in \mathcal{B}_{u,+}\right\}_{u \in L}$. If

$$
\begin{align*}
& \operatorname{Tr}\left(\omega_{0} h_{0}\right)=1, \tag{3.14}\\
& \operatorname{Tr}_{u]}\left(K_{u \vee S(u)}^{*} I^{(u)} \otimes h^{S(u)} K_{u \vee S(u)}\right)=h^{(u)}, \quad \forall u \in L . \tag{3.15}
\end{align*}
$$

Then the sequebce $\left\{\varphi_{w_{0}, h}^{(m, b)}\right\}$ satisfy condition (3.13). Moreover, there exists a unique b-QMC $\varphi_{w_{0}, h}^{(b)}$ on \mathcal{B}_{L} such that

$$
\varphi_{w_{0}, h}^{(b)}=w-\lim _{m \rightarrow \infty} \varphi_{w_{0}, h}^{(m, b)} .
$$

Remark 3.6. Theorem 3.5 extends results of $[25,26,28,29,34]$ where only considered Bethe lattice or Cayley tree. The first attempt to investigate QMCs on the comb graph was done in [38] by considering $\mathbb{N} \triangleright_{0} \mathbb{N}$.

4. QMC associated with $X X$-Ising type model on the comb graph

In this section, we define the model and study the $\mathrm{b}-\mathrm{QMC} \varphi$ associated to the XX-Ising model on the Comb graph $\mathbb{N} \triangleright \mathbb{Z}$. Let $\mathcal{B}_{u}=M_{2}(\mathbb{C})$, for all $u \in L$. The Pauli spin operators $\sigma_{x}, \sigma_{y}, \sigma_{z}$ are given by

$$
\mathrm{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

The shift of an element $a \in M_{2}(\mathbb{C})$ to the $u^{\text {th }}$ component of the infinite tensor product $\mathcal{B}_{L}=\bigotimes_{x \in L} \mathcal{B}_{x}$ will be denoted by

$$
a^{(u)}:=\tau_{u}(a) .
$$

Define the nearest neighbors interactions: for each $u_{1} \in L_{1}, v \in S\left(u_{1}\right)$,

$$
\begin{equation*}
K_{<u_{1}, v>}:=\cos (\beta) \mathrm{I}^{\left(u_{1}\right)} \otimes \mathrm{I}^{S\left(u_{1}\right)}-i \sin (\beta) \sigma_{x}^{\left(u_{1}\right)} \otimes \sigma_{x}^{S\left(u_{1}\right)}, \beta>0 \tag{4.1}
\end{equation*}
$$

and for $u_{3} \in L_{3}, w \in S\left(u_{3}\right)$,

$$
\begin{equation*}
K_{<u_{3}, w>}=\exp \left\{\beta H_{<u_{3}, w>}\right\}, \quad \beta>0, \tag{4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{<u_{3}, w>}=\frac{1}{2}\left(\mathrm{I}^{\left(u_{3}\right)} \otimes \mathrm{I}^{(w)}+\sigma_{z}^{\left(u_{3}\right)} \otimes \sigma_{z}^{(w)}\right) . \tag{4.3}
\end{equation*}
$$

A simple calculation leads to

$$
K_{\left\langle u_{3}, w>\right.}=K_{0} \mathrm{I}^{\left(u_{3}\right)} \otimes \mathrm{I}^{(w)}+K_{3} \sigma_{z}^{\left(u_{3}\right)} \otimes \sigma_{z}^{(w)}
$$

where

$$
K_{0}=\frac{\exp \left(J_{0} \beta\right)+1}{2}, \quad K_{3}=\frac{\exp \left(J_{0} \beta\right)-1}{2}, J_{0}>0 .
$$

One finds: for $u_{1} \in L_{1}$ and $v \in S\left(u_{1}\right)$

$$
\begin{equation*}
K_{u_{1} \vee S\left(u_{1}\right)}=K_{<u_{1}, v>}=\cos (\beta) \mathrm{I}^{\left(u_{1}\right)} \otimes \mathrm{I}^{(v)}-i \sin (\beta) \sigma_{x}^{\left(u_{1}\right)} \otimes \sigma_{x}^{(v)}, \beta>0 . \tag{4.4}
\end{equation*}
$$

And for $v \in L_{3}$ (its successors $S(v)=\left\{v+e_{1}, v \pm e_{2}\right\}$) one finds,

$$
\begin{aligned}
K_{v \vee S(v)} & =K_{\left\langle v, v+e_{1}>\right.} K_{\left\langle v, v+e_{2}>\right.} K_{\left\langle v, v-e_{2}>\right.} \\
& =K_{0}^{3} \mathrm{I}^{(v)} \otimes \mathrm{I}^{\left(v+e_{1}\right)} \otimes \mathrm{I}^{\left(v+e_{2}\right)} \otimes \mathrm{I}^{\left(v-e_{2}\right)}+K_{0}^{2} K_{3} \sigma_{z}^{(v)} \otimes \mathrm{I}^{\left(v+e_{1}\right)} \otimes \mathrm{I}^{\left(v+e_{2}\right)} \otimes \sigma_{z}^{\left(v-e_{2}\right)} \\
& +K_{0}^{2} K_{3} \sigma_{z}^{(v)} \otimes \mathrm{I}^{\left(v+e_{1}\right)} \otimes \sigma_{z}^{\left(v+e_{2}\right)} \otimes \mathrm{I}^{\left(v-e_{2}\right)}+K_{0} K_{3}^{2} \mathrm{I}^{(v)} \otimes \mathrm{I}^{\left(v+e_{1}\right)} \otimes \sigma_{z}^{\left(v+e_{2}\right)} \otimes \sigma_{z}^{\left(v-e_{2}\right)} \\
& +K_{3} K_{0}^{2} \sigma_{z}^{(v)} \otimes \sigma_{z}^{\left(v+e_{1}\right)} \otimes \mathrm{I}^{\left(v+e_{2}\right)} \otimes \mathrm{I}^{\left(v-e_{2}\right)}+K_{0} K_{3}^{2} \mathrm{I}^{(v)} \otimes \sigma_{z}^{\left(v+e_{1}\right)} \otimes \mathrm{I}^{\left(v+e_{2}\right)} \otimes \sigma_{z}^{\left(v-e_{2}\right)} \\
& +K_{0} K_{3}^{2} \mathrm{I}^{(v)} \otimes \sigma_{z}^{\left(v+e_{1}\right)} \otimes \sigma_{z}^{\left(v+e_{2}\right)} \otimes \mathrm{I}^{\left(v-e_{2}\right)}+K_{3}^{3} \sigma_{z}^{(v)} \otimes \sigma_{z}^{\left(v+e_{1}\right)} \otimes \sigma_{z}^{\left(v+e_{2}\right)} \otimes \sigma_{z}^{\left(v-e_{2}\right)} .
\end{aligned}
$$

Recall that, a net $\left\{h^{u}\right\}$ is translation-invariant if

$$
h^{(u)}=h^{\tau_{g}(u)}, \quad \forall u, g \in L .
$$

This means that

$$
\begin{equation*}
h^{(u)}=h^{(v)}, \quad \forall u, v \in L . \tag{4.5}
\end{equation*}
$$

In what follows, we consider only translation-invariant solutions of (3.14), (3.15). Put $h^{(u)}=h$ for all $u \in L$, where

$$
h=\left(\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right) .
$$

Theorem 4.1. For the $X X$-Ising model (4.1), (4.2) there exists a unique $\mathrm{b}-\mathrm{QMC} \varphi_{\alpha}$ with translationinvariant boundary condition h_{α} satisfying (3.14). Moreover, for each $a \in \mathcal{B}_{\Lambda_{n]}}$ one has

$$
\begin{equation*}
\varphi_{\alpha}^{(b)}(a)=\alpha^{2 n+1} \operatorname{Tr}\left(\prod_{j=0}^{n} \prod_{u \in \Lambda_{j}} K_{\langle u\rangle \vee S(u)}^{*} a \prod_{j=0}^{n} \prod_{u \in \Lambda_{j}} K_{\langle u\} \vee S(u)}\right) . \tag{4.6}
\end{equation*}
$$

Proof. Let $u_{1} \in L_{1}$ and v its unique successor $\left(S\left(u_{1}\right)=\{v\}\right)$, then (3.15) is reduced to

$$
\begin{aligned}
h^{\left(u_{1}\right)} & =\operatorname{Tr}_{u_{1]}}\left(K_{u_{1} \vee S\left(u_{1}\right)}^{*} \mathbf{}^{\left(u_{1}\right)} \otimes h^{(v)} K_{u_{1} \vee S\left(u_{1}\right)}\right) \\
& =\operatorname{Tr}_{\left.u_{1]}\right]}\left(\cos ^{2}(\beta) \mathbf{I}^{\left(u_{1}\right)} \otimes h^{(v)}+\sin ^{2}(\beta) I^{\left(u_{1}\right)} \otimes \sigma_{x} h^{(v)} \sigma_{x}\right. \\
& \left.+i \sin \beta \cos (\beta)\left(\sigma_{x}^{\left(u_{1}\right)} \otimes h^{(v)} \sigma_{x}-\sigma_{x}^{\left(u_{1}\right)} \otimes \sigma_{x} h^{(v)}\right)\right) .
\end{aligned}
$$

One can check that

$$
\operatorname{Tr}\left(\sigma_{x} h^{(v)} \sigma_{x}\right)=\operatorname{Tr}\left(h^{(v)}\right) \quad \text { and } \quad \operatorname{Tr}\left(h^{(v)} \sigma_{x}\right)=\operatorname{Tr}\left(\sigma_{x} h^{(v)}\right)
$$

Then, we find that

$$
\begin{equation*}
h^{\left(u_{1}\right)}=\operatorname{Tr}\left(h^{(\nu)}\right) \mathrm{I}^{\left(u_{1}\right)} . \tag{4.7}
\end{equation*}
$$

Now for $u_{3} \in L_{3}$ according to the above computation (3.15) becomes

$$
h^{\left(u_{3}\right)}=\operatorname{Tr}_{\left.u_{3}\right]}\left(K_{\left\{u_{3} \vee S\left(u_{3}\right)\right\}}^{*}{ }^{\left(u_{3}\right)} \otimes h^{S\left(u_{3}\right)} K_{\left\langle u_{3} \vee S\left(u_{3}\right)\right\}}\right) .
$$

Since the boundary condition satisfy (4.5), according to (4.7) we have

$$
h^{\left(u_{3}\right)}=h^{\left(u_{1}\right)}=h=\operatorname{Tr}\left(h^{(v)}\right) \mathrm{I}=\alpha \mathbf{I},
$$

for some $\alpha>0$, then (3.15) is reduced to

$$
\begin{aligned}
h & =\operatorname{Tr}_{\left.u_{3}\right]}\left(K_{\left\{u_{3} \vee S\left(u_{3}\right) \mid\right.}^{*}{ }^{\left(u_{3}\right)} \otimes h^{S\left(u_{3}\right)} K_{\left\{u_{3} \vee S\left(u_{3}\right)\right\}}\right) \\
& =\alpha^{3} \operatorname{Tr}_{\left.u_{3}\right]}\left(K_{\left\{u_{3} \vee S\left(u_{3}\right)\right\}}^{*} K_{\left\{u_{3} \vee S\left(u_{3}\right)\right\}}\right) \\
& =\alpha^{3}\left(K_{0}^{2}+K_{3}^{2}\right)^{3} \mathrm{I} .
\end{aligned}
$$

Therefore, $\alpha=\alpha^{3}\left(K_{0}^{2}+K_{3}^{2}\right)^{3}$ and this is equivalent to

$$
\alpha=\frac{1}{\left(K_{0}^{2}+K_{3}^{2}\right)^{3 / 2}}=\frac{2^{3 / 2}}{\left(e^{2 J_{0} \beta}+1\right)^{3 / 2}} .
$$

Hence,

$$
\begin{equation*}
h=\alpha \mathbf{I} \tag{4.8}
\end{equation*}
$$

is the unique commune solution of (3.15). The initial state ω_{0} can be chosen $\omega_{0}=\frac{1}{\alpha} \mathrm{I}$.
From (3.12) one has

$$
\begin{aligned}
\varphi_{\alpha}^{(b)}(a) & =\operatorname{Tr}\left(W_{n]} a\right)=\operatorname{Tr}\left(\omega_{0} K_{n]}^{*} a h_{n} K_{n]}\right) \\
& =\alpha^{\left|\Lambda_{n}\right|-1} \operatorname{Tr}\left(\prod_{j=0}^{n} \prod_{u \in \Lambda_{j}} K_{\langle u \backslash \vee S(u)}^{*} a \prod_{j=0}^{n} \prod_{u \in \Lambda_{j}} K_{\{u \backslash \vee S(u)}\right) .
\end{aligned}
$$

Since $\left|\Lambda_{n}\right|=2 n+1$ one gets (4.6). This finishes the proof.
Remark 4.2. The QMC φ_{α} given in Theorem 4.1 is the state associated with the disordered phase of the underlying quantum. This state always exists for some fixed point reasons. Therefore, the existence of phase transition requires a t least one additional state satisfying conditions of under some conditions (see [28, 39]. Notice that, if the boundary condition is non-homogeneous, phenomena of phase transitions may appear even for the above considered model.

5. Clustering property

A state φ on \mathcal{B}_{L} is said to enjoy the clustering property if for every $a, b \in \mathcal{B}_{L}$ one has

$$
\begin{equation*}
\lim _{|g| \rightarrow \infty} \varphi\left(a \tau_{g}(b)\right)=\varphi(a) \varphi(b) . \tag{5.1}
\end{equation*}
$$

From Theorem 4.1, there is a unique b-QMC $\varphi_{\alpha}^{(b)}$ with translation-invariant boundary condition h_{α} satisfying (3.14). Now, let establish clustering property for this B-QMC $\varphi_{\alpha}^{(b)}$.

First, Let denote for each $n \in \mathbb{N}^{*}$

$$
\Lambda_{n}=\left\{u_{\Lambda_{n}}^{(-n)}, \cdots, u_{\Lambda_{n}}^{(-1)}, u_{\Lambda_{n}}^{(0)}, u_{\Lambda_{n}}^{(1)}, \cdots, u_{\Lambda_{n}}^{(n)}\right\}: \varphi_{\alpha}^{(b)} \Gamma_{\mathcal{B}_{\Lambda_{n}}}=: \varphi_{\alpha}^{(n, b)},
$$

such that $u_{\Lambda_{n}}^{(0)} \in L_{3}$ and $u_{\Lambda_{n}}^{(i)} \in L_{1}, i= \pm 1, \pm 2, \cdots \pm n$.
Moreover, to prove Theorem 5.2, we need the following:
Lemma 5.1. Let $u_{m_{0}} \in \mathcal{B}_{\Lambda_{n_{0}}}$, for a certain integer m_{0}, and $f_{n} \in \mathcal{B}_{\Lambda_{n}}$ of the form

$$
f_{n}=f \otimes \mathrm{I}_{\Lambda_{n} \backslash\left\{u_{\Lambda_{n}}^{(0)}\right.},
$$

where $f=f^{\left(u_{\Lambda_{n}}^{(0)}\right)}$. Then one has

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \varphi_{\alpha}^{(b)}\left(u_{m_{0}} \otimes f_{n}\right)=\varphi_{\alpha}^{(b)}\left(u_{m_{0}}\right) \varphi_{\alpha}^{(b)}(f) \tag{5.2}
\end{equation*}
$$

Proof. For $n \geq m_{0}$, one has

$$
\begin{aligned}
\varphi_{\alpha}^{(b)}\left(u_{m_{0}} \otimes f\right) & =\varphi_{\alpha}^{(b, n)}\left(u_{m_{0}} \otimes f\right) \\
& =\operatorname{Tr}\left(\omega_{0} \mathcal{E}_{0} \circ \mathcal{E}_{1} \circ \ldots \circ \mathcal{E}_{M_{0}}\left(u_{m_{0}} \otimes \mathcal{E}_{m_{0}+1}\left(\mathrm{I}_{\Lambda_{m_{0}+1}} \otimes \cdots \otimes \mathcal{E}_{n-1}\left(\mathrm{I}_{\Lambda_{n-1}} \otimes \hat{\mathcal{E}}_{n}\left(f \otimes \mathrm{I}_{\Lambda_{n+1}}\right)\right) \cdots\right)\right),\right.
\end{aligned}
$$

here, as before, $\left\{w_{0}=\frac{1}{\alpha}, h_{0}=\alpha \mathrm{I}\right\}$ is the fixed point of the system with $\alpha=\frac{2^{3 / 2}}{\left(e^{2 / 0^{\beta}}+1\right)^{3 / 2}}$. One finds

$$
\begin{aligned}
& \hat{\mathcal{E}}_{n}\left(f \otimes \mathrm{I}_{\Lambda_{n+1}}\right)=\operatorname{Tr}_{n]}\left(K_{[n, n+1]} h_{n+1}^{1 / 2} f \otimes \mathrm{I}_{n+1} h_{n+1}^{1 / 2} K_{[n, n+1]}^{*}\right) \\
& =\operatorname{Tr}_{n]}\left(\bigotimes_{u \in \Lambda_{n}} K_{u \vee S(u)} h_{n+1}^{1 / 2} f \otimes \mathrm{I}_{\Lambda_{n+1}} h_{n+1}^{1 / 2} \bigotimes_{u \in \Lambda_{n}} K_{u v S(u)}^{*}\right) \\
& =\operatorname{Tr}_{u_{u_{n}}^{(0)}}\left(K_{u_{\Lambda_{n}}^{(0)} v s\left(u_{u_{n}^{(0)}}^{(0)}\right)} f \otimes h^{(u)} \otimes h^{(u)} \otimes h^{(u)} K_{u_{\Lambda_{n}}^{(0)} v S\left(u_{\lambda_{n}}^{(0)}\right.}^{*}\right) \otimes \bigotimes_{u \in \Lambda_{n} \backslash\left\{\left\langle u_{\Lambda_{n}}^{(0)}\right\}\right.} \operatorname{Tr}_{u]}\left(K_{u \vee S(u)} \mathrm{I} \otimes h^{(u)} K_{u v S(u)}^{*}\right) \\
& =\alpha^{3}\left(\left(K_{0}^{6}+3 K_{0}^{2} K_{3}^{4}\right) f+\left(K_{3}^{6}+3 K_{0}^{4} K_{3}^{2}\right) \sigma_{z} f \sigma_{z}\right) \otimes \bigotimes_{x \in \Lambda_{n} \backslash\left\{x_{n}^{0},\right.} h^{(x)} \\
& =\alpha^{3}\left(\left(K_{0}^{6}+3 K_{0}^{2} K_{3}^{4}\right) f+\left(K_{3}^{6}+3 K_{0}^{4} K_{3}^{2}\right) \sigma_{z} f \sigma_{z}\right) \otimes \bigotimes_{u \in \Lambda_{n} \backslash\left\langle u_{n}^{0}\right\}} h^{(u)} \\
& =\alpha^{3} g_{u_{\lambda_{n}}^{(0)}} \otimes \bigotimes_{\left.u \in \Lambda_{n} \backslash \backslash u_{\Lambda_{n}^{(0)}}\right\}} h^{(u)},
\end{aligned}
$$

where,

$$
g_{u_{\Lambda_{n}}^{(0)}}=\left(K_{0}^{6}+3 K_{0}^{2} K_{3}^{4}\right) f+\left(K_{3}^{6}+3 K_{0}^{4} K_{3}^{2}\right) \sigma_{z} f \sigma_{z} .
$$

Hence,

$$
\begin{aligned}
& \mathcal{E}_{n-1}\left(\mathrm{I}_{\Lambda_{n-1}} \otimes \hat{\mathcal{E}}_{n}\left(f \otimes \mathrm{I}_{\Lambda_{n+1}}\right)\right)=\alpha^{3} \operatorname{Tr}_{u_{\Lambda_{n-1}}^{(0)}}\left(K_{u_{\Lambda_{n-1}}^{(0)}} v \vee\left(u_{\Lambda_{n-1}}^{(0)}\right) \mathrm{I}_{u_{n-1}^{(0)}}^{(0)} \otimes g_{u_{\Lambda_{n}}^{(0)}} \otimes h^{(u)} \otimes h^{(u)} K_{u_{u_{n-1}}^{(0)}}^{*} v S\left(u_{n-1}^{(0)}\right)\right. \\
& \otimes \bigotimes_{\left.u \in \Lambda_{n-1} \backslash \backslash u_{\Lambda_{n-1}}^{0}\right)} \operatorname{Tr}_{u l}\left(K_{u \vee S(u)} \mathrm{I} \otimes h^{(u)} K_{u \vee S(u)}^{*}\right) \\
& =\alpha^{3}\left(\operatorname{Tr}(g) \mathrm{I}+2 \alpha^{2 / 3} K_{0} K_{3} \operatorname{Tr}\left(\sigma_{z} g\right) \sigma_{z}\right) \otimes \bigotimes_{u \in \Lambda_{n-1} \backslash\left\langle u_{n-1}^{u()}\right\}} h^{(u)} \\
& =\alpha^{3} \operatorname{Tr}(g) \mathrm{I}^{u_{\Lambda_{n-1}}^{(0)}} \otimes \bigotimes_{u \in \Lambda_{n-1}\left(\backslash u_{\Lambda_{n-1}}^{(0)}\right\}^{3}} h^{(u)}+2 \alpha^{3} \alpha^{2 / 3} K_{0} K_{3} \operatorname{Tr}\left(\sigma_{z} g\right) \sigma_{z}^{\left(u_{n}^{(0)}\right)} \\
& \otimes \bigotimes_{\substack{u \in \Lambda_{n-1} \backslash\left\{u_{n-1}^{u()}\right\}}} h^{(u)} \text {. }
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \mathcal{E}_{n-2}\left(\mathrm{I}_{\Lambda_{n-2}} \otimes \mathcal{E}_{n-1}\left(\mathrm{I}_{\Lambda_{n-1}} \otimes \hat{\mathcal{E}}_{n}\left(f \otimes \mathrm{I}_{\Lambda_{n+1}}\right)\right)\right)=\alpha^{3} \operatorname{Tr}(g) \mathrm{I}_{u_{\Lambda_{n-2}}^{(0)}} \otimes \bigotimes_{\left.u \in \Lambda_{n-1} \backslash \backslash u_{\Lambda_{n-2}}^{(0)}\right\}} h^{(u)} \\
& +2^{2} \alpha^{3} \alpha^{2 / 3+2 / 3} K_{0}^{2} K_{3}^{2} \operatorname{Tr}\left(\sigma_{z} g\right) \sigma_{z}^{\left(u_{u_{n-2}}^{(0)}\right)} \otimes \bigotimes_{u \in \Lambda_{n-1} \backslash\left\{u_{\Lambda_{n-2}}^{(0)}\right\}} h^{(u)} .
\end{aligned}
$$

Now iterating $n-m_{0}-1$ times, we find

$$
\begin{aligned}
& \left.\mathcal{E}_{m_{0}+1}\left(\mathcal{E}_{m_{0}+2} \cdots \mathcal{E}_{n-1}\left(\mathrm{I}_{\Lambda_{n-1}} \otimes \hat{\mathcal{E}}_{n}\left(f \otimes \mathrm{I}_{\Lambda_{n+1}}\right)\right) \cdots\right)\right) \\
& =\alpha^{3} 2^{n-m_{0}-1} \operatorname{Tr}\left(g \sigma_{z}\right) \alpha^{\frac{2\left(n-m_{0}-1\right)}{3}} K_{0}^{n-m_{0}-1} K_{3}^{n-m_{0}-1} \sigma_{z}^{\left(u_{\Lambda_{M_{0}+1}}^{(0)}\right)} \otimes \bigotimes_{\left.u \in \Lambda_{n-1} \backslash \backslash u_{\Lambda_{m_{0}+1}}^{(0)}\right\}} h^{(u)} \\
& +\operatorname{Tr}(g) \alpha^{3} \mathrm{I}_{u_{\Lambda_{m_{0}+1}^{(0)}}^{(0)}} \otimes \bigotimes_{u \in \Lambda_{n-1} \backslash\left\langle u_{\Lambda_{m_{0}+1}}^{(0)}\right\}} h^{(u)} .
\end{aligned}
$$

Hence, one get

$$
\begin{aligned}
\varphi_{\alpha}^{(b)}\left(u_{m_{0}} \otimes f\right)= & \operatorname{Tr}\left(\omega_{0} \mathcal{E}_{0} \circ \mathcal{E}_{1} \circ \cdots \circ \mathcal{E}_{m_{0}}\left(u_{m_{0}} \otimes \mathrm{I}\right)\right) \operatorname{Tr}(g) \alpha^{2} \alpha^{\left|\Lambda_{m_{0}+1}\right|} \\
& +\operatorname{Tr}\left(\omega_{0} \mathcal{E}_{0} \circ \mathcal{E}_{1} \circ \cdots \circ \mathcal{E}_{m_{0}}\left(u_{m_{0}} \otimes \sigma_{z}^{\left(x_{\Lambda_{m_{0}+1}}^{(1)}\right)}\right) \operatorname{Tr}\left(g \sigma_{z}\right)\right. \\
& \alpha^{2} \alpha^{\frac{2\left(n-m_{0}-1\right)}{3}} \alpha^{\mid \Lambda_{m_{0}+1}} 2^{n-m_{0}-1} K_{0}^{n-m_{0}} K_{3}^{n-m_{0}-1} \\
= & \operatorname{Tr}\left(\omega_{0} \mathcal{E}_{0} \circ \mathcal{E}_{1} \circ \cdots \circ \hat{\mathcal{E}}_{m_{0}}\left(u_{m_{0}} \otimes \mathrm{I}\right)\right) \operatorname{Tr}(f) \\
& +\operatorname{Tr}\left(\omega_{0} \mathcal{E}_{0} \circ \mathcal{E}_{1} \circ \cdots \circ \mathcal{E}_{m_{0}}\left(u_{m_{0}} \otimes \sigma_{z}^{\left(x_{\Lambda_{m_{0}+1}}^{(1)}\right)}\right)\right) \operatorname{Tr}\left(g \sigma_{z}\right) \\
& \alpha^{\left(2+\frac{2\left(n-m_{0}-1\right)}{3}+\left|{\Lambda m_{0}+1}\right|\right)} 2^{n-m_{0}-1} K_{0}^{n-m_{0}} K_{3}^{n-m_{0}-1} .
\end{aligned}
$$

One can see that,

$$
2^{n}\left(K_{0} K_{3}\right)^{n} \alpha^{\frac{2 n}{3}}=\left(\frac{e^{2 J_{0} \beta}-1}{e^{2 J_{0} \beta}+1}\right)^{n} .
$$

Therefore, by taking the limit $n \rightarrow \infty$, we obtain,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \varphi_{\alpha}^{(b)}\left(u_{m_{0}} \otimes f_{n}\right) & =\operatorname{Tr}\left(\omega_{0} \mathcal{E}_{0} \circ \mathcal{E}_{1} \circ \cdots \circ \hat{\mathcal{E}}_{m_{0}}\left(a_{m_{0}} \otimes \mathrm{I}\right)\right) \operatorname{Tr}(f) \\
& =\varphi_{\alpha}^{(b)}\left(u_{m_{0}}\right) \varphi_{\alpha}^{(b)}(f) .
\end{aligned}
$$

Thus, this completes the proof.
Now we are ready to satate the main result of this paper.
Theorem 5.2. Let $\varphi_{\alpha}^{(b)}$ be the b-QMC associated with the $X X$-Ising model on the comb graph $\mathbb{N} \triangleright_{0} \mathbb{Z}$. Then for each $g \in \mathcal{G}^{+}$

$$
\begin{equation*}
\lim _{|g| \rightarrow+\infty} \varphi_{\alpha}^{(b)}\left(a \tau_{g}(f)\right)=\varphi_{\alpha}^{(b)}(a) \varphi_{\alpha}^{(b)}(f) \tag{5.3}
\end{equation*}
$$

for all $a, f \in \mathcal{B}_{L}$.
Proof. Let $a, f \in \mathcal{B}_{L, l o c}$, then $a, f \in \mathcal{B}_{\left.\Lambda_{[0,0]}\right]}$ for a certain integer l_{0}.
Then, let denote

$$
u_{l_{0}}:=a \in \mathcal{B}_{\left.\Lambda_{[0,0,0]}\right]} \quad \text { and } \quad f_{l_{0}}:=f \in \mathcal{B}_{\left.\Lambda_{[0,0,0}\right]} .
$$

$f_{l_{0}}$ can be rewritten in the following form

$$
f_{l_{0}}=\bigotimes_{u \in \Lambda_{\left[0,0_{0}\right]}} f_{u}=\bigotimes_{k=0}^{l_{0}} f_{\Lambda_{k}}, \quad \text { with } \quad f_{\Lambda_{k}}=\bigotimes_{u \in \Lambda_{k}} f_{u} \in \mathcal{B}_{\Lambda_{k}} .
$$

Furthermore, one can see that

$$
\tau_{g_{m}}\left(f_{l_{0}}\right)=\bigotimes_{\left.u \in \Lambda_{[0,0,0]}\right]} f_{u}^{\left(u+m e_{1}\right)}=\bigotimes_{v \in \Lambda_{\left[m, m+t_{0}\right]}} \tilde{f}_{v} \in \mathcal{B}_{\Lambda_{\left[m, m+l_{0}\right]},},
$$

where

$$
\tilde{f}_{v}= \begin{cases}f_{v-m e_{1}}, & \text { if } v-m e_{1} \in \Lambda_{\left[0, l_{0}\right]} \\ 1, & \text { otherwise }\end{cases}
$$

For $k \in\left[0, l_{0}\right], g \in \mathcal{G}^{+}$and $b \in \mathcal{B}_{\Lambda_{[k, k+1]}}$ we denote

$$
\begin{equation*}
\mathcal{E}_{[k, k+1]}^{\left(\tau_{g}\right)}\left(\tau_{g}(b)\right):=\bigotimes_{v \in \tau_{g}\left(\Lambda_{k}\right)} \operatorname{Tr}_{v j}\left(K_{\{v\rangle \vee S(v)} \tau_{g}(b) K_{\{v \vee \vee S(v)}^{*}\right), \tag{5.4}
\end{equation*}
$$

the τ_{g}-shift of the transition expectation $\mathcal{E}_{[k, k+1]}$, in fact one can check that

$$
\mathcal{E}_{[k, k+1]}^{\left(\tau_{g}\right)}\left(\tau_{g}\left(b_{l_{0}}\right)\right)=\tau_{g}\left(\mathcal{E}_{[k, k+1]}\left(b_{l_{0}}\right)\right) .
$$

In light of (5.4), one finds

$$
\begin{aligned}
& \left.\left.\hat{\mathcal{E}}_{\left[m+l_{0}, m+l_{0}+1\right]}\left(\tilde{f}_{\Lambda_{m+l_{0}}}\right)\right)\right)=\left(\bigotimes_{v \in \tau_{g m}\left(\Lambda \Lambda_{0}\right)} \operatorname{Tr}_{v]}\left(K_{\langle v \vee \vee S(v)} f_{v} h_{S(v)} K_{\langle v \vee \vee S(v)}^{*}\right)\right) \otimes\left(\bigotimes_{v \in \Lambda_{m+l_{0}} \backslash \tau_{g m}\left(\Lambda_{l_{0}}\right)} h_{v}\right) \\
& =\alpha^{\left|\Lambda_{l_{0}+1}\right|} \mathcal{E}_{\left[0_{0}, l_{0}+1\right]}^{\left(\tau_{g_{0}}\right)}\left(\tau_{g_{m}}\left(f_{\Lambda_{\Lambda_{0}}}\right)\right) \otimes\left(\bigotimes_{\left.v \in \Lambda_{m+t_{0}} \mid \tau_{g_{n}\left(\Lambda_{m_{0}}\right)}\right)} h_{v}\right) \text {. }
\end{aligned}
$$

The comb graph $\mathbb{Z} \triangleright_{0} \mathbb{N}$ satisfies

$$
\tau_{g_{m}}\left(\Lambda_{k+1}\right)=\bigcup_{v \in \tau_{g_{m}}\left(\Lambda_{k}\right)} S(v) .
$$

Therefore,

$$
\begin{aligned}
& \left.\left.\mathcal{E}_{\left[m+l_{0}-1, m+l_{0}\right]}\left(\tilde{f}_{\Lambda_{m+l_{0}-1}} \otimes \hat{\mathcal{E}}_{\left[m+l_{0}, m+l_{0}+1\right]}\left(\tilde{f}_{\Lambda_{m+l_{0}}}\right)\right)\right)\right) \\
& =\alpha^{\left|\Lambda_{l_{0}+1}\right|} \bigotimes_{u \in \tau_{g m}\left(\Lambda_{\Lambda_{0}-1}\right)} \operatorname{Tr}_{u]}\left(K_{\{u \backslash \vee S(u)}\left(\tilde{f}_{u} \otimes \mathcal{E}_{\left[l_{0}-1, l_{0}\right]}^{\left(\tau_{g_{m}}\right)}\left(\tau_{g_{m}}\left(f_{\Lambda_{l_{0}}}\right)\right)\right) K_{\langle u\} \cup S(u)}\right) \otimes \bigotimes_{w \in \Lambda_{m+l_{0}-1} \backslash \tau_{g_{m}\left(\Lambda_{l_{0}-1}\right)}} h_{w}, \\
& =\alpha^{\mid \Lambda \Lambda_{0}+1} \mathcal{E}_{\left[l_{0}-1, l_{0}\right]}^{\left(\tau_{g m}\right)}\left(\tau_{g_{m}}\left(f_{\Lambda_{l_{0}-1}}\right) \otimes \mathcal{E}_{\left[l_{0}-1, l_{0}\right]}^{\left(\tau_{g}\right)}\left(\tau_{g_{m}}\left(f_{\Lambda_{l_{0}}}\right)\right)\right) \otimes \bigotimes_{w \in \Lambda_{m+l_{0}-1} \backslash \tau_{g m}\left(\Lambda_{l_{0}-1}\right)} h_{w} .
\end{aligned}
$$

An iterative process leads to

$$
\begin{aligned}
& \mathcal{E}_{[m, m+1]}\left(\tilde{f}_{\Lambda_{m}} \otimes \cdots \mathcal{E}_{\left[m+l_{0}-1, m+l_{0} 0\right.}\left(\tilde{f}_{\Lambda_{m+l_{0}-1}} \otimes \hat{\mathcal{E}}_{\left[m+l_{0}, m+l_{0}\right]}\left(\tilde{f}_{m+l_{0}}\right)\right)\right) \\
& =\alpha^{\left\lfloor\Lambda_{l_{0}+1}\right.} \mathcal{E}_{[0,1]}^{\left(\tau_{\left.g_{m}\right)}\right)}\left(\tau_{g_{m}}\left(f_{\left.\Lambda_{0}\right)}\right) \otimes \cdots \mathcal{E}_{\left[l_{0}-1, l_{0}\right]}^{\left(\tau_{g}\right)}\left(\tau_{g_{m}}\left(f_{\Lambda_{\Lambda_{0}-1}}\right) \otimes \mathcal{E}_{\left[l_{0}-1, l_{0}\right]}^{\left(\tau_{g_{0}}\right)}\left(\tau_{g_{m}}\left(f_{\Lambda_{\Lambda_{0}}}\right)\right)\right)\right) \otimes \bigotimes_{w \in \Lambda_{m} \mid \tau_{g_{m}}\left(\Lambda_{0}\right)} h_{w} .
\end{aligned}
$$

Let denote

$$
\hat{f_{o}}:=\mathcal{E}_{[0,1]}\left(f_{\Lambda_{0}} \otimes \cdots \mathcal{E}_{\left[l_{0}-1, N_{0}\right]}\left(f_{\Lambda_{l_{0}-1}} \otimes \mathcal{E}_{\left[l_{0}-1, l_{0}\right]}\left(f_{\Lambda_{\Lambda_{0}}} \otimes h_{l_{0}+1}\right)\right)\right) \in \mathcal{B}_{o} .
$$

Since $\tau_{g_{m}}\left(\Lambda_{0}\right)=\left\{u_{\Lambda_{m}}^{(0)}\right\}$ and $h^{w}=\alpha \mathrm{I}$, for each $w \in L$, one gets

$$
\mathcal{E}_{[m, m+1]}\left(\tilde{f}_{\Lambda_{m}} \otimes \cdots \mathcal{E}_{\left[m+N_{0}-1, m+N_{0}\right]}\left(\tilde{f}_{\Lambda_{m+N_{0}-1}} \otimes \hat{\mathcal{E}}_{\left[m+N_{0}, m+N_{0}\right]}\left(\tilde{f}_{m+N_{0}}\right)\right)\right)=\hat{f}_{o}^{\left(u_{\Lambda m}^{(0)}\right)} \otimes \bigotimes_{\left.w \in \Lambda_{m} \backslash \backslash u_{\Lambda_{m}}^{(0)}\right]} h_{w}
$$

This leads to

$$
\varphi_{\alpha}^{(b)}\left(u_{l_{0}} \otimes \tau_{g_{m}}\left(f_{l_{0}}\right)=\rho_{0}\left(\mathcal { E } _ { [0 , 1] } \left(u _ { \Lambda _ { 0 } } \cdots \mathcal { E } _ { [l _ { 0 } , l _ { 0 } + 1] } \left(u _ { \Lambda _ { l _ { 0 } } } \otimes \mathcal { E } _ { [l _ { 0 } , l _ { 0 } + 1] } \left(\mathrm{I}_{\Lambda_{l_{0}+1}} \otimes \cdots\right.\right.\right.\right.\right.
$$

$$
\begin{aligned}
& \left.\left.\left.\left.\mathcal{E}_{[m, m+1]}\left(\tilde{f}_{\Lambda_{m}} \otimes \cdots \mathcal{E}_{\left[m+l_{0}-1, m+l_{0}\right]}\left(\tilde{f}_{\Lambda_{m+l_{0}-1}} \otimes \hat{\mathcal{E}}_{\left[m+l_{0}, m+l_{0}\right]}\left(\tilde{f}_{m+l_{0}}\right)\right)\right)\right)\right)\right)\right) \\
& =\rho_{0}\left(\mathcal{E}_{[0,1]}\left(u_{\Lambda_{0}} \cdots \mathcal{E}_{\left[0, l_{0}+1\right]}\left(u_{\Lambda_{l_{0}}} \otimes \mathcal{E}_{\left[l_{0}, l_{0}+1\right]}\left(\mathrm{I}_{\Lambda_{l_{0}+1}} \otimes \cdots \mathcal{E}_{[m, m+1]}\left(\mathrm{I}_{\Lambda_{m-1}} \otimes\left(\hat{f}_{o}^{\left(u_{\Lambda m}^{(0)}\right)} \otimes h_{m+1}\right)\right)\right)\right)\right)\right.
\end{aligned}
$$

Therefore, Lemma 5.1 implies that

$$
\lim _{m \rightarrow+\infty} \varphi_{\alpha}^{(b)}\left(a \tau_{g_{m}}(f)\right)=\lim _{m \rightarrow+\infty} \varphi_{\alpha}^{(b)}\left(u_{l_{0}} \tau_{g_{m}}\left(f_{l_{0}}\right)\right)=\varphi_{\alpha}^{(b)}\left(u_{l_{0}}\right) \varphi_{\alpha}^{(b)}\left(\hat{f_{o}}\right)=\varphi_{\alpha}^{(b)}(a) \varphi_{\alpha}^{(b)}(f)
$$

and this concludes the proof.

6. Conclusions

We investigate an $X X$-Ising model on the comb graph $\mathbb{N} \triangleright_{0} \mathbb{Z}$. Namely, we show the uniqueness of QMC with homogeneous boundary condition associated with the model. Indeed, the considered quantum Markov chain is the one associated with the disordered phase of the system. Our main result concerns a clustering property for this QMC. Notice that, further relevant open problems can be investigated such as the recurrence problem for QMCs on the comb graph, the existence of phase transitions and the QMCs associated with open quantum random walks on the comb graph.

Acknowledgments

The authors extend their appreciation to the Deputyship for Research\& Innovation, Ministry of Education, Saudi Arabia for funding this research work through the project number (QU-IF-04-0127970). The authors also thank to Qassim University for technical support.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. L. Accardi, Noncommutative Markov chains, Proc. Int. Sch. Math. Phys., 1974, 268-295.
2. L. Accardi, A. Frigerio, Markovian cocycles, Proc. R. Ir. Acad., 83 (1983), 251-263.
3. L. Accardi, F. Mukhamedov, A. Souissi, Construction of a new class of quantum Markov fields, Adv. Oper. Theory, 1 (2016), 206-218. https://doi.org/10.22034/aot.1610.1031
4. L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cayley tree I: niqueness of the associated chain with $X Y$-model on the Cayley tree of order two, Inf. Dimens. Anal., 14 (2011), 443-463. https://doi.org/10.1142/S021902571100447X
5. L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cayley tree II: phase transitions for the associated chain with $X Y$-model on the Cayley tree of order three, Ann. Henri Poincaré, 12 (2011), 1109-1144. https://doi.org/10.1007/s00023-011-0107-2
6. L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cayley tree III: Ising model, J. Stat. Phys., 157 (2014), 303-329. https://doi.org/10.1007/s10955-014-1083-y
7. L. Accardi, A. Souissi, E. G. Soueidy, Quantum Markov chains: a unification approach, Inf. Dimens. Anal., 23 (2020), 2050016. https://doi.org/10.1142/S0219025720500162
8. L. Accardi, Y. G. Lu, A. Souissi, A Markov-Dobrushin inequality for quantum channels, Open Sys. Inf. Dyn., 28 (2021), 2150018. https://doi.org/10.1142/S1230161221500189
9. L. Accardi, H. Ohno, F. Mukhamedov, Quantum Markov fields on graphs, Inf. Dimens. Anal., 13 (2010), 165-189. https://doi.org/10.1142/S0219025710004000
10. L. Accardi, F. Fagnola, Quantum interacting particle systems, World Scientific, 2002.
11. S. Attal, F. Petruccione, C. Sabot, I. Sinayskiy, Open quantum random walks, J. Stat. Phys., 147 (2012), 832-852. https://doi.org/10.1007/s10955-012-0491-0
12. O. Bratteli, D. W. Robinson, Operator algebras and quantum statistical mechanics I, Springer Verlag, 1987.
13. A. Barhoumi, A. Souissi, Recurrence of a class of quantum Markov chains on trees, Chaos Solitons Fract., 164 (2022), 112644. https://doi.org/10.1016/j.chaos.2022.112644
14. R. Carbone, Y. Pautrat, Open quantum random walks: reducibility, period, ergodic properties, Ann. Henri Poincaré, 17 (2016), 99-135.
15. J. I. Cirac, D. Perez-Garcia, N. Schuch, F. Verstraete, Matrix product unitaries, structure, symmetries, and topological invariants, J. Stat. Mech. Theory Exp., 2017 (2017), 083105. https://doi.org/10.1088/1742-5468/aa7e55
16. A. Dhahri, F. Mukhamedov, Open quantum random walks, quantum Markov chains and recurrence, Rev. Math. Phys., 31 (2019), 1950020. https://doi.org/10.1142/S0129055X1950020X
17. F. Fidaleo, Fermi Markov states, J. Oper. Theory, 66 (2011), 385-414.
18. F. Fidaleo, F. Mukhamedov, Diagonalizability of non homogeneous quantum Markov states and associated von Neumann algebras, ArXiv, 24 (2004), 401-418. https://doi.org/10.48550/arXiv.math/0411200
19. M. Fannes, B. Nachtergaele, R. F. Werner, Finitely correlated states on quantum spin chains, Commun. Math. Phys., 144 (1992), 443-490. https://doi.org/10.1007/BF02099178
20. M. Fannes, B. Nachtergaele, R. F. Werner, Ground states of VBS models on Cayley trees, J. Stat. Phys., 66 (1992), 939-973. https://doi.org/10.1007/BF01055710
21. Y. Feng, N. Yu, M. Ying, Model checking quantum Markov chains, J. Comput. Sys. Sci., 79 (2013), 1181-1198. https://doi.org/10.1016/j.jcss.2013.04.002
22. J. A. Hartigan, Statistical theory in clustering, J. Classif., 2 (1985), 63-76. https://doi.org/10.1007/BF01908064
23. V. Liebscher, Markovianity of quantum random fields, Quantum Probab. White Noise Anal., 15 (2003), 151-159. https://doi.org/10.1142/9789812704290-0011
24. A. Mohari, Spontaneous SU2(C) symmetry breaking in the ground states of quantum spin chain, J. Math. Phys., 59 (2018), 111701. https://doi.org/10.1063/1.5078597
25. F. Mukhamedov, S. El Gheteb, Uniqueness of quantum Markov chain associated with $X Y$ Ising model on the Cayley tree of order two, Open Syst. Inf. Dyn., 24 (2017), 175010. https://doi.org/10.1142/S123016121750010X
26. F. Mukhamedov, S. El Gheteb, Clustering property of quantum Markov chain associated to XYmodel with competing Ising interactions on the Cayley tree of order two, Math. Phys. Anal. Geom., 22 (2019), 10. https://doi.org/10.1007/s11040-019-9308-6
27. F. Mukhamedov, S. El Gheteb, Factors generated by $X Y$-model with competing Ising interactions on the Cayley tree, Ann. Henri Poincaré, 21 (2020), 241-253. https://doi.org/10.1007/s00023-019-00853-9
28. F. Mukhamedov, A. Barhoumi, A. Souissi, Phase transitions for quantum Markov chains associated with Ising type models on a Cayley tree, J. Stat. Phys., 163 (2016), 544-567. https://doi.org/10.1007/s 10955-016-1495-y
29. F. Mukhamedov, A. Barhoumi, A. Souissi, On an algebraic property of the disordered phase of the Ising model with competing interactions on a Cayley tree, Math. Phys. Anal. Geom., 19 (2016), 21. https://doi.org/10.1007/s11040-016-9225-x
30. F. Mukhamedov, A. Barhoumi, A. Souissi, S. El Gheteb, A quantum Markov chain approach to phase transitions for quantum Ising model with competing $X Y$-interactions on a Cayley tree, J. Math. Phys., 61 (2020), 093505. https://doi.org/10.1063/5.0004889
31. F. Mukhamedov, U. Rozikov, On Gibbs measures of models with competing ternary and binary interactions on a Cayley tree and corresponding von Neumann algebras, J. Stat. Phys., 114 (2004), 825-848. https://doi.org/10.1023/B:JOSS.0000012509.10642.83
32. F. Mukhamedov, U. A. Rozikov, On Gibbs measures of models with competing ternary and binary interactions on a Cayley tree and corresponding von Neumann algebras II, J. Stat. Phys., 119 (2005), 427-446. https://doi.org/10.1007/s10955-004-2056-3
33. F. Mukhamedov, A. Souissi, Types of factors generated by quantum Markov states of Ising model with competing interactions on the Cayley tree, Inf. Dimens. Anal., 23 (2020), 2050019. https://doi.org/10.1142/S0219025720500198
34. F. Mukhamedov, A. Souissi, Quantum Markov states on Cayley trees, J. Math. Anal. Appl., 473 (2019), 313-333. https://doi.org/10.1016/j.jmaa.2018.12.050
35. F. Mukhamedov, A. Souissi, Diagonalizability of quantum Markov states on trees, J. Stat. Phys., 182, (2021), 9. https://doi.org/10.1007/s10955-020-02674-1
36. F. Mukhamedov, A. Souissi, Refinement of quantum Markov states on trees, J. Stat. Mech., 2021 (2021), 083103. https://doi.org/10.1088/1742-5468/ac150b
37. F. Mukhamedov, A. Souissi, Entropy for quantum Markov states on trees, J. Stat. Mech., 2022 (2022), 093101. https://doi.org/10.1088/1742-5468/ac8740
38. F. Mukhamedov, A. Souissi, T. Hamdi, Quantum Markov chains on comb graphs: Ising model, Proc. Steklov Inst. Math., 313 (2021), 178-192. https://doi.org/10.1134/S0081543821020176
39. F. Mukhamedov, A. Souissi, T. Hamdi, Open quantum random walks and quantum Markov chains on trees I: phase transitions, Open Syst. Inf. Dyn., 29 (2022), 2250003. https://doi.org/10.1142/S1230161222500032
40. F. Mukhamedov, A. Souissi, T. Hamdi, A. A. Andolsi, Open quantum random walks and quantum Markov chains on trees II: the recurrence, ArXiv, 2022. https://doi.org/10.48550/arXiv.2208.04320
41. R. Orús, A practical introduction of tensor networks: matrix product states and projected entangled pair states, Ann. Phys., 349 (2014), 117-158. https://doi.org/10.1016/j.aop.2014.06.013
42. S. Rommer, S. Ostlund, A class of ansatz wave functions for 1D spin systems and their relation to DMRG, Phys. Rev., 55 (1997), 2164. https://doi.org/10.1103/PhysRevB.55.2164
43. P. Singh, S. S. Bose, A quantum-clustering optimization method for COVID-19 CT scan image segmentation, Expert Syst. Appl., 185 (2021), 115637. https://doi.org/10.1016/j.eswa.2021.115637
44. A. Souissi, A class of quantum Markov fields on tree-like graphs: Ising-type model on a Husimi tree, Open Syst. Inf. Dyn., 28 (2021), 2150004. https://doi.org/10.1142/S1230161221500049
45. A. Souissi, On stopping rules for tree-indexed quantum Markov chains, Inf. Dim. Anal., (2022). https://doi.org/10.1142/S0219025722500308
46. A. Souissi, M. Mukhamedov, A. Barhoumi, Tree-homogeneous quantum Markov chains, Int. J. Theor. Phys., 62 (2023), 19. https://doi.org/10.1007/s10773-023-05276-1
47. O. R. Zaïane, A. Foss, C. H. Lee, W. Wang, On data clustering analysis: scalability, constraints, and validation, Adv. Knowl. Discovery Data Min., 28 (2022), 2030. https://doi.org/10.1007/3-540-47887-6-4

AIMS Press

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

