Research article

Optimal investment game for two regulated players with regime switching

  • Received: 14 October 2024 Revised: 04 December 2024 Accepted: 05 December 2024 Published: 12 December 2024
  • MSC : 91-10, 90-10, 90C39

  • This paper investigated a zero-sum stochastic investment game for two investors in a regime-switching market with common random time solvency regulations. We considered two types of intensities for the inter-arrival time of regulations: one was modeled as a function of a time-homogeneous Markov chain, while the other was treated as a deterministic function of time $ t $. In the first case, the associated Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation was an elliptic partial differential equation (PDE). By solving an auxiliary problem, we demonstrated the existence and regularity of the value function. In the regime-switching model, players' optimal strategies resembled those in a non-regime-switching model but required dynamic adjustments based on the Markov chain state. In the second case, the associated HJBI equation was a parabolic PDE. We provided a numerical method using a Markov chain approximation scheme and presented several numerical examples to illustrate the impact of regime switching and random time solvency on optimal policies.

    Citation: Lin Xu, Linlin Wang, Hao Wang, Liming Zhang. Optimal investment game for two regulated players with regime switching[J]. AIMS Mathematics, 2024, 9(12): 34674-34704. doi: 10.3934/math.20241651

    Related Papers:

  • This paper investigated a zero-sum stochastic investment game for two investors in a regime-switching market with common random time solvency regulations. We considered two types of intensities for the inter-arrival time of regulations: one was modeled as a function of a time-homogeneous Markov chain, while the other was treated as a deterministic function of time $ t $. In the first case, the associated Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation was an elliptic partial differential equation (PDE). By solving an auxiliary problem, we demonstrated the existence and regularity of the value function. In the regime-switching model, players' optimal strategies resembled those in a non-regime-switching model but required dynamic adjustments based on the Markov chain state. In the second case, the associated HJBI equation was a parabolic PDE. We provided a numerical method using a Markov chain approximation scheme and presented several numerical examples to illustrate the impact of regime switching and random time solvency on optimal policies.



    加载中


    [1] B. Avanzi, H. Lau, M. Steffensen, Optimal reinsurance design under solvency constraints, Scand. Actuar. J., 2024 (2024), 383–416. https://doi.org/10.1080/03461238.2023.2257405 doi: 10.1080/03461238.2023.2257405
    [2] S. Basak, D. Makarov, Strategic asset allocation in money management, J. Finance, 69 (2014), 179–217. https://doi.org/10.1111/jofi.12106 doi: 10.1111/jofi.12106
    [3] E. Bayraktar, V. R. Young, Optimally investing to reach a bequest goal, Insurance: Math. Econom., 70 (2016), 1–10. https://doi.org/10.1016/j.insmatheco.2016.05.015 doi: 10.1016/j.insmatheco.2016.05.015
    [4] A. Bensoussan, C. C. Siu, S. C. P. Yam, H. Yang, A class of non-zero-sum stochastic differential investment and reinsurance games, Automatica, 50 (2014), 2025–2037. https://doi.org/10.1016/j.automatica.2014.05.033 doi: 10.1016/j.automatica.2014.05.033
    [5] T. J. Boonen, W. Jiang, Pareto-optimal reinsurance with default risk and solvency regulation, Prob. Eng. Inform. Sci., 37 (2023), 518–545. https://doi.org/10.1017/S0269964822000079 doi: 10.1017/S0269964822000079
    [6] S. Browne, Optimal investment policies for a firm with a random risk process: expo nential utility and minimizing the probability of ruin, Math. Oper. Res., 20 (1995), 937–958. https://doi.org/10.1287/moor.20.4.937 doi: 10.1287/moor.20.4.937
    [7] S. Browne, Stochastic differential portfolio games, J. Appl. Prob., 37 (2000), 126–147. https://doi.org/10.1239/jap/1014842273 doi: 10.1239/jap/1014842273
    [8] R. Buckdahn, J. Li, N. Zhao, Representation of limit values for nonexpansive stochastic differential games, J. Differ. Equ., 276 (2021), 187–227. https://doi.org/10.1016/j.jde.2020.12.009 doi: 10.1016/j.jde.2020.12.009
    [9] A. Chen, T. Nguyen, M. Stadje, Optimal investment under var-regulation and minimum insurance, Insurance: Math. Econom., 79 (2018), 194–209. https://doi.org/10.1016/j.insmatheco.2018.01.008 doi: 10.1016/j.insmatheco.2018.01.008
    [10] S. Chen, H. Yang, Y. Zeng, Stochastic differential games between two insurers with generalized mean-variance premium principle, ASTIN Bull.: J. Int. Actuar. Assoc., 48 (2018), 413–434. https://doi.org/10.1017/asb.2017.35 doi: 10.1017/asb.2017.35
    [11] M. P. Clements, H. M. Krolzig, Can regime-switching models reproduce the busi ness cycle features of us aggregate consumption, investment and output? Int. J. Finance Econom., 9 (2004), 1–14. https://doi.org/10.1002/ijfe.231 doi: 10.1002/ijfe.231
    [12] J. D. Cummins, Risk-based premiums for insurance guaranty funds, J. Finance, 43 (1988), 823–839. https://doi.org/10.1111/j.1540-6261.1988.tb02607.x doi: 10.1111/j.1540-6261.1988.tb02607.x
    [13] C. Deng, X. Zeng, H. Zhu, Non-zero-sum stochastic differential reinsurance and investment games with default risk, Eur. J. Oper. Res., 264 (2018), 1144–1158. https://doi.org/10.1016/j.ejor.2017.06.065 doi: 10.1016/j.ejor.2017.06.065
    [14] R. Elliott, The existence of value in stochastic differential games, SIAM J. Control Optim., 14 (1976), 85–94. https://doi.org/10.1137/0314006 doi: 10.1137/0314006
    [15] R. J. Elliott, L. Aggoun, J. B. Moore, Hidden Markov models, Berlin: Springer, 1994.
    [16] R. J. Elliott, J. Van der Hoek, An application of hidden markov models to asset allocation problems, Finance Stochast., 1 (1997), 229–238. https://doi.org/10.1007/s007800050022 doi: 10.1007/s007800050022
    [17] G. E. Espinosa, N. Touzi, Optimal investment under relative performance concerns, Math. Finance, 25 (2013), 221–257. https://doi.org/10.1111/mafi.12034 doi: 10.1111/mafi.12034
    [18] D. Filipovic, R. Kremslehner, A. Muermann, Optimal investment and premium policies under risk shifting and solvency regulation, J. Risk Insur., 82 (2015), 261–288. https://doi.org/10.1111/jori.12021 doi: 10.1111/jori.12021
    [19] W. H. Fleming, H. M. Soner, Controlled Markov processes and viscosity solutions, Berlin: Springer, 2006.
    [20] W. H. Fleming, P. E. Souganidis, On the existence of value-functions of 2-player, zero-sum stochastic differential-games, Ind. Uni. Math. J., 38 (1989), 293–314.
    [21] J. Fu, J. Wei, H. Yang, Portfolio optimization in a regime-switching market with derivatives, Eur. J. Oper. Res., 233 (2014), 184–192. https://doi.org/10.1016/j.ejor.2013.08.033 doi: 10.1016/j.ejor.2013.08.033
    [22] J. Grandell, Aspects of risk theory, Berlin: Springer, 1991.
    [23] G. Guan, Z. Liang, A stochastic nash equilibrium portfolio game between two DC pension funds, Insurance: Math. Econom., 70 (2016), 237–244. https://doi.org/10.1016/j.insmatheco.2016.06.015 doi: 10.1016/j.insmatheco.2016.06.015
    [24] J. D. Hamilton, A new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica, 57 (1989), 357–384. https://doi.org/10.2307/1912559 doi: 10.2307/1912559
    [25] Z. Jiang, M. Pistorius, Optimal dividend distribution under markov regime switching, Finance Stochast., 16 (2012), 449–476. https://doi.org/10.1007/s00780-012-0174-3 doi: 10.1007/s00780-012-0174-3
    [26] Z. Jin, G. Yin, F. Wu, Optimal reinsurance strategies in regime-switching jump diffusion models: stochastic differential game formulation and numerical methods, Insurance: Math. Econom., 53 (2013), 733–746. https://doi.org/10.1016/j.insmatheco.2013.09.015 doi: 10.1016/j.insmatheco.2013.09.015
    [27] T. Kenan, M. Sucu, Gompertz-makeham parameter estimations and valuation approaches: Turkish life insurance sector, Eur. Actuar. J., 5 (2015), 447–468.. https://doi.org/10.1007/s13385-015-0110-y doi: 10.1007/s13385-015-0110-y
    [28] H. J. Kushner, P. Dupuis, Numerical methods for stochastic control problems in continuous time, Berlin: Springer, 2001.
    [29] D. Li, D. Li, V. R. Young, Optimality of excess-loss reinsurance under a mean variance criterion, Insurance: Math. Econom., 75 (2017), 82–89. https://doi.org/10.1016/j.insmatheco.2017.05.001 doi: 10.1016/j.insmatheco.2017.05.001
    [30] X. Lin, C. Zhang, T. K. Siu, Stochastic differential portfolio games for an insurer in a jump-diffusion risk process, Math. Meth. Oper. Res., 75 (2012), 83–100. https://doi.org/10.1007/s00186-011-0376-z doi: 10.1007/s00186-011-0376-z
    [31] S. Luo, M. Wang, W. Zhu, Stochastic differential reinsurance games in diffusion approximation models, J. Comput. Appl. Math., 386 (2021), 113252. https://doi.org/10.1016/j.cam.2020.113252 doi: 10.1016/j.cam.2020.113252
    [32] J. Marin-Solano, E. V. Shevkoplyas, Non-constant discounting and differential games with random time horizon, Automatica, 47 (2011), 2626–2638. https://doi.org/10.1016/j.automatica.2011.09.010 doi: 10.1016/j.automatica.2011.09.010
    [33] A. Melnikov, Y. Romaniuk, Evaluating the performance of gompertz, makeham and leeccarter mortality models for risk management with unit-linked contracts, Insurance: Math. Econom., 39 (2006), 310–329. https://doi.org/10.1016/j.insmatheco.2006.02.012 doi: 10.1016/j.insmatheco.2006.02.012
    [34] S. Pliska, Introduction to mathematical finance, Oxford UK: Blackwell publishers, 1997.
    [35] P. E. Protter, Stochastic integration and differential equations, 2 Eds., Berlin: Springer, 2004. https://doi.org/10.1007/978-3-662-10061-5_6
    [36] C. S. Pun, H. Y. Wong, Robust non-zero-sum stochastic differential reinsurance game, Insurance: Math. Econom., 68 (2016), 169–177. https://doi.org/10.1016/j.insmatheco.2016.02.007 doi: 10.1016/j.insmatheco.2016.02.007
    [37] E. V. Shevkoplyas, The hamilton-jacobi-bellman equation for a class of differential games with random duration, Autom. Remote Control, 75 (2014), 959–970. https://doi.org/10.1134/S0005117914050142 doi: 10.1134/S0005117914050142
    [38] Q. S. Song, Convergence of markov chain approximation on generalized HJB equation and its applications, Automatica, 44 (2008), 761–766. https://doi.org/10.1016/j.automatica.2007.07.014 doi: 10.1016/j.automatica.2007.07.014
    [39] Q. S. Song, G. Yin, Z. Zhang, Numerical methods for controlled regime-switching diffusions and regime-switching jump diffusions, Automatica, 42 (2006), 1147–1157. https://doi.org/10.1016/j.automatica.2006.03.016 doi: 10.1016/j.automatica.2006.03.016
    [40] Q. Song, G. G. Yin, Z. Zhang, Numerical solutions for stochastic differential games with regime switching, IEEE Trans. Autom. Control, 53 (2008), 509–521. https://doi.org/10.1109/TAC.2007.915169 doi: 10.1109/TAC.2007.915169
    [41] A. Swiech, Another approach to the existence of value functions of stochastic differential games, J. Math. Anal. Appl., 204 (1996), 884–897. https://doi.org/10.1006/jmaa.1996.0474 doi: 10.1006/jmaa.1996.0474
    [42] M. Taksar, X. Zeng, Optimal non-proportional reinsurance control and stochastic differential games, Insurance: Math. Econom., 48 (2011), 64–71. https://doi.org/10.1016/j.insmatheco.2010.09.006 doi: 10.1016/j.insmatheco.2010.09.006
    [43] N. Wang, N. Zhang, Z. Jin, L. Qian, Stochastic differential investment and reinsurance games with nonlinear risk processes and var constraints, Insurance: Math. Econom., 96 (2021), 168–184. https://doi.org/10.1016/j.insmatheco.2020.11.004 doi: 10.1016/j.insmatheco.2020.11.004
    [44] S. Frank, A course in the theory of stochastic processes, SIAM Rev., 24 (1982), 795–815. https://doi.org/10.1137/1024085 doi: 10.1137/1024085
    [45] L. Xu, R. Wang, D. Yao, Optimal stochastic investment games under markov regime switching market, J. Ind. Manag. Optim., 10 (2014), 795–815. http://doi.org/10.3934/jimo.2014.10.795 doi: 10.3934/jimo.2014.10.795
    [46] L. Xu, D. Yao, G. Cheng, Optimal investment and dividend for an insurer under a markov regime switching market with high gain tax, J. Ind. Manag. Optim., 13 (2020), 325–356. http://doi.org/10.3934/jimo.2018154 doi: 10.3934/jimo.2018154
    [47] H. Yang, L. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insurance: Math. Econom., 37 (2005), 615–634. https://doi.org/10.1016/j.insmatheco.2005.06.009 doi: 10.1016/j.insmatheco.2005.06.009
    [48] K. F. C. Yiu, J. Liu, T. K. Siu, W. K. Ching, Optimal portfolios with regime switching and value-at-risk constraint, Automatica, 46 (2010), 979–989. https://doi.org/10.1016/j.automatica.2010.02.027 doi: 10.1016/j.automatica.2010.02.027
    [49] X. Zeng, Stochastic differential reinsurance games, J. Appl. Probab., 47 (2010), 335–349. https://doi.org/10.1239/jap/1276784895 doi: 10.1239/jap/1276784895
    [50] J. Zhu, Singular optimal dividend control for the regime-switching Cramer-Lundberg model with credit and debit interest, J. Comput. Appl. Math., 257 (2014), 212–239. https://doi.org/10.1016/j.cam.2013.08.033 doi: 10.1016/j.cam.2013.08.033
    [51] J. Zhu, G. Guan, S. Li, Time-consistent non-zero-sum stochastic differential reinsurance and investment game under default and volatility risks, J. Comput. Appl. Math., 374 (2020), 112737. https://doi.org/10.1016/j.cam.2020.112737 doi: 10.1016/j.cam.2020.112737
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(113) PDF downloads(21) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog