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Abstract: This paper investigated a zero-sum stochastic investment game for two investors in a
regime-switching market with common random time solvency regulations. We considered two types
of intensities for the inter-arrival time of regulations: one was modeled as a function of a time-
homogeneous Markov chain, while the other was treated as a deterministic function of time t. In
the first case, the associated Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation was an elliptic partial
differential equation (PDE). By solving an auxiliary problem, we demonstrated the existence and
regularity of the value function. In the regime-switching model, players’ optimal strategies resembled
those in a non-regime-switching model but required dynamic adjustments based on the Markov chain
state. In the second case, the associated HJBI equation was a parabolic PDE. We provided a numerical
method using a Markov chain approximation scheme and presented several numerical examples to
illustrate the impact of regime switching and random time solvency on optimal policies.
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1. Motivations and literature review

1.1. Motivations

Stochastic differential games (SDGs) are a sophisticated and rewarding branch of game theory. In
SDG problem, decisions are made in interactive environments, and the players of the game try to find
optimal policies and balance the trade-off with their opponents. A key feature of SDGs is the use
of stochastic differential equations with control variables to define the state dynamics of the system.
For example, see the work of [7, 30] and the references therein. In most cases, the parameters of
the controlled system in previous SDG problems are assumed to be constants or the function of the
controlled system itself. Since the empirical study has witnessed the abrupt change in the return of the
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financial market (c.f. [11]), it is natural to a construct controlled system which can capture the effects
of structural shifts in macroeconomic conditions and business cycles on price dynamics. One typical
stochastic system with regime switching has its roots in early work by [24]. This inspires us to study
the SDG problem in a system with regime switching. [4] provided a presentative work on investigating
nonzero sum SDG problem within the jump diffusion model with regime switching.

Fund managers are often incentive to invest in high-volatility, risky assets in pursuit of higher returns
or to outperform market benchmarks, commonly known as “beating the market”. Such incentives
can elevate the risk of future losses for investors, making these aggressive strategies unpopular with
shareholders and detrimental to the stable development of the financial market. Consequently, both
shareholders and regulators must closely monitor the investment behavior of financial institutions.

Among the most critical regulatory aspects is solvency, the 2008 financial crisis underscored
significant gaps in capital and risk management within financial institutions. In response, global
regulatory bodies implemented comprehensive reforms to enhance solvency standards and safeguard
against systemic risk. One intriguing question arises: if solvency regulations were applied to players
in a SDG, what changes would ensue, and how could these changes be quantified? How might one
model these “regulations” in a meaningful way? These considerations prompt us to investigate SDG
within a regime-switching model. Unlike the work of [4], this paper exclusively examines nonzero
sum SDG with regime switching.

1.2. Literature review

In past two decades, SDGs have garnered increasing interest in finance and actuarial science. For
example, [7] studied investment games within the Black-Scholes model, [4] extended this work to a
jump diffusion model. [17] explored SDGs with relative performance metrics and control constraints,
and [2] examined SDGs for fund managers. In actuarial research, [49] and [42] investigated nonzero
sum SDGs between insurance and reinsurance companies, [23] analyzed SDGs between two defined
contribution pension plans, [36] studied robust SDGs under model uncertainty, and [10] explored
optimal SDGs using the mean-variance premium principle. The common feature of the models used
in these works is that the parameters of the controlled system are constants. Recently, more
sophisticated model were used in the SDGs (c.f. [31,43]), or more potential risks were incorporated in
the system, such as default risk or asymmetry information for the players (c.f. [13, 51]). Compared to
previous works, research on SDGs under regime-switching models is relatively less prevalent. This is
primarily because games under such models are often not amenable to solutions in closed-form,
thereby posing challenges for study.

The first application of the Markov regime switching models in economics was proposed by [24]
and consisted of the analysis of business cycles. The business cycle interpretation of the model relied
on the combined analysis of the signs of the regime-specific intercept terms and the historical
narrative about the periods with high values of the smoothed state probabilities for each of the
regimes. Accordingly, a negative value of the intercept term coincided with the periods of economic
recessions, whereas its positive value was associated with economic expansions. The
regime-switching framework is particularly useful for understanding the behavior of financial markets
and insurance surplus processes under varying economic conditions, making it a powerful tool for
both theoretical analysis and practical applications. For detailed topics in this model, we refer
to [16, 34, 48].
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The focus of investigations has long been on solvency regulations pertaining to optimal investment
and reinsurance strategies. [12] studied the impact of regulations on fair premium setting. There is an
increasing attention on this topic recently. For example, [18] studied optimal investment and premium
setting while there are solvency regulations; [9] researched optimal investment under
VaR-regulations; [5] studied Pareto-optimal polices with solvency regulations; [1] derived optimal
reinsurance design with solvency constraints. From a mathematical perspective, these optimal control
problems are primarily modeled using single-period static frameworks, where various solvency
requirements are incorporated as constraints into the optimization problems. The reason for not
considering dynamic multi-period models is that quantifying solvency conditions based on control
processes is often difficult to characterize or solve in dynamic models. This paper will draw on the
ideas of [12] by using randomly arriving monitoring times to describe solvency constraints, with the
aim of optimizing the decision-maker’s performance before the arrival of these monitoring events.

1.3. The contribution of this paper

This paper addresses this issue within a competitive framework by formulating the problem as an
SDG within random time horizons. The issues in [7] closely relate to the topic discussed in this paper.
Compared to [7], we incorporate a regime-switching structure into the dynamic control model and
focus on the impact of random time regulation. In [7], the HJBI (Hamilton-Jacobi-Bellman-Isaac)
equation is an elliptic PDE (partial differential equation). However, in this paper, the HJBI equation
takes two forms: when the intensity process of the regulation time is a function of an external Markov
chain, it is a coupled elliptic PDE; when the intensity process is a deterministic function, the HJBI
equation is a parabolic PDE. The explicit solution methods applied in [7] are invalid in this paper.
Therefore, we explored two different methods for solving the aforementioned intensity processes.

In many cases, it is assumed that the random regulation times follow an exponential distribution.
In this paper, for practical relevance, we model the intensity of the random solvency regulation time
using two different approaches. The first model assumes that the intensity process is a function of an
external Markov chain, resulting in a time-homogeneous Markov chain itself. The motivation behind
this approach is that a natural understanding is: external regulations are influenced by the external
macroeconomic environment. When the environment is good, there is a possibility of lower default risk
and thus less regulation intensity. A proper way to model such dependence is to assume that the arrival
intensity is a function of the Markov chain. Both the constant arrival intensity and the Markov chain-
modeled arrival intensity are time-homogeneous. Our other interest is to treat the time-inhomogeneous
intensity process. For ease of exploration, we consider the intensity process as a deterministic function
of time t.

While [32,37] have explored SDGs with random durations, their models do not incorporate regime
switching or an insurance context. When the intensity process of regulation time follows a Markov
chain, we address the SDG by employing an auxiliary problem approach combined with a fixed-point
method. We establish the expressions for optimal policies by resolving the auxiliary problem. In
the regime-switching model context, we find that the optimal strategies for both players are akin to
those in models without regime switching; however, players must dynamically adjust their strategies
in response to the state transitions of the Markov chain.

Through this approach, our study provides a theoretical foundation for investment games in
stochastic environments and explores strategy formulation under the uncertainties of regulatory
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intensity and market state transitions. In the case where the intensity process is deterministic, the
associated HJBI equation takes the form of a time-dependent parabolic PDE. To solve this equation,
we propose a numerical method based on a Markov chain approximation scheme. Additionally, we
present several numerical examples to demonstrate the effects of regime switching and random time
solvency on the optimal policies. These examples illustrate how the systems dynamics influence the
decision-making processes of both investors and highlight the significance of incorporating these
factors into the investment strategies.

The remainder of this paper is organized as follows: Section 2 introduces the model and outlines the
key issues to be addressed. It also presents the HJBI equation that the value function of the SDG must
satisfy. Section 3 discusses the scenario in which the intensity process is modeled as a Markov chain,
while Section 4 examines the case where the intensity is treated as a deterministic function of time t.
The paper concludes with a discussion of numerical methods, algorithms, and illustrative examples to
highlight our findings. At last, for reading convenience, we put the list of important notations in the
paper in the following Table 1.

Table 1. Summary of notations used in this paper.

Notations Description

{Xt, t ≥ 0} External Markov chain modulating the dynamic of the market
S t(i), i = 1, 2 Price of the financial market
θi, i = 1, 2 Sharpe ratio of the two financial market
{ ft, gt, t ≥ 0} Investment policies adopted by Player A and B respectively
{Z f ,g

t , t ≥ 0} Ratio process of the two players under control f , g
τ Inter-arrival random time of regulations
τ

f ,g
x The first time that controlled process Z f ,g

t reaches x
τ f ,g The first exit time of Z f ,g

t with Z0 = z ∈ [l, u]
v f ,g(z, αi) Performance function of the SDG with initial state (Z0, X0) = (z, αi))

when external regulation time is time homogeneous
v f ,g(t, z, αi) Performance function of the SDG with initial state (Zt, Xt) = (z, αi))

when external regulation time is time inhomogeneous
vAu, f ,g(z, αi) Performance function of the SDG with initial state (Z0, X0) = (z, αi))

and stopped at the change the external Markov chain state
J f h,gh

(t, z, αi) performance function of the approximating Makov chain
VAu(z, αi) Value function of auxiliary SDG
P((z, αi), (z + h, αi)| f h, gh) Transition probability of approximating Makov chain

2. Model and HJBI equations

2.1. Financial model

Let (Ω,F ,P) be a complete probability space endowed with right-continuous, P-completed filtration
{Ft, t ≥ 0}. Assume that there are two correlated risky assets S (1)

t and S (2)
t , a risk-free bond Bt and an

external environment evolution process X := {Xt, t ≥ 0} . While we allow both investors to invest in
risk-free market, A chooses S (1) = {S (1)

t , t ≥ 0} and investor B chooses S (2) = {S (2)
t , t ≥ 0}. Assume
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that X := {Xt, t ≥ 0} is a continuous-time, finite-state, observable Markov chain taking values in state
space X := {α1, α2, · · · , αd}, d ≥ 2. W (i)

t , i = 1, 2 are two correlated Brownian motions with coefficient
ρt=̂ρ(Xt). Let Q := [qi j]i, j=1,2,...,d be the generator of X. For each i, j = 1, 2, · · · , d, qi j means the constant
intensity that the Markov chain X changes from state αi to state α j. Assume that qi j > 0,

∑d
j=1 qi j = 0,

so qii < 0. Denote by qi = −qii > 0. Let QT be the transpose of a matrix, or a vector Q. [15] presented
the semi-martingale dynamics of X as

Xt = X0 +

∫ t

0
QTXudu + Mt,

where {Mt, t ≥ 0} is a martingale with respect to {Ft, t ≥ 0}. Denote by τi the ith jumping time of Xt,
then we have following Lemma 2.1 (c.f. [22]).

Lemma 2.1.

P (τ1 > t|X0 = αi) = e−qit; (2.1)

P
(
τ1 ≤ t, Xτ1 = α j|X0 = αi

)
= (1 − e−qit)

qi j

qi
; (2.2)

P
(
Xτ1 = α j|X0 = αi

)
=

qi j

qi
. (2.3)

Assume that the risky assets are evolved as

dS (k)
t = S (k)

t

(
µk(Xt)dt + σk(Xt)dW (i)

t

)
, k = 1, 2,

where µk(Xt) > 0, σk(Xt), k = 1, 2 are return rates and volatilities of the two risky assets respectively.
The dynamic of the risk-free asset is

dBt = r(Xt)Btdt,

where r(·) ≥ 0 for all αi, i = 1, 2, · · · , d. Denote by

θkt(Xt) :=
µk(Xt) − r(Xt)
σk(Xt)

, k = 1, 2

the Sharpe ratio or the market price of risk associated to asset S (k) at time t.
Denote by ft the proportion of A ’s wealth in risky asset S (1) and by gt the proportion of B’s wealth

in risky asset S (2). We made the following assumption on the control policies:

Assumption 1. (1) ft(or gt) is an anticipated, measurable function with respect to Ft and satisfies

E

[∫ T

0
f 2
t dt

]
< ∞ (or E

[∫ T

0
g2

t dt
]
< ∞),∀T < ∞. (2.4)

(2) Both short selling and borrowing are allowed in trading. Specifically, we allow that ft ≥ 1
(borrow) or ft < 0 (short selling) and so does gt.

Denote by Y f
t ( or Yg

t ) the wealth of investor A (or B) under policy { ft, t ≥ 0} (or {gt, t ≥ 0 ) with
Y f

0 = x0 (or Yg
0 = y0), then the dynamic of Y f

t ( or Yg
t ) is given by

dY f
t = Y f

t

([
ftσ1(Xt)θ1t(Xt) + r(Xt)

]
dt + ftσ1(Xt)dW (1)

t

)
(2.5)

or
dYg

t = Yg
t

([
gtσ2(Xt)θ2t(Xt) + r(Xt)

]
dt + gtσ2(Xt)dW (2)

t

)
. (2.6)
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2.2. Relative performance and ratio process

While there are many competition objectives, we just focus on the games with payoffs related to the
achievements of relative performance goals and shortfalls. For two numbers l < u with l ≤ x0

y0
≤ u, we

say that investor A attains its upper performance u if Y f
t = uYg

t , for some t > 0, and that lower shortfall
occurs if Y f

t = lYg
t , for some t > 0. In general, A wins the game if A attains its upper performance

before it reaches the lower shortfall, while B wins the game when the converse happens. In this paper,
we further consider the regulation time impact on the decisions of both investors, where regulation
time is specified by Definition 2.2. Similar to the discussion in [7], some specific games we consider
here, starting from the perspective view of investor A, are (within regulation time)

• maximizing the probability that performance goal u is attained before the shortfall l occurred;
• minimizing the expected time of the performance u attained;
• maximizing the expected total discounted reward upon performance u reached.

Similar to the framework in [7], we investigate the ratio of two wealth processes. Denote the ratio

process by Z f ,g
t with Z f ,g

t =
Y f

t
Yg

t
, then the dynamic of Z f ,g

t is given by

dZ f ,g
t = Z f ,g

t

[
m( ft, gt, Xt)dt + ftσ1(Xt)dW (1)

t − gtσ2(Xt)dW (2)
t

]
, (2.7)

where

m( ft, gt, Xt) =̂ ftσ1(Xt)θ1t(Xt) − gtσ2(Xt)θ2t(Xt) − ftgtσ1(Xt)σ2(Xt)ρ(Xt) + g2
tσ

2
2(Xt). (2.8)

Note that {(Z f ,g
t , Xt)}, t ≥ 0 is a vector valued Markov process with (Z0, X0) = (x, αi), then the

infinitesimal operator of process {Z f ,g
t , Xt}, t ≥ 0 is given by (suppose that function F belongs to the

domain of operatorA)

A f ,gF(t, z, αi) = Ft(t, z, αi) + m( f , g, αi)zFz(t, z, αi) +
1
2
ν2( f , g, αi)z2Fzz(t, z, αi) +

d∑
j=1

qi jF(t, z, α j),

where Ft, Fz, Fzz are the first partial derivative of F(·, ·) w.r.t. t and the first partial derivative and the
second partial derivative of F(·, ·) w.r.t. z,

µki = µk(αi), σki = σk(αi), ri = r(αi), ρi = ρ(αi),

θki =
µki − ri

σki
,

m( f , g, αi) = fσ1iθ1i − gσ2iθ2i − f gσ1iσ2iρi + g2σ2
2i,

ν2( f , g, αi) = f 2σ2
1i + g2σ2

2i − 2 f gσ1iσ2iρi, k = 1, 2, i = 1, 2, · · · , d. (2.9)

Let
κi =
θ1i

θ2i
(2.10)

denote the ratio of the market prices of two risk assets in finance. We will see later that the parameter
κi is a measure of the degree of advantage one player has over the other. A is said to have the advantage
if κi > 1 and B is said to have the advantage if κi < 1 .
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2.3. Exit time and regulation time

Define by τ f ,g
x the first time that controlled process Z f ,g

t reaches x ∈ [l, u] and by τ f ,g = min{τ f ,g
l , τ

f ,g
u }

the first exit time of Z f ,g
t with Z0 = z ∈ [l, u].

Definition 2.2. (Regulation time) Assume that τ is the inter-arrival random time of regulations for two
investors. We assume that there exists a nonnegative stochastic process λs, s ≥ 0, such that

P

(∫ ∞

0
λsds = +∞

)
= 1; (2.11)

P(τ > t) = E
[
exp

(
−

∫ t

0
λsds

)]
. (2.12)

Remark 1. Usually, mortality function λs, s ≥ 0 is constant or a deterministic function (c.f. [33]). In
this paper, we additionally consider the case that λs, s ≥ 0 is a function of {Xt, t ≥ 0} and thus is a
Markov chain. There is a natural explanation for this model: the external environment not only affects
the performance of the financial market, but the regulation frequency from the administrator is variable
to the current state of the environment. For notation ease, denote by λi = λ(αi).

2.4. Competition and saddle points when λt = λ(Xt)

In this subsection, we consider the case that the intensity process is the function of Markov chain
Xt, i.e. λt = λ(Xt) > 0. Due to the fact that exponential distribution is “memoryless” and λs is a Markov
process, the performance function of SDG is of the form

v f ,g(z, αi) = Ez,αi

∫ τ f ,g∧τ

0
e−δsc(Z f ,g

s )ds + e−δ(τ
f ,g∧τ)h(Z f ,g

τ f ,g∧τ
)

 , (2.13)

where Ez,αi means the condition expectation operator Ez,αi = E[·|Z0 = z, X0 = αi], c(·) is the reward(cost)
function, and h(·) is the terminal reward (terminal punishment) of the game.

Remark 2. We assume that c(·) and h(·) satisfies the polynomial growth condition, say,

|c(z)| ≤ C(1 + |z|p), |h(z)| ≤ C(1 + |z|p)

for suitable C, p. The coefficients in (2.5) (or (2.6) ) satisfy condition (5.2) and (5.3) in IV 5 of [19].
With results of Appendix D in [19], it follows that (2.5) (or (2.6) ) admits a path-wise unique solution
Y f

t (or Yg
t ), which is Ft-progressively measurable and has continuous sample paths. With similar

discussion, the existence of solution of the stochastic differential equation (SDE) specified by Eq (2.7)
is guaranteed. With the help of aforementioned assumptions, just as it was claimed in IV 5 of [19], the
performance function (2.13) is well-defined.

The two investors compete in the following form: A wants to maximize payoff function v f ,g(z, αi)
while B wants to minimize v f ,g(z, αi). We consider here only perfect observed competition, that is to
say, the policy adopted by one investor at any time could be directly observed by the opponent investor
instantaneously. Let

V
¯

(z, αi) = sup
f

inf
g

v f ,g(z, αi), V̄(z, αi) = inf
g

sup
f

v f ,g(z, αi) (2.14)

be the lower value function and upper value function of the game respectively.
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Definition 2.3. If V
¯

(z, αi) = V̄(z, αi), we call that the value function of the game exists, and naturally
is given by

V(z, αi) = V
¯

(z, αi) = V̄(z, αi). (2.15)

This value can be attained if a saddle point for the payoff v f ,g(z, αi), i = 1, 2, · · · , d, x ∈ [l, u] exists, i.e.
there exist f ∗ = { f ∗t , t ≥ 0} and g∗ = {g∗t , t ≥ 0} such that for all (z, α) ∈ [l, u] × X and all admissible f
and g, the following relations hold:

v f ,g∗(z, αi) ≤ v f ∗,g∗(z, αi) ≤ v f ∗,g(z, αi). (2.16)

Then, v(z, αi) = v f ∗,g∗(z, αi) and, thus, the saddle points exist and are given by f ∗, g∗.

2.5. Competition and saddle points when λt is a deterministic function of t

The second case assumes that λt is no longer a function of time homogeneous Markov chain Xt,
but a deterministic function of t. In this case, we note that the performance function of the game not
only relies on the current state z of the controlled system, but also the current time t. For notation ease,
introduce

Et,z,αi = E
[
·
∣∣∣(Z f ,g

t , Xt) = (z, αi)
]
,

Pt,z,αi = P
[
·
∣∣∣(Z f ,g

t , Xt) = (z, αi)
]
. (2.17)

Let v f ,g(t, z, αi) be the payoff performance function under the policies f and g with initial value (t, z, αi)
and regulation time τ, which is defined by

v f ,g(t, z, αi) = Et,z,αi

∫ τ f ,g∧τ

t
e−δsc(Z f ,g

s )ds + e−δ(τ
f ,g∧τ)h(Z f ,g

τ f ,g∧τ
)

 . (2.18)

We similarly define the value function and saddle of the game in this case as follows.

Definition 2.4. Let

V
¯

(t, z, αi) = sup
f

inf
g

v f ,g(t, z, αi), V̄(t, z, αi) = inf
g

sup
f

v f ,g(t, z, αi) (2.19)

be the upper value and lower value of the SDG (2.18), respectively. If

V
¯

(t, z, αi) = V̄(t, z, αi) (2.20)

we call that the value function of value of the SDG (2.18) exists and is given by

V
¯

(t, z, αi) = V(t, z, αi) = V̄(t, z, αi). (2.21)

If there exist f ∗ = { f ∗t , t ≥ 0} and g∗ = {g∗t , t ≥ 0} such that for all (t, z, αi) ∈ [l, u] × X and all
admissible f and g,

v f ,g∗(t, z, αi) ≤ v f ∗,g∗(t, z, αi) ≤ v f ∗,g(t, z, αi) (2.22)

then
V(t, z, αi) = v f ∗,g∗(t, z, αi) (2.23)

and thus the saddle points exist and are given by f ∗, g∗.
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Remark 3. The existence of the value function and the saddle point of SDG plays a fundamental role in
the study of SDG. For instance, see the works of [8, 14, 20, 41]. However, there are various challenges
in proving the existence of value functions, depending on the framework of the current SDG. The
characteristic of the SDG in this paper is that, in addition to the control terms of the two players, it
accommodates a Markov modulated structure in the drifts and diffusions, as well as an external random
“stoping” time. The focus of this paper is to find optimal policies for the players. Motivated by the
results of [40] and [26], we find that it suffices to verify the conditions A1)–A5) and A7) from [40]; our
framework meets these conditions. Consequently, Theorem 5.3 of [40], which establishes the existence
of the value function in SDG with a Markov regime switching structure over a stochastic time horizon,
is applicable to our context.

3. Optimal policies for players when λt = λ(Xt)

We first introduce some notations and definitions:

(1) For any function V(z, αi), i = 1, 2, · · · , d with continuously second order partial derivative w.r.t. z,
let’s denote by Θ the differential operator specified by

ΘV(z, αi) = (1 − ρ2
i )

[
Vz(z, αi) + zVzz(z, αi)

]2
− Vz(z, αi)2. (3.1)

(2) V(z, αi), i = 1, 2, · · · , d is said to be sufficiently fast-increasing on an interval (a, b) if the following
condition holds:

2Vz(z, αi) + zVzz(z, αi) > 0 (3.2)

for i = 1, 2, · · · , d and z ∈ [l, u].

We note that in our model, the advantage of the two investors is variable with respect to the economic
environment, which differs significantly from the case presented by [7], making our problem more
complex and realistic in practice. The following Theorem 3.1 presents the HJBI equation associated
with problem (2.15). The proof of this theorem is similar to that of Theorem 4.1, so we only provide
the proof for Theorem 4.1.

Theorem 3.1. Suppose that the value function V(z, αi) : [l, u] × X 7→ R, i = 1, 2, ..., d has continuously
second order partial derivatives w.r.t. z, strictly concave, fulfilling condition (3.2), then V(z, αi), i =
1, 2, · · · , d solve the following equations for all z ∈ [l, u]:

zVz(z, αi)2

2ΘV(z, αi)
θ22i

[
(2κi(ρi − κi)Vz(z, αi) − (1 + κ2i − 2ρiκi)zVzz(z, αi)

]
+c(z) − (λi + δ)V(z, αi) +

d∑
j=1

qi jV(z, α j) = 0, i = 1, 2, · · · , d, (3.3)

with

V(l, αi) = h(l) and V(u, αi) = h(u) for i = 1, 2, · · · , d.

If w(z, αi), i = 1, 2, · · · , d solve coupled HJBI equations (3.3) and satisfy
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(1) for all admissible policies f and g and for all t ≥ 0,∫ t

0
E

[
Z f ,g

s wz(Z f ,g
s , Xs)

]2
[ f 2

s + g2
s]ds < ∞; (3.4)

(2) function

zwz(z, αi)
wz(z, αi) + |zwzz(z, αi)|

|Θw(z, αi)|
(3.5)

are uniformly bounded for all i = 1, 2, · · · , d.

Then we have
w(z, αi) = V(z, αi) (3.6)

and the feedback optimal controls are given by

f ∗(z, αi) =
θ1i

σ1i

(
wz(z, αi)
Θw(z, αi)

) [(
ρi

κi
− 1

)
(wz(z, αi) + zwzz(z, αi))

]
, (3.7)

g∗(z, αi) =
θ2i

σ2i

(
wz(z, αi)
Θw(z, αi)

) [
(1 − ρiκi) (wz(z, αi) + zwzz(z, αi))

]
. (3.8)

Moreover,
f ∗

g∗
=
σ2i(ρi − κi)
σ1i(1 − ρiκi)

. (3.9)

3.1. An auxiliary game problem and optimal policies

Deriving explicit expressions for the coupled HJBI equations (3.3) is generally not straightforward.
In [45], a stochastic differential game was considered, yet explicit solutions were derived only under
specific constraints on the system’s coefficients. In this paper, we adopt the “fixed point method”
from [25] to investigate optimal dividends within a Markov regime-switching model. This approach
has been applied by [50] for singular optimal dividend control in a regime-switching Cramér-Lundberg
model with interest on credit and debit, by [21] for portfolio optimization in a regime-switching market
with derivatives, and by [46] for optimal investment and dividend strategies involving tax payments.
Here, we re-examine a game problem subject to random time regulation constraints, where the process
halts if the current regime switches. Specifically, let τ1 , denote the first instance the environment shifts.
We then define an auxiliary game problem as follows:

• Auxiliary performance function:

vAu, f ,g(z, αi) = Ez,αi

∫ τ f ,g∧τ∧τ1

0
e−δsc(Z f ,g

s )ds + e−δ(τ
f ,g∧τ∧τ1)h(Z f ,g

τ f ,g∧τ∧τ1
)

 . (3.10)

• Auxiliary value function:

VAu(z, αi) = sup
f

inf
g

vAu, f ,g(z, αi) = inf
g

sup
f

vAu, f ,g(t, z, αi). (3.11)

With similar discussion to Theorem 3.1, the HJBI equation associated with the auxiliary problem is
given by Corollary 1.
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Corollary 1. Suppose that the current state of external environment is αi, VAu(z, αi) is a function with
continuously second order partial derivatives w.r.t. z, strictly concave, fulfilling condition (3.2), then
VAu(z, α) solves the following equation for all z ∈ [l, u]:

zVAu
z (z, αi)2

2ΘVAu(z, αi)
θ22i

[
2ki(ρi − ki)VAu

z (z, αi) − (1 + k2
i − 2ρiki)zVAu

zz (z, αi)
]

+c(z) − (λi + δ + qi)VAu(z, αi) = 0, (3.12)

with
VAu(l, αi) = h(l) and VAu(u, αi) = h(u).

For any give αi, if there exists a regular solution w(z, αi) to (3.12) that satisfies analogue conditions
to (3.4) and (3.5), then

w(z, αi) = VAu(z, αi) (3.13)

and “feedback optimal control” have the same form as it were in (3.7) and (3.8).

Proof. The proof is very similar to the one for Theorem 3.1 of [7] and we omit here. □

We note that the HJBI equation in the auxiliary problem is not coupled; it is valid only until the
current state changes. Assuming the current time is zero, the effective time interval for this policy is
given by [0, τ ∧ τ1). For the remainder of this section, we will proceed under the assumptions outlined
in Corollary 1.

3.2. Optimal policies for SDG (2.13)

Inspired by the Markov property of {Xt, t ≥ 0} , we introduce a candidate control process { ft, gt, t ≥
0} for the original problem over the entire control time interval as

ft = f ∗Au,X(t) = f ∗Au,X(τk), if τk ≤ t < τk+1, (3.14)
gt = g∗Au,X(t) = g∗Au,X(τk), if τk ≤ t < τk+1. (3.15)

We observe that the candidate control process is piecewise deterministic, contingent solely on the
current environment state. Consequently, under this policy, investors A and B each adopt environment-
specific strategies and adjust their policies only upon state changes. Theorem 3.2 below establishes
that the policies derived from Eqs (3.14) and (3.15) are indeed optimal for both investors. The proof,
for brevity, is provided in Appendix B.

Theorem 3.2. Suppose that λt = λ(Xt), then the controlled process defined by Eqs (3.14) and (3.15)
are optimal for both investors.

Proof. For reading convenience, we put the proof in Appendix A. □

3.3. Minimizing the expected time of A winning the game

In this subsection, we analyze the auxiliary game problem aimed at maximizing or minimizing a
player’s expected time to outperform their opponent. Specifically, we focus on Investor A’s objective
to minimize the expected duration of victory, as represented in the value function:

N(h, αi) = inf
f

sup
g
Ez,αi[τ

f ,g
u ∧ τ ∧ τ1] = sup

g
inf

f
Ez,αi[τ

f ,g
u ∧ τ ∧ τ1]. (3.16)
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Similarly, let Ñ(z, αi) = infg sup f Ez,αi[τ
f ,g
u ∧τ∧τ1] = sup f infg Ez,αi[τ

f ,g
u ∧τ∧τ1], so N(z, αi) = −Ñ(z, αi).

Note that in this case, c(·) ≡ 1, δ ≡ 0, d(·) = 0; thus, by Corollary 1, Ñ(z, αi) is the solution to equation

zÑz(z, αi)2

2ΘÑ(z, αi)
θ22i

[
2ki(ρi − ki)Ñz(z, αi) − (1 + k2

i − 2ρiki)zÑzz(z, αi)
]
+ 1 − (λi + qi)Ñ(z, αi) = 0, (3.17)

with boundary condition Ñ(u, αi) = 0. [7] solved Eq (3.17) when λi + qi = 0, which motivated us
to find an explicit expression for Ñ(z, αi) in a special case. Assume that Ñ(z, αi) is of the form of

Ñ(z, αi) = 1
λi+qi

[(
z
u

)ζ
+ 1

]
. By [7], we can get the solution of the problem, and the final result is

Ñ(z, αi) =
1

λi + qi

[( z
u

)ζ+
+ 1

]
,

where the form of ζ+ is

ζ+ =
θ22i(1 − k2

i ) +
√
∆

2θ22i

(
1 + k2

i − 2ρiki

)
+ 4(λi + qi)(1 − ρ2

i )
,

∆ =
[
θ22i(1 − k2

i )
]2
+ 8(λ + λ1)θ22

(
1 + k2

i − 2ρiki

)
+ 16(λi + qi)2(1 − ρ2

i ).

Finally, the value of (3.16) is given by

N(h, αi) = −
1

λi + qi

[( z
u

)ζ+
+ 1

]
. (3.18)

Then,

Nz = −
1

λi + qi

1
u
ζ+

( z
u

)ζ+−1
,

Nzz = −
1

λi + qi

1
u
ζ+(ζ+ − 1)

( z
u

)ζ+−2
.

By calculation, the associated saddle point is given by

f ∗(z) =
θ1i

σ1i

 (ρi/ki − 1)ζ+ − 1(
1 − ρ2

i

)
(ζ+)2

− 1

 and g∗(z) =
θ2i

σ2i

 (1 − ρiki)ζ+ − 1(
1 − ρ2

i

)
(ζ+)2

− 1

 . (3.19)

3.4. Maximizing the probability of reaching upper level game

In this game, player A aims to maximize the probability of reaching a higher level u, while player B
aims to minimize it. When the game involves a single player and as u approaches infinity with l = 0,
this problem simplifies to minimizing the ruin probability in the presence of investment opportunities,
as discussed in [6]. According to Theorem 3.2, for a given current external state αi, it is necessary to
first solve a single-state optimization problem. Now, let R̃(z, αi) be the value function of the auxiliary
game, then,

R̃(z, αi) = sup
f

inf
g
Pz,αi

(
Zτ f ,g∧τ∧τ1 = u

)
= sup

f
inf

g
Pz,αi

(
τ f ,g ∧ τ ∧ τ1 = τ

f ,g
u

)
.
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Note that in this case, c(·) ≡ 0, δ ≡ 0, h(·) = 1{Z
τ f ,g∧τ∧τ1

=u}; thus, by Corollary 1, R̃(z, αi) is the
solution to equation

zR̃z(z, αi)2

2ΘR̃(z, αi)
θ22i

[
2ki(ρi − ki)R̃z(z, αi) − (1 + k2

i − 2ρiki)zR̃zz(z, αi)
]
− (λi + ai)R̃(z, αi) = 0, (3.20)

with boundary condition R̃(u, αi) = 1, R̃(l, αi) = 0. Substituting the expression of ΘR̃(z, αi) into (3.20)
yields

2ki(ρi − ki)zR̃2
z (z, αi)θ22i − (1 + k2

i − 2ρiki)zR̃z(z, αi)θ22i

−2(λi + qi)z2R̃(z, αi)R̃zz(z, αi)2 − 2(λi + qi)zR̃(z, αi)R̃z(z, αi)R̃zz(z, αi)
= ρi(λi + qi)R̃z(z, αi)2 + 2ρi(λi + ai)zR̃z(z, αi)R̃zz(z, αi)
+ρi(λi + qi)z2R̃zz(z, αi)2 = 0. (3.21)

This equation can be tracked by numerical method.

4. Optimal policies for players when λt is a deterministic function

The following Theorem 4.1 gives the HJBI equation associated with the SDG problem when λt is a
deterministic function. For convenience, the proof of Theorem 4.1 is provided in the Appendix.

Theorem 4.1. Suppose that λt is a positive deterministic function of t, w(t, z, αi) : [l, u] × X 7→ R is a
function with continuous second-order partial derivatives w.r.t. z, strictly concave, fulfilling
condition (3.2), and solves the following equation for all z ∈ [l, u]:

wt(t, z, αi) +
zw2

z (t, z, αi)
2Θw(t, z, αi)

θ22i

[
(1 − k2

i )wz(t, z, αi) − (1 + k2
i − 2ρiki) (wz(t, z, αi) + zwzz(t, z, αi))

]
+c(z) − (δ + λt)w(t, z, αi) +

d∑
j=1

qi jw(t, z, α j) = 0, i = 1, 2, · · · , d, (4.1)

with
w(t, l, αi) = h(l) and w(t, u, αi) = h(u) for i = 1, 2, · · · , d.

We further suppose that

(1) for all admissible policies f and g and for all t ≥ 0,∫ t

0
E

[
Z f ,g

s wz(s,Z f ,g
s , Xs)

]2
[ f 2

s + g2
s]ds < ∞; (4.2)

(2) function

zwz(t, z, αi)
wz(t, z, αi) + |zwzz(t, z, αi)|

|Θw(t, z, αi)|
(4.3)

is uniformly bounded for all i = 1, 2, · · · , d.
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Then, w(t, z, αi) is the value function of SDG, i.e.,

w(t, z, αi) = v f ∗,g∗(t, z, αi)
= sup

f
inf

g
v f ,g(t, z, αi) = inf

g
sup

f
v f ,g(t, z, αi).

The “feedback” saddle points of this SDG are specified by

f ∗ =
θ1i

σ1i

(
wz(t, z, αi)
Θw(t, z, αi)

) [(
ρi

ki
− 1

)
(wz(t, z, αi) + zwzz(t, z, αi)) − wz(t, z, αi)

]
, (4.4)

g∗ =
θ2i

σ2i

(
wz(t, z, αi)
Θw(t, z, αi)

) [
(1 − ρiki) (wz(t, z, αi) + zwzz(t, z, αi)) − wz(t, z, αi)

]
. (4.5)

4.1. Numerical method

Section 3 presents two examples of the SDG in which the arrival intensity of regulation is piece-wise
constant. However, in more general cases, deriving explicit solutions can be challenging, necessitating
a shift to numerical methods. Since a Markovian SDG problem can be treated as a Markovian control
problem, the approach to constructing numerical schemes for SDG can leverage numerical methods for
stochastic control (see [26,28,38,39]). Note that the controlled wealth process is a map [0,∞) 7→ [l, u]
and stopped at τ f ,g ∧ τ.

Let h > 0 and define Lh = {z : z = l + kh, k = 0, 1, 2, · · · , [u−l
h ] + 1}, where [·] is the integer function.

Lh is a discrete segmentation of interval [l, u], where {(ξh
k , e

h
k), k < ∞} is a controlled Markov chain on

Lh, where {ξh
k , k < ∞} is used to approximate the underlying controlled wealth process {Z f ,g

t , t ≥ 0}, and
{eh

k , k < ∞} is the discrete time observation of the external environment process {Xt, t ≥ 0} . Hence, for
any chosen h, the domain of our numerical schemes with step h is

D
h = {(z, αi) : i = 1, 2, ..., d, z ∈ Lh, i = 1, 2, · · · , d}. (4.6)

The design of the approximate Markov chain within the domain Dh is analogous to that presented
in [40]. This controlled Markov chain is constructed to be both discrete-time and finite-state for
computational efficiency, while adhering to the local consistency properties of the controlled state
system. Therefore, a crucial step in designing this Markov chain is establishing the transition
probabilities. Denote the transition probability from state (x, αi) to (y, α j) under control ( f h, gh) by
P((x, i), (y, j)| f h, gh). To determine P((x, i), (y, j)| f h, gh), we have to meet the following three
conditions:

(1) (Local moment consistent) It is crucial to determine P((x, i), (y, j)| f h, gh) such that the Markov
chain {ξh

k , k ≥ 1} has the same first and second moment with the Z f ,g
t in a very small time interval.

(2) (Continuous time Markov chain and value function) To approximate the continuous time
controlled state process Z f ,g

t , we should choose an appropriate continuous time interpolation in
any small time epoch. Suppose an interpolation epoch ∆th

k = ∆th
k(ξh

k , e
h
k) > 0, k ≥ 1 is given,

define interpolated time th
k =

∑k−1
s=1 ∆th

s . Then, a piece-wise constant interpolation ξh
t is specified

by
ξh

t = ξ
h
k for t ∈ [th

k , t
h
k+1). (4.7)
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The interpolation interval satisfies

inf
z∈Lh
∆th

k(z) > 0 and lim
h→0

sup
z∈Lh

∆th
k(z) = 0. (4.8)

For the continuous time interpolated process {ξh
t , e

h
t , t ≥ 0}, define by

τ
f h,gh

h = inf{t : ξh
t ∈̄[l, u]} (4.9)

the first exit time of Markov chain {ξt, t ≥ 0} and by

Nh − 1=̂τ f h,gh

h ∧

[
τ

h

]
. (4.10)

An approximating performance function is then defined as

J f h,gh
(t, z, αi) =

 Ex,αi

[∑Nh−1
n=0 e−δnhc(ξh

n) + e−δN
h
h(ξh

Nh)
]
, if t ≥ τ;

Ex,αi

[∑Nh−1
n=[ t

h ] e−δnhc(ξh
n) + e−δ(N

h− t
h )h(ξh

Nh)
]
, if t < τ.

(4.11)

The upper value function and lower value function of the controlled Markov chain is then given
by

V
h
(t, x, αi) = inf

gh∈A
sup
f h∈A

J f h,gh
(t, z, αi),

Vh(t, x, αi) = sup
f h∈A

inf
gh∈A

J f h,gh
(t, z, αi).

Notably, the control problem in this paper consists of an external regulation time, with involves
in stopping time of the controlled system. For implementing the computation steps, we need to
discretize the integration

∫ ∞
0
λsds as follows. Let

λh
j =

∫ thj

thj−1

λsds and Λh
k =

k∑
j=1

λh
j ,

ph
j = e−λ

h
j and F̄h

k = e−Λ
h
k , j = 1, 2, · · · . (4.12)

Specifically, the discretized value function V
h
(t, z, αi) satisfies the following dynamic equation

V
h
(th

k , z, αi) = min
gh

max
f h

{
e−qih

[
F̄h

k

[
P((z, αi), (z + h, αi)| f h, gh)V

h
(th

k + ∆th
k , z + h)

+P((z, αi), (z − h, αi)| f h, gh)V
h
(th

k + ∆th
k , z − h, αi)

]
+ph

kP((z, αi), (z, αi)| f h, gh)V
h
(th

k + ∆th
k , z, αi)

]
+(1 − e−qih)

qi j

qi
V

h
(th

k + ∆th
k , z, α j) + c(z)∆th

k

}
. (4.13)
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Similarly, we have

Vh(th
k , z, αi) = max

f h
min

gh

{
e−qih

[
F̄h

k

[
P((z, αi), (z + h, αi)| f h, gh)Vh(th

k + ∆th
k , z + h)

+P((z, αi), (z − h, αi)| f h, gh)Vh(th
k + ∆th

k , z − h, αi)
]

+ph
kP((z, αi), (z, αi)| f h, gh)Vh(th

k + ∆th
k , z, αi)

]
+(1 − e−qih)

qi j

qi
Vh(th

k + ∆th
k , z, α j) + c(z)∆th

k

}
. (4.14)

We know that if the value function of the game exists, then

lim
h→0

V
h
(th

k , z, αi) = lim
h→0

Vh(th
k , z, αi) = V(t, z, αi), i = 1, 2, · · · . (4.15)

(3) (Approximating to HJBI equations) Suppose that Vh(t, z, αi) is given by (4.15). The finite
difference method indicates that we need to approximate the first and second derivatives of
V(t, z) using step size h > 0 as

V
h
(t, z, αi)→ V(t, z, αi), (4.16)

V
h
(t + h, z, αi) − V

h
(t, z, αi)

h
→
∂V(t, z, αi)
∂t

, (4.17)

V
h
(t, z + h, αi) − V

h
(t, z, αi)

h
→
∂V(t, z, αi)
∂z

, if mh
i > 0, (4.18)

V
h
(t, z, αi) − V

h
(t, z − h, αi)

h
→
∂V(t, z, αi)
∂z

, if mh
i ≤ 0, (4.19)

V
h
(t, z + h, αi) + V

h
(t, z − h, αi) − 2V

h
(t, z, αi)

h2 →
∂2V(t, z, αi)
∂z2 . (4.20)

Now, we turn to determine transition probabilities. For notation convenience, let

νh
i =̂ν

2( f h, gh, αi) = f h2σ2
1i + gh2σ2

2αi
− 2 f hghσ1iσ2iρi

mh
i =̂ f hσ1iθ1i − ghσ2iθ2i − f hghσ1iσ2iρi + g2

hσ
2
2i,

mh+
i = max{mh

i , 0},m
h−
i = min{mh

i , 0},
mh

i = mh+
i + mh−

i , |m
h
i | = mh+

i − mh−
i , i = 1, 2, · · · , d. (4.21)

Substituting (4.16)–(4.20) into (4.1) yields[
h(1 + mh

i z) + νh
i z2 − (λh

j + δ)h
2
]

V
h
(th

k , z, αi)

= sup
f h

min
gh

{
V

h
(th

k + ∆
h
tk , z)h + [mh+

i zh +
1
2
νh

i z2]V
h
(th

k + ∆
h
tk , z + h)

+(mh−
i hz +

1
2
νh

i z2)V
h
(th

k + ∆
h
tk , z − h)

}
+ c(z) + ∆h

tk +

d∑
j=1

qi jV(th
k + ∆

h
tk , z, α j). (4.22)
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By comparing coefficients of Eqs (4.13), (4.14) and (4.22), we can determine the transition
probabilities of the constructed Markov chain, which are specified as

P((z, αi), (z + h, αi)| f h, gh)

=

(
F̄h

k

1 − e−qih ph
k

)  mh−
i zh + 1

2ν
h
i z2

h(1 + mh
i z) + νh

i z2 − (λh
j + δ)h2

 , (4.23)

P((z, αi), (z − h, αi)| f h, gh)

=

(
F̄h

k

1 − e−qih ph
k

)  mh+
i zh + 1

2ν
h
i z2

h(1 + mh
i z) + νh

i z2 − (λh
j + δ)h2

 , (4.24)

P(z, z, αi| f h, gh)
= 1 − P((z, αi), (z + h, αi)| f h, gh) − P((z, αi), (z − h, αi)| f h, gh), (4.25)

∆th
k =

(
F̄h

k

1 − e−qih ph
k

)  h2

h(1 + mh
i z) + νh

i z2 − (λh
j + δ)h2

 . (4.26)

It is easy to verify that

0 < P((z, αi), (z + h, αi)| f h, gh), P((z, αi), (z − h, αi)| f h, gh) < 1,
P((z, αi), (z + h, αi)| f h, gh) + P((z, αi), (z − h, αi)| f h, gh) < 1, (4.27)

thus, the transition probabilities are well-defined.
It is straightforward to verify that the constructed Markov chain, with transition probabilities

specified by Eqs (4.23) and (4.24), meets the local consistency conditions indicated by
Conditions (1)–(3). Specifically, under the aforementioned transition probabilities, the constructed
Markov chain satisfies the following local consistency properties:

E∆ξh
k = mh

i∆th
k + o(∆th

k), (4.28)
Var∆ξh

k = ν
h
i∆th

k + o(∆tk
h). (4.29)

Thus far, we have established the transition probabilities for the approximate Markov chain, as defined
by Eqs (4.23) and (4.24). By substituting these transition probabilities and the interpolated time epochs
into Eqs (4.13) and (4.14), we construct the iteration process for approximating the discrete-time value
function with the prescribed boundary conditions

Vh(t, l, αi) = h(l), Vh(t, u, α) = h(u). (4.30)

By letting h → 0 and Eqs (4.16)–(4.20), we can then approximate the value function and optimal
investment and reinsurance policies numerically.

Remark 4. Comparing with the algorithms in [26], one may observe that the primary distinction
between the two algorithms lies in the modification of the Markov chains transition probabilities by the
external regulation time. Consequently, these transition probabilities are no longer time-homogeneous,
as they now depend on both the current time and the residual distribution of the regulation time.
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4.2. An illustrative example: goal reaching game

In a typical game problem, Agent A aims to maximize the probability of reaching the upper level
u before regulation arrives or reaching the lower level l. The boundary condition for this scenario is
given by

Vh(t, l, αi) = 0, Vh(t, u, αi) = 1. (4.31)

We note that this goal-reaching problem is well-known in finance. Optimal control problems on this
subject have yielded extensive results. For example, [3] studied the optimization of a bequest goal
problem at a random time, specifically the death time of the insured individual. More recent research
in this area includes [29]. The parameter settings for this example are provided as follows.

(1) Parameters of environment For the dynamic of environment, we only consider a two-state
Markov chain, i.e., Xt ∈ (α1, α2). State e1 means that the macroeconomic environment is “bad”
versus “good”. Suppose that the Q-matrix of the Markov chain is given by(

−0.1 0.1
0.2 −0.2

)
.

(2) Parameters of financial market For the financial market, we assume that the parameters are
provided in Table 2. The Sharpe ratios for the two players operating in distinct environments are
detailed in Table 3. Due to the setup of these parameters, it is apparent that the stock selected by
Player A carries higher risk compared to the stock chosen by Player B. Nevertheless, the Sharpe
ratio of the stock chosen by Player A exceeds that of Player B. Concurrently, the Sharpe ratio in a
bull market surpasses that in a bear market. This parameter configuration is designed to closely
mimic real-world conditions in our model.

Table 2. Parameters of financial market for two players.

Player parameter bear market bull market
A µ1 0.08 0.12
A σ1 0.025 0.03
B µ2 0.06 0.09
B σ2 0.025 0.03

risk free interest rate r 0.03 0.05

Table 3. Sharpe ratio for two investors.

Player Sharp ratio bear market bull market
A θ1 2 2.3
B θ2 1.5 1.6

r = (r1, r2) = (0.01, 0.013), µ = (µ1, µ2) = (0.012, 0.018), σS = (σS 1, σS 2) = (0.02, 0.025). It can
be observed that the Sharpe ratio in a “bad” environment is 0.1, while in a “good” environment
it is 0.2. This indicates that the market price in a good environment is higher than in a bad
environment.
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(3) Parameters of regulation tensity Assume that the force of mortality follows the famous
Gompertz-Makeham law of mortality (c.f. [27]), i.e., the hazard rate λs is given by

λs =
(
AeBs +C

)
exp

[
−Cs −

A
B

(
eBs − 1

)]
(4.32)

and

F̄(s) = exp(−
∫ t

0
λsds) = exp

[
−Ct −

A
B

(
eBt − 1

)]
. (4.33)

One can find that the exponential distribution is a special case of the Gompertz-Makeham law.
Here we adopted the parameter estimation results in [27] as an example, which are specified by

A = 0.0007, B = 0.0006, c = 0.0831. (4.34)

The conditional expectation of the residual regulation time, given as current time t, is given by

1
Be

A
B ( A

B − ln( A
B) −C)

F̄(t)
. (4.35)

Numerical results show that with the parameters given by (4.34), the expected lifetime is
about 79.04. However, for solvency regulation, this time epoch is too long. Based on (4.35), we
revise the parameter as

A = 0.07, B = 0.06, c = 0.0831. (4.36)

Then, the expected regulatory time is 1.1715.

Figure 1 presents the value function with respect to the residual regulation time t and current wealth
z. The range of the residual regulation time t is [0, 2], and the wealth interval is [2, 10]. To enhance
visualization, we standardize the scales of the horizontal and vertical axes, transforming the range of
values to [0, 100]. From Figure 1, it is evident that the value function of the game problem is smooth
and convex over its domain. Figures 2 and 3 illustrate the investment amounts chosen by the two
players.

It can be observed that, at the onset of the game, each player tends to invest a significant amount in
risky assets. However, as the game nears the “end of regulation time”, the investment amounts become
more stationary and conservative.

Figure 4 provides a comparison of the value function for the goal-reaching game across different
regime scenarios. Ψ1(z) represents the value function in a “bad” macroeconomic environment, while
Ψ1(z) represents the value function in a “good” environment. One may observe that when current
wealth is relatively low, the environment significantly impacts the value of the game. Conversely,
when current wealth in the ratio process is relatively high, the value of the game converges. This
phenomenon can be interpreted as follows: since both players operate under the same environment,
when current wealth is very high, the environment has a diminished impact on the games winning
probability.

AIMS Mathematics Volume 9, Issue 12, 34674–34704.



34693

Figure 1. Value function of goal reaching game.

Figure 2. Investment amount of A.

Figure 3. Investment amount of B.
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Figure 4. Comparing of value function with different environment.

To assess the sensitivity of numerical results to the parameters in this paper, we proceeded to
compare the value function under varying parameters. Table 4 presents the value function for different
values of µ1, with µ2 = 0.08, while keeping the other parameters constant as listed in Table 3.
Similarly, Table 5 shows the value function for different values of µ2, with µ1 = 0.08 and the
remaining parameters unchanged from Table 3. Upon examining these tables, it is evident that the
numerical results exhibit stability in response to changes in parameters. Specifically, regarding the
variations in µ1 and µ2, Table 4 reveals that an increase in µ1 leads to an increase in the probability of
Player A winning the game, and this marginal effect increases with higher values of µ1 . However, it is
also noteworthy that as the current ratio z increases, the marginal effect due to increases in µ1 ?
diminishes. In contrast, Table 5 indicates that an increase in µ2 results in a decrease in the probability
of Player A winning, yet the marginal effect does not decrease, which differs from the findings in
Table 4. Similar to the previous observation, the marginal effect in Table 5 also decreases with higher
values of the current ratio z. This suggests that when Player A has a significant advantage over Player
B, the benefits gained from selecting risky assets become less crucial for winning the game.

Table 4. Value function with various µ1.

Current ratio z µ1 = 0.11 µ1 = 0.13 µ1 = 0.15
0.000000 0.000000 0.000000 0.000000
0.101266 0.265215 0.265609 0.266390
0.202532 0.355853 0.356389 0.357510
0.303797 0.444018 0.444608 0.445943
0.405063 0.531364 0.532000 0.533563
0.506329 0.618786 0.619368 0.620788
0.607595 0.704511 0.705023 0.706283
0.708861 0.788952 0.789406 0.790530
0.810127 0.872271 0.872670 0.873683
0.911392 0.954548 0.954900 0.955817
0.974684 0.995346 1.005855 1.037951
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Table 5. Value function with various µ2

current ratio z µ2 = 0.04 µ2 = 0.05 µ2 = 0.06

0.000000 0.000000 0.000000 0.000000
0.012658 0.154382 0.154380 0.154378
0.202532 0.347252 0.347247 0.347241
0.303797 0.435608 0.435601 0.435593
0.405063 0.522875 0.522864 0.522855
0.506329 0.610320 0.610307 0.610294
0.607595 0.696173 0.696161 0.696148
0.708861 0.780713 0.780700 0.780688
0.810127 0.864116 0.864103 0.864090
0.911392 0.946462 0.946450 0.946437
0.974684 0.997462 0.997450 0.997438

5. Conclusions

This paper investigates optimal investment games for two investors subject to random time
solvency regulations. We first introduce administrative random time regulations into the stochastic
investment game problem, providing a practical framework to understand the impact of regulation on
fund managers risk management strategies. Additionally, we incorporate regime switching
coefficients into the SDEs, enhancing the models applicability across various economic scenarios.

Methodologically, we prove the regularity of the value function when the intensity of regulatory
time is a Markov chain, enabling optimal feedback control. By approximating the derivatives of the
value function using difference methods, we simplify the numerical computation process.
Furthermore, we develop a numerical scheme for the value function when the intensity of regulatory
time is a deterministic function of time, utilizing a Markov chain approximation approach to solve
PDEs with time-dependent parameters. These methods ensure robust and efficient numerical solutions
for complex control problems.

On the other hand, the practical relevance of this paper can be enhanced in several ways. For
instance, incorporating scenarios where the two players have distinct regulation intensities and
exploring potential dependencies between their intensity processes would enrich the analysis.
Additionally, a rigorous proof of the existence of solutions to the HJBI equation using viscosity
solution theory could provide stronger theoretical support. Lastly, adopting appropriate statistical
methods for parameter calibration is paramount for the practical application of the regime-switching
model.
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Appendix

Appendix A. Proof of Theorem 4.1

Proof. Note that in zero-sum game problem, policies adopted by one investor would be instantaneously
obtained by his opponent, and thus, for both investors, the game problem became a min max control
problem or max min control problem. For later discussion convenience, we introduce the following
shift operator of the Markov process. For detailed introduction on this concept, readers are referred
to [44]. Let

(X.,Z f ,g
. ) : (E × R)R

+

7→ (E × R)R
+

(A.1)

be the controlled canonical state process. Define the shift operators θt : (E × R)R
+

7→ (E × R)[t,∞) for
t > 0 by (θtω)s = ωs+t, s, t ∈ R+, ω ∈ (E × R)R

+

. It is clear that θt ∈ Ft and θt(Xs,Z
f ,g
s ) = (Xt+s,Z

f ,g
t+s).

Let τ0 = 0, then we have
τn+1 = τn + θτnτ1, n = 0, 1, 2, · · · (A.2)

For given suitable function w and control policies f and g, define two operators F and W on function
w as

F
f ,g
w (z, αi) = Ez,αi

∫ τ f ,g∧τ∧τ1

0
e−δsc(Z f ,g

s )ds + e−δ(τ
f ,g∧τ∧τ1)w(Z f ,g

τ f ,g∧τ∧τ1
)

 . (A.3)

Let

Ww(z, αi) = sup
f

inf
g
F

f ,g
w (z, αi),
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Ww(z, αi) = inf
g

sup
f
F

f ,g
w (z, αi) (A.4)

and ifWw(z, αi) = Ww(z, αi), define

Ww(z, αi) = Ww(z, αi) = Ww(z, αi). (A.5)

By dynamic programming principle, for any policy g adopted by investor B, the value function for
investor A satisfies

V(z, αi) = sup
f

inf
g
Ez,αi

[ ∫ τ f ,g∧τ∧τ1

0
e−δsc(Z f ,g

s )ds

+e−δ(τ
f ,g∧τ∧τ1)

[ ∫ τ f ,g∧τ

τ f ,g∧τ−τ f ,g∧τ∧τ1

e−δsc(Z f ,g
s )ds + e−δ(τ

f ,g∧τ−τ f ,g∧τ∧τ1)h(Z f ,g
τ f ,g∧τ∧

)
]]

= sup
f

inf
g
Ez,αi

[ ∫ τ f ,g∧τ∧τ1

0
e−δsc(Z f ,g

s )ds + e−δ(τ
f ,g∧τ∧τ1)V

(
Z f ,g
τ f ,g∧τ∧τ1

, Xτ f ,g∧τ∧τ1

) ]
(A.6)

= sup
f

inf
g
F

f ,g
V (z, αi) = WV(z, αi). (A.7)

Similarly, we have

V
(
Z f ,g
τ f ,g∧τ∧τ1

, Xτ f ,g∧τ∧τ1

)
= WV(Z f ,g

τ f ,g∧τ∧τ1
, Xτ f ,g∧τ∧τ1)

V(Z f ,g
τ f ,g∧τ∧τn

, Xτ f ,g∧τ∧τn) = WV(Z f ,g
τ f ,g∧τ∧τn

, Xτ f ,g∧τ∧τn). (A.8)

Thus, if we want to prove the regularities of the value function, we just need to prove the operator
W is a contractive operator and the candidate polices specified by (3.14 and 3.15) are the right optimal
policies.

To see this, from the structure of {( f ∗t , g
∗
t ), t ≥ 0}, we can see that, given the initial state X0 = αi,

the optimal strategy is f ∗(z, αi), g∗(z, αi) before time τ1. Hence, if the current state of Xt is ξτn , the
optimal strategy is f ∗(Zτn , Xτn), g

∗(Zτn , Xτn) before the next jump time of ξt. By noting that the operator
F

f ,g
V (., ., .) is defined by the path of (Z f ∗,g∗

t , Xt), t ≥ 0 up to the first transition time, and using (A.8), we
conclude that

V
f ∗,g

(z, αi) = E(z,αi)

∫ τ f ,g∧τ∧τk

0
e−δsc(Zs)ds + e−δτkV(Z f ∗,g∗

τk
, Xτk)

 , for k = 1, 2, 3, · · · . (A.9)

Following the method in [25], we prove Eq (A.9) by the mathematical induction method. It is obviously
true for k = 1 (see Eq (A.8). Suppose that Eq (A.9) holds for k = n. Then,

V(z, αi) = Ez,αi

∫ τ f ,g∧τ∧τn

0
e−δsc(Zs)ds + e−δτnV(Zτn , Xτn)1(τn<τ f ,g∧τ)


= Ez,αi

∫ τ f ,g∧τ∧τn

0
e−δsc(Zs)ds


+ Ez,αi

[
e−δτnV(Zτn , Xτn)1(τn<τ f ,g∧τ<τn+1)

]
(A.10)
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+ E(z,αi)

[
e−δτnV(Zτn , Xτn)1(τn+1<τ f ,g∧τ)

]
. (A.11)

Note that V(Zτn , Xτn) = θτnV(Z0, X0). By the induction hypothesis, we have that

V(Z f ∗,g∗
τn
, Xτn) = θτnV(Z0, X0)

= E(z,αi)

[∫ τn+1

τn

e−δsc(Zωs+τn
)ds

∣∣∣∣Fτn] (A.12)

+ E(z,αi)

[
e−δτn+11(τn+1<θτnτ

f ,g∧τ)V(Z f ∗,g∗
τn+1
, Xτn+1)

∣∣∣∣Fτn]. (A.13)

Substituting Eqs (A.12) and (A.13) into Eqs (A.10) and (A.11), we have

V(z, αi) = E(z,αi)

[ ∫ τ f ,g

0
e−δsc(Zs)ds

 1(τn<τ f ,g<τn+1) +

(∫ τn+1

0
e−δsc(Zs)ds

)
1(τn+1<τ f ,g)

]
+ E(z,αi)

[
e−δτn+1V(Z f ∗,g∗

τn+1
, Xτn+1)1(τn+1<τ f ,g∧τ)

]
= E(z,αi)

[ ∫ τ f ,g∧τ∧τn+1

0
e−δsc(Zs)ds + e−δτn+11(τn+1<τ f ,gτ)V(Z f ∗,g∗

τn+1
, Xτn+1)

]
. (A.14)

This indicates that (A.9) also holds for k = n + 1. Since we have proved that V(z, αi) is bounded and
we note that limn→∞ τn = ∞, letting n→ ∞ in the above equation, we have

lim
n→∞

e−δτn1(τn<τ f ,g∧τ)V(Z f ∗,g∗
τn
, Xτn) = E

[
e−δτ

f ,g∧τh(Xτ f ,g∧τ)
]

(A.15)

and this indicates that under the policy ( f ∗, g∗), the performance function is really the value function
and the operator is a conductive operator. □

Appendix B. Proof of Theorem 3.2

Proof. The idea of proof is: for a certain investment strategy of B, investor A chooses the corresponding
optimal investment strategy and applies the same method to B. Then, by Eq (2.16), we find the optimal
differential game policies. Specifically, for any policy g adopted by investor B, the HJBI equation of
investor A for maximizing v f ,g(t, z, αi) is

sup
f

{
A f ,gv f ,g(t, z, αi) + c − (δ + λt)v f ,g(t, z, αi)

}
= 0. (A.16)

Denote by f̃ (t, z, αi : g) the maximizer for investor A of Eq (A.16) under given policy g, and we further
have

A f̃ ,gv f̃ ,g + c − (δ + λt)v f̃ ,g = 0. (A.17)

Assuming that v f̃ ,g
zz < 0 and then differentiating (A.17) on both sides w.r.t f yields that the maximizer

f̃ (t, z, αi : g) is of the form

f̃ (t, z, αi : g) =
gσ2iρi

σ1i

(
1 +

v∗,gz (t, z, αi)
zv∗,gzz (t, z, αi)

)
−
θ1i

σ1i

v∗,gz (t, z, αi)
zv∗,gzz (t, z, αi)

(A.18)
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where
v∗,g(t, z, αi) = sup

f
v f ,g(t, z, αi) = v f̃ ,g(t, z, αi).

Obviously,
inf

g
v∗,g(t, z, αi) = inf

g
sup

f
v f ,g(t, z, αi) = V̄(t, z, αi)

is the upper value of SDG.
Similarly, for any given policy f adopted by Investor A, the HJBI equation of investor B for

minimizing v f ,g is given by

inf
g
{A f ,gv(t, z, αi) + c − (δ + λt)v(t, z, αi)} = 0,

then the minimizer for Investor B is specified by

g̃(t, z, αi : f ) =
θ2i

σ2i

zv f ,∗
z (t, z, αi)

2zv f ,∗
z (t, z, αi) + z2v f ,∗

zz (t, z, αi)
+ fρi

σ1i

σ2i

zv f ,∗
z (t, z, αi) + z2v f ,∗

zz (t, z, αi)

2zv f ,∗
z (t, z, αi) + z2v f ,∗

zz (t, z, αi)
, (A.19)

where v f ,∗ = infg v f ,g = v f ,g̃ and also

sup
f

inf
g

v f ,g(t, z, αi) = sup
f

v f ,∗ = sup
f

v f ,g̃( f ) = V
¯

(t, z, αi)

is the lower value function of SDG. Since we have shown that the saddle point of SDG (2.18) exists,
then the game must have an achievable value with

v∗,g̃ = v f̃ ,∗.

If this is the case, then we can substitute Eq (A.19) into Eq (A.18). By some manipulations, one can
find that

f ∗(t, z, αi) =
θ1i

σ1i

(
vz(t, z, αi)
Θv(t, z, αi)

) [(
ρ

ki
− 1

)
(vz(t, z, αi) + zvzz(t, z, αi)) − vz(t, z, αi)

]
. (A.20)

With a vice versa, it results in

g∗(t, z, αi) =
θ2i

σ2i

(
vz(t, z, αi)
Θv(t, z, αi)

) [
(1 − ρiki) (vz(t, z, αi) + zvzz(t, z, αi)) − vz(t, z, αi)

]
. (A.21)

Substituting (A.20) and (A.21) into (A.17) we finally find that the equations satisfied by value function
v(t, z, αi) are of the form

vt +
zvz(t, z, αi)2

2Θv(t, z, αi)
θ22i

[
(1 − k2

i )vz(t, z, αi) − (1 + k2
i − 2ρki) (vz(t, z, αi) + zvzz(t, z, αi))

]
+c(z) − (δ + λt)v(t, z, αi) +

d∑
j=1

v(t, z, α j) = 0, i = 1, 2, · · · , d, (A.22)

and naturally with boundary conditions

v(t, l, αi) = h(l) and v(t, u, αi) = h(u) for i = 1, 2, · · · , d.
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One may find that Eq (4.1) is just the reformulation of Eq (A.22). Thus when the value function of the
game exists and smooth enough, it solves the coupled HJB equation Eq (4.1). On the other hand, we
need to verify that the solutions to coupled Eq (4.1) is the value function of SDG. Although we can
rely on the result of [20] to complete our proof, here we want to prove our “verification” theorem by
the “Martingale optimality principle” which is widely used in many literatures. For example, see [47].

Suppose that w(t, z, αi), i = 1, 2, · · · , d are the solutions to couple equations (4.1). For any policy
pair ( f , g), define a process

M f ,g
h := e−δhw(t + h,Z f ,g

t+h, Xt+h) +
∫ t+h

t
e−δsc(Z f ,g

s )ds. (A.23)

Note that {(Z f ,g
t , Xt), t ≥ 0} is a vector valued Markov process and {Xt, t ≥ 0} is a process with bounded

total variation on finite time interval; thus, by Itô’s lemma (see [35]), we have that for any t ∧ τ f ,g,

M f ,g
h = M f ,g

0 +

∫ (t+h)∧τ f ,g∧τ

t
e−δs

[
ws(s,Z f ,g

s , Xs) +Aw(s,Z f ,g
s , Xs) + c(Z f ,g

s ) − δw(s,Z f ,g
s , Xs)

]
ds

+

∫ (t+h)∧τ f ,g∧τ

t
e−δsZ f ,g

s wz(s,Z f ,g
s , Xs)

[
fsσ1(Xs)dW (1)

s − gsσ2(Xs)dW (2)
s

]
.

If Eq (4.2) of Theorem 4.1 holds, then for any t ≥ 0, M f ,g
t∧τ f ,g∧τ

is a local martingale, and further, if
Eq (4.3) holds, then M f ,g

t∧τ f ,g∧τ
is uniformly integrable sup-martingale or sub-martingale, depending on

the choice of investment policies f and g. Note that P(τ f ,g ∧ τ < ∞) = 1 and interval [l, u] is bounded,
supposing that (Z f ,g

t , Xt) = (z, αi) ; and letting h→ ∞, it is easy to find that

v f ,g(t, z, αi) = Et,z,αi

1{τ∧τ f ,g>t}

∫ τ f ,g∧τ

t
e−δtc(Z f ,g

t )ds + e−δ(τ
f ,g∧τ)h(Z f ,g

τ f ,g∧τ
)


= Et,z,αi

[
M f ,g
τ f ,gτ

]
= Et,z,αi

M f ,g
h +

∫ τ f ,g

t+h
e−δs

[
A f ,gw(s,Z f ,g

s , Xs) + c(Z f ,g
s ) − (δ + λs)w(s,Z f ,g

s , Xs)
]

ds


= M f ,g

0 + Et,z,αi

∫ τ f ,g

t
e−δs

[
A f ,gw(s,Z f ,g

s , Xs) + c(Z f ,g
s ) − (δ + λs)w(s,Z f ,g

s , Xs)
]

ds


= w(t, z, αi) + Et,z,αi

[ ∫ τ f ,g∧τ

t
e−δs

[
Aw(s,Z f ,g

s , Xs)

+ c(Z f ,g
s ) − (δ + λs)w(s,Z f ,g

s , Xs)
]
ds

]
. (A.24)

For given policy g∗ adopted by Investor B and any policy f adopted by Investor A, Equation (A.16)
implies that

A f ,g∗w + c − (δ + λs)w ≤ 0

and
A f ∗,g∗w + c − (δ + λt)w = 0.

Thus, by Eq (A.24) we have

v f ,g∗(t, z, αi) ≤ w(t, z, αi) (A.25)
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and v f ∗,g∗(t, z, αi) = w(t, z, αi). By Eq (A.19), with a similar discussion, we find that for given policy f ∗

we have

A f ∗,gw + c − (δ + λs)w ≥ 0,
A f ∗,g∗w + c − (δ + λs)w = 0

and

v f ∗,g(t, z, αi) ≥ w(t, z, αi)

and
v f ∗,g∗(t, z, αi) = w(t, z, αi). (A.26)

Together with Eqs (A.25) and (A.26), we have Eq (2.16), i.e.,

v f ,g∗(t, z, αi) ≤ v f ∗,g∗(t, z, αi) = w(t, z, αi) ≤ v f ∗,g(t, z, αi)

which proves that the solutions of the coupled Eq (4.1) are the value of SDG. □
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