In the present paper, we describe dual translation surfaces in the Galilean 3-space having the constant Gaussian and mean curvatures as well as Weingarten and linear Weingarten dual translation surfaces. We also study dual translation surfaces in $ \mathbb{G}_{3} $ under the condition $ \Delta ^{II}r = \lambda _{i}r_{i} $, where $ \lambda _{i}\in R $ and $ \Delta ^{II} $ denotes the Laplacian operator respect to the second fundamental form.
Citation: Nural Yüksel. On dual surfaces in Galilean 3-space[J]. AIMS Mathematics, 2023, 8(2): 4830-4842. doi: 10.3934/math.2023240
In the present paper, we describe dual translation surfaces in the Galilean 3-space having the constant Gaussian and mean curvatures as well as Weingarten and linear Weingarten dual translation surfaces. We also study dual translation surfaces in $ \mathbb{G}_{3} $ under the condition $ \Delta ^{II}r = \lambda _{i}r_{i} $, where $ \lambda _{i}\in R $ and $ \Delta ^{II} $ denotes the Laplacian operator respect to the second fundamental form.
[1] | H. Scherk, Bemerkungen über die kleinste Fläche innerhalb gegebener Grenzen, J. Reine Angew. Math., 1835 (1835), 185–208. http://dx.doi.org/10.1515/crll.1835.13.185 doi: 10.1515/crll.1835.13.185 |
[2] | K. Arslan, B. Bayram, B. Bulca, G. Ozturk, On translation surfaces in 4-dimensional Euclidean space, Acta Comment. Univ. Ta., 20 (2016), 123–133. http://dx.doi.org/10.12697/ACUTM.2016.20.11 doi: 10.12697/ACUTM.2016.20.11 |
[3] | B. Bulca, On generalized LN-Surfaces in $\mathbb{E}^{4}$, Mathematical Sciences and Applications E-Notes, 1 (2013), 35–41. |
[4] | A. Cakmak, M. Karacan, S. Kiziltug, D. Yoon, Translation surfaces in the 3 dimensional Galilean space satisfying $\Delta ^IIx_{i} = \lambda _{i}x_{i}$, B. Korean Math. Soc., 54 (2017), 1241–1254. http://dx.doi.org/10.4134/BKMS.b160442 doi: 10.4134/BKMS.b160442 |
[5] | F. Dillen, W. Goemans, I. Woestyne, Translation surfaces of Weingarten type in 3-space, Bulletin of the Transilvania University of Brasov, 1 (2008), 1–12. |
[6] | B. Juttler, M. Sampoli, Hermite interpolation by piecewise polynomial surfaces with rational offsets, Comput. Aided Geom. D., 17 (2000), 361–385. http://dx.doi.org/10.1016/S0167-8396(00)00002-9 doi: 10.1016/S0167-8396(00)00002-9 |
[7] | H. Liu, Translation surfaces with constant mean curvature in 3-dimensional spaces, J. Geom., 64 (1999), 141–149. http://dx.doi.org/10.1007/BF01229219 doi: 10.1007/BF01229219 |
[8] | M. Lone, M. Karacan, Dual translation surfaces in the three-dimensional simply isotropic space $\mathbb{I}_{3}^{1}$, Tamkang J. Math., 49 (2018), 67–77. http://dx.doi.org/10.5556/j.tkjm.49.2018.2476 doi: 10.5556/j.tkjm.49.2018.2476 |
[9] | M. Peternell, B. Odehnal, On generalized LN-surfaces in 4-space, Proceedings of the twenty-first international symposium on Symbolic and algebraic computation, 2008,223–230. http://dx.doi.org/10.1145/1390768.1390800 doi: 10.1145/1390768.1390800 |
[10] | M. Sampoli, M. Peternell, B. Jüttler, Rational surfaces with linear normals and their convolutions with rational surfaces, Comput. Aided Geome. D., 23 (2006), 179–192. http://dx.doi.org/10.1016/j.cagd.2005.07.001 doi: 10.1016/j.cagd.2005.07.001 |
[11] | Z. Sipus, B. Divjak, Translation surfaces in the Galilean space, Glas. Mat., 46 (2011), 455–469. http://dx.doi.org/10.3336/gm.46.2.14 doi: 10.3336/gm.46.2.14 |
[12] | D. Yoon, Some classification of translation surfaces in Galilean 3-space, International Journal of Mathematical Analysis, 6 (2012), 1355–1361. |
[13] | D. Yoon, Weighted minimal translation surfaces in the Galilean space with density, Open Math., 15 (2017), 459–466. http://dx.doi.org/10.1515/math-2017-0043 doi: 10.1515/math-2017-0043 |
[14] | M. Karacan, N. Yüksel, Y. Tunçer, LCN-translation surfaces in Affine 3-space, Commun. Fac. Sci. Univ., 69 (2020), 461–472. |
[15] | N. Yüksel, M. Karacan, Y. Tunçer, Convulation of LN-translation surfaces in Euclidean 3-space, Acta Universitatis Apulensis, 68 (2021), 13–23. http://dx.doi.org/10.17114/j.aua.2021.68.02 doi: 10.17114/j.aua.2021.68.02 |