Loading [MathJax]/jax/output/SVG/jax.js
Research article

A scaled Polak-Ribiˊere-Polyak conjugate gradient algorithm for constrained nonlinear systems and motion control

  • Received: 14 September 2022 Revised: 15 November 2022 Accepted: 05 December 2022 Published: 09 December 2022
  • MSC : 90C26, 90C30

  • This paper proposes Polak-Ribiˊere-Polyak (PRP) conjugate gradient (CG) directions based on two efficient scaling strategies. The first scaling parameter is determined by approaching the quasi-Newton direction, and the second by utilizing the well-known Barzilai-Borwein approach. In addition, we proposed two directions that satisfy the sufficient descent criterion regardless of the line search strategy. The proposed directions lead to a matrix-free algorithm for solving monotone-constrained nonlinear systems. The proposed algorithm's global convergence analysis is presented using some underlying assumptions. Furthermore, a detailed numerical comparison with other existing algorithms revealed that the proposed algorithm is both efficient and effective. Finally, the proposed technique is applied to the motion control problem of a two-joint planar robotic manipulator.

    Citation: Jamilu Sabi'u, Ali Althobaiti, Saad Althobaiti, Soubhagya Kumar Sahoo, Thongchai Botmart. A scaled Polak-Ribiˊere-Polyak conjugate gradient algorithm for constrained nonlinear systems and motion control[J]. AIMS Mathematics, 2023, 8(2): 4843-4861. doi: 10.3934/math.2023241

    Related Papers:

    [1] Xuejie Ma, Songhua Wang . A hybrid approach to conjugate gradient algorithms for nonlinear systems of equations with applications in signal restoration. AIMS Mathematics, 2024, 9(12): 36167-36190. doi: 10.3934/math.20241717
    [2] Yixin Li, Chunguang Li, Wei Yang, Wensheng Zhang . A new conjugate gradient method with a restart direction and its application in image restoration. AIMS Mathematics, 2023, 8(12): 28791-28807. doi: 10.3934/math.20231475
    [3] Sani Aji, Poom Kumam, Aliyu Muhammed Awwal, Mahmoud Muhammad Yahaya, Kanokwan Sitthithakerngkiet . An efficient DY-type spectral conjugate gradient method for system of nonlinear monotone equations with application in signal recovery. AIMS Mathematics, 2021, 6(8): 8078-8106. doi: 10.3934/math.2021469
    [4] Wei Xue, Pengcheng Wan, Qiao Li, Ping Zhong, Gaohang Yu, Tao Tao . An online conjugate gradient algorithm for large-scale data analysis in machine learning. AIMS Mathematics, 2021, 6(2): 1515-1537. doi: 10.3934/math.2021092
    [5] Jamilu Sabi'u, Ibrahim Mohammed Sulaiman, P. Kaelo, Maulana Malik, Saadi Ahmad Kamaruddin . An optimal choice Dai-Liao conjugate gradient algorithm for unconstrained optimization and portfolio selection. AIMS Mathematics, 2024, 9(1): 642-664. doi: 10.3934/math.2024034
    [6] Xiyuan Zhang, Yueting Yang . A new hybrid conjugate gradient method close to the memoryless BFGS quasi-Newton method and its application in image restoration and machine learning. AIMS Mathematics, 2024, 9(10): 27535-27556. doi: 10.3934/math.20241337
    [7] Maulana Malik, Ibrahim Mohammed Sulaiman, Auwal Bala Abubakar, Gianinna Ardaneswari, Sukono . A new family of hybrid three-term conjugate gradient method for unconstrained optimization with application to image restoration and portfolio selection. AIMS Mathematics, 2023, 8(1): 1-28. doi: 10.3934/math.2023001
    [8] Xiao Guo, Chuanpei Xu, Zhibin Zhu, Benxin Zhang . Nonmonotone variable metric Barzilai-Borwein method for composite minimization problem. AIMS Mathematics, 2024, 9(6): 16335-16353. doi: 10.3934/math.2024791
    [9] Jie Guo, Zhong Wan . A new three-term conjugate gradient algorithm with modified gradient-differences for solving unconstrained optimization problems. AIMS Mathematics, 2023, 8(2): 2473-2488. doi: 10.3934/math.2023128
    [10] Shousheng Zhu . Double iterative algorithm for solving different constrained solutions of multivariate quadratic matrix equations. AIMS Mathematics, 2022, 7(2): 1845-1855. doi: 10.3934/math.2022106
  • This paper proposes Polak-Ribiˊere-Polyak (PRP) conjugate gradient (CG) directions based on two efficient scaling strategies. The first scaling parameter is determined by approaching the quasi-Newton direction, and the second by utilizing the well-known Barzilai-Borwein approach. In addition, we proposed two directions that satisfy the sufficient descent criterion regardless of the line search strategy. The proposed directions lead to a matrix-free algorithm for solving monotone-constrained nonlinear systems. The proposed algorithm's global convergence analysis is presented using some underlying assumptions. Furthermore, a detailed numerical comparison with other existing algorithms revealed that the proposed algorithm is both efficient and effective. Finally, the proposed technique is applied to the motion control problem of a two-joint planar robotic manipulator.



    Consider the constrained system

    F(x)=0,xΨ, (1.1)

    where the function F:ΨRn is a continuous, monotone, and ΨRn is nonempty, closed and convex. The monotonicity of F implies

    (F(x)F(y))T(xy)0,x,yΨ. (1.2)

    This problem has applications in financial forecasting problems [1] and compressive sensing [2]. The Newton method [3], quasi-Newton methods [4], and conjugate gradient (CG) methods [5] are among the most often used approaches for solving it. When dealing with large-scale nonsmooth algebraic systems, CG methods are seen to be the most successful. The iterative technique for the CG algorithm is as follows:

    x0Rnxk+1=xk+αkdk, (1.3)

    the vector dk is given by

    dk=F0,k=0,dk=Fk+βkdk1,k1, (1.4)

    where Fk=F(xk), and βk is the CG formula that differentiates CG methods. One of the most efficient CG formulas with restarting feature is the Polak-Ribiˊere-Polyak (PRP) [6] formula defined by

    βPRPk=FTk+1ykFk2, (1.5)

    where yk=Fk+1Fk. Despite the good features of the formula (1.5), it doesn't satisfy the sufficient descent condition (SDC). This opens up the possibility for future investigations on the modification of the PRP formula to satisfy the SDC. There are different PRP algorithms for solving the general monotone system of nonlinear equations in the literature. The first PRP algorithm for solving monotone algebraic systems was proposed by Cheng [7] where he extended the default PRP using the hyperplane technique discussed in [8]. Subsequently, Yu [9] proposed the derivative-free PRP for a large-scale monotone system that uses the backtracking line search procedure. Ahookhosh [10] proposed a descent three-term PRP algorithm for solving large-scale nonlinear monotone equations that combine extended PRP formula with the projection technique. Yuan and Zhang [11] proposed another descent-modified PRP CG algorithm for monotone nonlinear equations. Sabi'u and Gadu [12]proposed a projection-based hybrid FR and PRP algorithm for the monotone system. Others are; the improved three-term PRP CG method [13], spectral modified Polak–Ribiére–Polyak projection conjugate gradient method for solving monotone systems of nonlinear equations [14], the new hybrid algorithm for solving large-scale monotone nonlinear equations [15], and the accelerated CG algorithm for solving nonlinear monotone equations and image restoration problems [16].

    Moreover, for the convex-constrained system (1.1), Jinkui [17] proposed a spectral PRP projection algorithm for solving nonlinear monotone equations with convex constraints. Followed by; the projection-based PRP-like algorithm [18], the modified spectral PRP conjugate gradient projection method for solving large-scale monotone equations and its application in compressed sensing [19], the new hybrid prpfr CG method for solving nonlinear monotone equations and image restoration problems [20], the modified PRP CG projection method for solving large scale nonlinear convex constrained monotone equations [21], the modified PRP CG method with weaker conditions [22], the PRP-like algorithm for monotone operator equations [23], and the modified PRP-type conjugate gradient projection algorithm for solving large-scale monotone nonlinear equations with convex constraint [24]. In this work, we will propose a scaled PRP CG gradient algorithm for constrained nonlinear systems in which the scaling parameters are determined by approaching the quasi-Newton direction and exploiting the advantages of the well-known Barzilai-Borwein technique. The appealing features of our algorithm are: (i) derivative and matrix-free algorithm, (ii) exploiting best out of the PRP formula numerically and theoretically in contrast to conventional scaled CG algorithms, (iii) the application of the proposed algorithm in solving the two-joint planar robotic manipulator problems, and finally, (iv) the proposed directions will satisfy the SDC independent of the line search procedure.

    The next section will discuss the proposed algorithm using the scaling strategy, Section 3 contains the global convergence of the method. The numerical experiment will be presented in Section 4, and the last section will contain the concluding remarks.

    The scaling strategy is proved to be an efficient strategy for enhancing numerical and theoretical performances of the CG methods, see [25,26]. In line with this, we scaled the PRP CG (SPRP) formula to get

    βSPRPk=γβPRPk, (2.1)

    such that |γ|1. We are going to propose two effective ways of computing the parameter γ at each iteration.

    We are going to propose an optimal choice for the scaling parameter γ at every iteration by tending the proposed direction to approach the general quasi-Newton direction. Starting with the quasi-Newton equation

    yk=Bk+1sk, (2.2)

    where Bk+1 is a positive definite and symmetric Jacobian approximate. Now, the general quasi-Newton direction is as follows:

    dk+1=Hk+1Fk+1, (2.3)

    where the matrix Hk+1 is the inverse of Bk+1. Now, using (1.4) and (2.1), the SPRPR search direction can be written as

    dk+1=Fk+1+βSPRPkdk,k=0,1,. (2.4)

    In order to incorporate Jacobian approximation information in the quasi-Newton direction into our scheme, since the quasi-Newton schemes employ the actual Jacobian approximations, from (2.3), (2.4), and also by the virtue of equality relation, we get

    Hk+1Fk+1=Fk+1+γFTk+1ykFk2dk. (2.5)

    Multiplying (2.5) by Bk+1sTk to obtain

    sTkFk+1=Bk+1sTkFk+1γFTk+1ykFk2Bk+1sTkdk. (2.6)

    Solving for γ after eliminating the matrix Bk+1 in (2.6) by using (2.2) to get

    γk=(yksk)TFk+1βPRPkyTkdk. (2.7)

    We further achieved |γ1k|1 by using the Polak-Ribiˊere-Polyak non-negative restriction to obtain

    γ1k=min{1,|γk|}. (2.8)

    We will again propose another optimal choice for the scaling parameter γ by using some prominent features of the Barzilai-Borwein approach. The Barzilai-Borwein [27] proposed some prevalent choices for the scaling parameters given by

    ω1k=sTkskyTksk,andω2k=sTkykyTkyk. (2.9)

    By considering Perry's point of view, the scaled SPRP search direction can be written as

    d0=F0,dk+1=^Hk+1Fk+1,k=0,1,, (2.10)

    where ^Hk+1 is defined by

    ^Hk+1=IγykdTkFk2. (2.11)

    Now, we aim at taking the advantage of the Barzilai-Borwein [27] approach to propose the parameter γ by minimizing

    minγ^Hk+1ωkI2F, (2.12)

    where .F stands for the Frobenius matrix norm. Moreover, if we assigned Q=^Hk+1ωkI and utilized the relation Q2F=Trace(QTQ), we arrived at

    γk=(1ωk)yTkdkFk2yk2dk2, (2.13)

    In addition, we ensure that all of the prevalent choices for the Barzilai-Borwein scaling parameters are properly integrated into our scheme by suggesting that

    ωk=max{ωmin,min{ωik,ωmax}},i=1,2, (2.14)

    with 0<ωmin<ωmax<. We proposed the following modified version of (2.13) that satisfies |γ2k|1 as

    γ2k=min{1,|γk|}. (2.15)

    Furthermore, to guarantee that the sufficient descent condition is fulfilled independent of the line search process, we provided the following modified SPRP directions

    dSPRP1k+1=ζ1kFk+1+γ1kβPRPkdk,k=0,1,, (2.16)

    and,

    dSPRP2k+1=ζ2kFk+1+γ2kβPRPkdk,k=0,1,, (2.17)

    where

    ζ1k=1+γ1kβPRPkFTk+1dkFk+12,ζ2k=1+γ2kβPRPkFTk+1dkFk+12. (2.18)

    Below we present the proposed algorithm.

    Algorithm 2.1. The scaled PRP projection-based CG algorithm (SPRPCG)

    Step 0. Start by initializing: ϵ0, b(0,1), θ>0, τ>0, a>0, 0<ωminωmax and x0Rn. Set k=0 and d0=F0.

    Step 1. If Fkϵ, terminate, otherwise continue with Step 2.

    Step 2. Determine the scaled PRP CG direction dk via (2.16) or (2.17), where sk=ukxk, and yk=F(uk)Fk+bsk.

    Step 3. Set uk=xk+αkdk and compute αk=max{τθi:i=0,1,2,} satisfying

    F(uk)TdkaαkF(uk)dk2 (2.19)

    Step 4. If ukΨ and F(uk)=0 stop, otherwise

    xk+1=AΨ[xkvkF(hk)], (2.20)

    where A is the projection operator, and

    vk=F(uk)T(xkuk)F(uk)2. (2.21)

    Step 5. Set k=k+1 and repeat from Step 1.

    This section describes the global convergence of the proposed algorithm under the Lipschitz continuous and monotonicity assumptions on F.

    Lemma 3.1. For all k0, the line search (2.19) is well-defined.

    Proof. Suppose there exists k00 such that for i=0,1,2,,

    F(xk0+τθidk0)Tdk0<aτθiF(xk0+τθidk0)dk02. (3.1)

    Let i in (3.1), we have

    F(xk0)Tdk00. (3.2)

    Since the proposed directions satisfiy the sufficient condition, we have

    F(xk0)Tdk0F(xk0)2>0. (3.3)

    Thus, the relations (3.2) and (3.3) yield a contradiction. Hence, the proof is complete.

    Lemma 3.2. [25] If the sequences {xk} and {vk} are produced by the SPRPCG algorithm, then for some M>0 we have

    FkM,limkαkdk=0,k. (3.4)

    Proof. Now, from the line search (2.19), we have

    F(uk)T(xkuk)=F(uk)Tdkaα2kF(uk)dk2>0. (3.5)

    Assume that xΩ such that F(x)=0, using the monotonicity of F, we have

    F(uk)T(xkx)=F(uk)T(xkuk)+F(uk)T(ukx)F(uk)T(xkuk)+F(x)T(ukx)=F(uk)T(xkuk). (3.6)

    Using (3.5) and (3.6) to get

    xk+1x2=AΨ(xkvkF(uk))x2xkvkF(uk)x2=xkx22vkF(uk)T(xkx)+v2kF(uk)2. (3.7)

    By the definition of vk, and the Cauchy Schwarz inequality in (3.7), we obtain

    xk+1x2xkx22vkF(uk)T(xkuk)+v2kF(uk)2xkx2(F(uk)T(xkuk))2F(uk)2xkx2a2xkuk4, (3.8)

    thus, we have

    xk+1xxkx,k0. (3.9)

    Therefore, {xkx} is a decreasing sequence and hence convergent. Now, utilizing (3.9) and the Lispchitz continuity of F, we get

    F(xk)=F(xk)F(x)LxkxLx0x=M. (3.10)

    By (2.19), monotonicity of F, and the Cauchy Schwarz inequality, we obtain

    aF(uk)xkuk2F(uk)T(xkuk)F(uk)xkuk, (3.11)

    which gives

    axkuk1. (3.12)

    From (3.12), we see that the sequence {uk} is bounded. Also, from (3.8), we obtain

    a2k=0xkuk4k=0(xkx2xk+1x2)<. (3.13)

    This implies

    limkxkuk=limkαkdk=0. (3.14)

    The proof is now complete.

    Theorem 3.1. The SPRPCG algorithm converges, i.e.,

    lim infkFk=0. (3.15)

    Proof. Assume that (3.15) is not true, i.e., there exists q>0 such that

    Fkq,kN. (3.16)

    Again from the Lipschitz continuinity of F it is easy to see that yk(L+a)sk=N, where L is assumed to be the Lipschitz constant. Thus,

    dk+1=ζ1kFk+1+γ1kβPRPkdk=(1+γ1kβPRPkFTk+1dkFk+12)Fk+1+γ1kβPRPkdkFk+1+2+Fk+1ykq2dkM+2MNq2dk. (3.17)

    Now, let h=2MNq2, therefore from (3.17) we get

    dk+1M+hdkM(1+h+h2++hkk0+1)dk0M1h+dk0. (3.18)

    Hence, for Z=max{d1,d2,,dk0,M1h+dk0}, we obtain the boundedness of the proposed direction. Similarly, we can show that (2.17) is also bounded. From the sufficient condition and the Cauchy-Schwarz inequality we get

    FkdkFkdkFk2>0. (3.19)

    From (3.19) we obtain

    dkFk>q. (3.20)

    Therefore, from (3.14) and (3.20) we have

    limkαk=0. (3.21)

    Suppose αk doesn't safies the line search procedure (2.19), i.e.,

    F(xk+αkdk)Tdk<aαkF(xk+αkdk)dk2, (3.22)

    It is obvious that {xk} is bounded and has an accumulation point ˆx and an infinite index set D1 such that limkD1xk=ˆx. It also follows that {dk}kD1 is bounded. Therefore, there exist an infinite index set D2D1 with an accumulation point ˆd such that limkD2dk=ˆd. Now, taking limit in (3.22), we obtain

    F(ˆx)Tˆd0. (3.23)

    Also taking the limit in (3.19), we get

    F(ˆx)Tˆd0. (3.24)

    The last two inequalities give a contradiction and the proof is complete.

    The proposed scaled PRP algorithm is numerically compared to the MPRPA [24], DFSP [26], and STCGM [25] algorithms, using published values in the compared papers. Furthermore, we initialized the following variables for the SPRPCG algorithm: b=0.2, a=0.0001, θ=0.99, τ=1, ωmin=0.0001, ωmax=104, Ψ=Rn+, and ϵ=1010. Matlab14 is used to run all algorithms on an Intel Core i5 8th Generation personal computer. We carried out our experiment using the following test problems:

    Problem 4.1. Reference [25] F(xi)=2xisin|xi|, for i=1,2,3,,n, and Ω=Rn+.

    Problem 4.2. Reference [25] Fi(x)=4xi+(xi+12xi)x2i+13, for i=1,2,,n1, Fn(x)=4xn+(xn12xn)x2n13, and Ω=Rn+.

    Problem 4.3. Reference [26] Fi(x)=exi1,i=1,2,,n, and Ω=Rn+.

    Problem 4.4. Reference [25] F1(x)=cos(x1)9+3x1+8exp(x2) Fi(x)=cos(xi)9+3xi+8exp(xi2), for i=2,3,,n, and Ω=Rn+

    Problem 4.5. Reference [25] F1(x)=ex11, Fi(x)=exi+xi11,i=2,3,,n1, and Ω=Rn+.

    From Tables 1–5, we used eight initial points, namely; x10=(2,2,,2), x20=(1,12,13,,1n), x30=(1,1,,1), x40=(1n,2n,,1), x50=(n1n,n2n,,n1), x60=(2,22,23,,2n), x70=(11,112,113,,11n) and x80=(3,3,,3). In which the terms ITER, FVAL, TIME, and NORM stand for the number of iterations, function evaluation, computing time and the norm of Fk at the stopping criteria respectively.

    Table 1.  Numerical comparison of SPRPCG algorithm versus DFSP [26], STCGM [25] and MPRPA algorithms [24].
    Problem 1 SPRPCG(1) SPRPCG(2) MPRPA DFSP STCGM
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    500 x10 1 14 0.005949 0 1 14 0.005133 0 35 71 0.02165 9.62E-11 23 49 0.027654 7.9E-11 8 25 0.00943 6.42E-11
    x20 2 27 0.007886 0 2 27 0.007942 0 22 189 0.033029 5.1E-11 6 56 0.013212 0 5 53 0.008826 0
    x30 1 14 0.0054 0 1 14 0.006263 0 37 75 0.023115 6.37E-11 22 46 0.015948 6.25E-11 8 20 0.010007 7.57E-12
    x40 2 27 0.007635 0 2 27 0.007432 0 27 221 0.039841 5.48E-11 5 43 0.010364 0 17 136 0.123572 0
    x50 2 27 0.00817 0 2 27 0.007754 0 27 218 0.042077 9E-11 6 56 0.013789 0 17 130 0.023084 0
    x60 2 27 0.008051 0 2 27 0.007844 0 24 206 0.086541 5.98E-11 6 57 0.01194 0 8 25 0.012607 9.09E-11
    x70 2 27 0.007648 0 2 27 0.007856 0 27 218 0.044937 9E-11 6 56 0.013552 0 5 53 0.010073 0
    x80 2 27 0.008063 0 2 27 0.009222 0 1 4 0.004576 0 1 6 0.004244 0 8 20 0.011038 1.07E-11
    1000 x10 1 14 0.007079 0 1 14 0.006871 0 36 73 0.027915 6.73E-11 24 51 0.021346 3.39E-11 17 135 0.029611 0
    x20 2 27 0.009849 0 2 27 0.009229 0 21 185 0.055912 7.33E-11 6 56 0.016773 0 18 138 0.035786 0
    x30 1 14 0.006306 0 1 14 0.006283 0 37 75 0.030669 9.01E-11 22 46 0.02162 8.88E-11 9 27 0.048078 5.63E-12
    x40 2 27 0.010302 0 2 27 0.009833 0 11 83 0.027815 0 6 56 0.018072 0 5 53 0.082559 0
    x50 2 27 0.010085 0 2 27 0.01037 0 11 83 0.023342 0 6 57 0.017067 0 8 20 0.039123 3.39E-11
    x60 2 27 0.00958 0 2 27 0.012111 0 24 203 0.055708 8.24E-11 6 57 0.01826 0 18 144 0.223104 0
    x70 2 27 0.009673 0 2 27 0.00937 0 11 83 0.027194 0 6 57 0.017675 0 18 143 0.12509 0
    x80 2 27 0.011959 0 2 27 0.010101 0 1 4 0.004386 0 1 6 0.005709 0 9 27 0.212339 1.26E-11
    10000 x10 1 14 0.026098 0 1 14 0.025464 0 38 77 0.200128 5.22E-11 25 53 0.111401 3.45E-11 5 53 0.200085 0
    x20 2 27 0.047774 0 2 27 0.041911 0 11 98 0.153287 0 6 56 0.089864 0 8 20 0.164896 7.57E-11
    x30 1 14 0.025732 0 1 14 0.02334 0 39 79 0.246965 6.98E-11 23 48 0.096345 8.71E-11 18 144 0.601218 0
    x40 2 27 0.044049 0 2 27 0.042824 0 14 110 0.20247 0 6 56 0.091267 0 19 151 1.020748 0
    x50 2 27 0.047091 0 2 27 0.044061 0 14 110 0.195937 0 6 56 0.087251 0 9 27 0.268154 1.78E-11
    x60 2 27 0.04558 0 2 27 0.042455 0 24 202 0.328184 8.06E-11 6 57 0.086451 0 5 53 0.831941 0
    x70 2 27 0.045994 0 2 27 0.046985 0 14 110 0.201035 0 6 56 0.087745 0 9 22 0.299434 2.1E-12
    x80 2 27 0.047422 0 2 27 0.048712 0 1 4 0.009599 0 1 6 0.014179 0 19 150 2.261945 0
    50000 x10 1 14 0.096279 0 1 14 0.101904 0 39 79 0.767104 5.77E-11 25 53 0.437284 8.8E-11 19 152 1.872535 0
    x20 2 27 0.185007 0 2 27 0.184709 0 11 98 0.69978 0 6 56 0.374874 0 8 25 0.003892 7.04E-12
    x30 1 14 0.095243 0 1 14 0.097266 0 40 81 0.769044 7.73E-11 24 50 0.425448 6.2E-11 5 52 0.006669 0
    x40 2 27 0.389746 0 2 27 0.178131 0 16 127 0.929816 0 5 43 0.318514 0 7 18 0.00442 4.23E-11
    x50 2 27 0.36199 0 2 27 0.189434 0 16 127 0.992202 0 5 43 0.308814 0 6 68 0.009472 0
    x60 2 27 0.329928 0 2 27 0.178671 0 24 205 1.581707 6.03E-11 6 57 0.385743 0 5 51 0.00544 0
    x70 2 27 0.295669 0 2 27 0.185862 0 16 127 0.892216 0 5 43 0.296815 0 8 25 0.007498 7.6E-12
    x80 2 27 0.282256 0 2 27 0.201677 0 1 4 0.039697 0 1 6 0.046323 0 5 52 0.00674 0
    100000 x10 1 14 0.292199 0 1 14 0.187861 0 39 79 1.65231 8.17E-11 26 55 0.911281 4.11E-11 7 18 0.004102 4.57E-11
    x20 2 27 0.454309 0 2 27 0.376562 0 11 98 1.488625 0 6 56 0.725688 0 2 18 0.005527 0
    x30 1 14 0.237757 0 1 14 0.187526 0 41 83 1.776357 5.41E-11 24 50 0.861569 9.16E-11 5 51 0.005885 0
    x40 2 27 0.471781 0 2 27 0.397482 0 16 126 1.741981 0 5 43 0.589476 0 8 25 0.00696 8.13E-12
    x50 2 27 0.462599 0 2 27 0.370585 0 17 139 1.953327 0 5 43 0.59129 0 5 52 0.003811 0
    x60 2 27 0.453023 0 2 27 0.376696 0 24 204 2.711584 6.75E-11 6 57 0.760319 0 7 18 0.006613 4.88E-11
    x70 2 27 0.48348 0 2 27 0.362695 0 17 139 1.840027 0 5 43 0.583836 0 2 18 0.005547 0
    x80 2 27 0.495025 0 2 27 0.42318 0 1 4 0.076396 0 1 6 0.092276 0 6 60 0.006736 0

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical comparison of SPRPCG algorithm versus DFSP [26], STCGM [25], and MPRPA algorithms [24].
    Problem 2 SPRPCG(1) SPRPCG(2) MPRPA DFSP STCGM
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    500 x10 1 14 0.00616 0 1 14 0.006448 0 3 30 0.009564 0 9 85 0.024533 9.27E-11 1 14 0.007168 0
    x20 1 14 0.006193 0 1 14 0.005646 0 2 18 0.007262 0 6 71 0.01834 0 2 27 0.00951 0
    x30 1 14 0.005835 0 1 14 0.00614 0 3 32 0.009654 0 9 85 0.019681 4.01E-11 1 14 0.005623 0
    x40 1 14 0.006187 0 1 14 0.006602 0 4 45 0.011538 0 5 58 0.017104 0 1 14 0.007012 0
    x50 1 14 0.005661 0 1 14 0.006467 0 5 58 0.015613 0 5 58 0.016217 0 2 27 0.004613 0
    x60 1 14 0.005917 0 1 14 0.006679 0 2 18 0.007484 0 6 71 0.018448 0 1 14 0.006543 0
    x70 1 14 0.005769 0 1 14 0.006531 0 5 58 0.015084 0 5 58 0.016812 0 2 27 0.006565 0
    x80 1 3 0.004172 0 1 3 0.004642 0 1 9 0.006094 0 1 3 0.0038 0 1 14 0.007489 0
    1000 x10 1 14 0.006684 0 1 14 0.007853 0 3 30 0.012287 0 10 96 0.034862 4.34E-12 1 14 0.005651 0
    x20 1 14 0.00862 0 1 14 0.007312 0 4 45 0.017093 0 6 71 0.026176 0 2 27 0.011575 0
    x30 1 14 0.007406 0 1 14 0.00786 0 3 32 0.013344 0 9 85 0.030241 5.69E-11 1 14 0.032168 0
    x40 1 14 0.008181 0 1 14 0.008113 0 4 45 0.017142 0 5 58 0.021131 0 2 27 0.050307 0
    x50 1 14 0.007682 0 1 14 0.007276 0 5 58 0.020869 0 5 58 0.022127 0 1 14 0.033315 0
    x60 1 14 0.008416 0 1 14 0.008252 0 2 18 0.009431 0 6 71 0.02732 0 1 14 0.01479 0
    x70 1 14 0.008132 0 1 14 0.007605 0 5 58 0.01976 0 5 58 0.021743 0 2 27 0.061964 0
    x80 1 3 0.004654 0 1 3 0.004176 0 1 9 0.006268 0 1 3 0.004233 0 1 14 0.091229 0
    10000 x10 1 14 0.034062 0 1 14 0.034897 0 3 30 0.068186 0 10 96 0.221348 1.84E-11 2 27 0.285117 0
    x20 1 14 0.035571 0 1 14 0.034198 0 4 45 0.097955 0 6 71 0.156478 0 1 14 0.092376 0
    x30 1 14 0.034545 0 1 14 0.03343 0 3 32 0.071271 0 10 96 0.214021 5.82E-12 1 14 0.15221 0
    x40 1 14 0.033543 0 1 14 0.033777 0 4 45 0.095412 0 5 58 0.134208 0 2 27 0.185719 0
    x50 1 14 0.034247 0 1 14 0.033997 0 5 58 0.123651 0 5 58 0.126169 0 1 14 0.350673 0
    x60 1 14 0.033179 0 1 14 0.033604 0 2 18 0.040918 0 6 71 0.152915 0 2 27 0.502155 0
    x70 1 14 0.034517 0 1 14 0.032933 0 5 58 0.125501 0 5 58 0.127013 0 1 14 0.250523 0
    x80 1 3 0.01073 0 1 3 0.010852 0 1 9 0.022272 0 1 3 0.011772 0 1 14 0.308355 0
    50000 x10 1 14 0.144173 0 1 14 0.146136 0 3 30 0.323007 0 10 96 1.002645 6.02E-11 2 27 0.491642 0
    x20 1 14 0.144648 0 1 14 0.145859 0 4 45 0.453818 0 6 71 0.746929 0 1 14 0.004396 0
    x30 1 14 0.144283 0 1 14 0.147213 0 3 32 0.319894 0 10 96 0.997627 1.36E-11 2 27 0.008702 0
    x40 1 14 0.142842 0 1 14 0.139717 0 4 45 0.481684 0 5 58 0.609387 0 1 14 0.004268 0
    x50 1 14 0.142552 0 1 14 0.143273 0 5 58 0.585424 0 5 58 0.598987 0 1 14 0.005546 0
    x60 1 14 0.144208 0 1 14 0.141715 0 2 18 0.18099 0 6 71 0.737116 0 2 27 0.003315 0
    x70 1 14 0.141234 0 1 14 0.167606 0 5 58 0.603428 0 5 58 0.605638 0 1 14 0.004384 0
    x80 1 3 0.03565 0 1 3 0.036751 0 1 9 0.092186 0 1 3 0.036785 0 2 27 0.003942 0
    100000 x10 1 14 0.288466 0 1 14 0.281604 0 3 30 0.623989 0 11 107 2.484277 3.3E-12 1 14 0.004815 0
    x20 1 14 0.281627 0 1 14 0.281598 0 4 45 0.98394 0 6 71 1.63692 0 1 14 0.002507 0
    x30 1 14 0.28431 0 1 14 0.293397 0 3 32 0.670524 0 10 96 2.212571 1.98E-11 2 27 0.007047 0
    x40 1 14 0.274463 0 1 14 0.279905 0 4 45 0.980961 0 5 58 1.297317 0 1 14 0.002786 0
    x50 1 14 0.289894 0 1 14 0.289534 0 5 58 1.262739 0 5 58 1.323224 0 2 27 0.007023 0
    x60 1 14 0.288962 0 1 14 0.289889 0 2 18 0.437525 0 6 71 1.624833 0 1 14 0.002699 0
    x70 1 14 0.284459 0 1 14 0.286553 0 5 58 1.210862 0 5 58 1.331419 0 1 14 0.005008 0
    x80 1 3 0.068662 0 1 3 0.066155 0 1 9 0.191548 0 1 3 0.073259 0 2 27 0.003077 0

     | Show Table
    DownLoad: CSV
    Table 3.  Numerical comparison of SPRPCG algorithm versus DFSP [26], STCGM [25], and MPRPA algorithms [24].
    Problem 3 SPRPCG(1) SPRPCG(2) MPRPA DFSP STCGM
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    500 x10 1 14 0.005065 0 1 14 0.005702 0 33 76 0.019308 5.51E-11 23 58 0.020183 3.02E-11 1 14 0.004557 0
    x20 2 27 0.007402 0 2 27 0.007827 0 21 163 0.027816 6.91E-11 6 66 0.013712 0 4 50 0.009725 0
    x30 1 14 0.006092 0 1 14 0.006609 0 31 63 0.017096 6.17E-11 23 49 0.016392 3.01E-11 8 26 0.008178 1.33E-11
    x40 2 27 0.008335 0 2 27 0.00744 0 24 179 0.031604 5.04E-11 5 46 0.011696 0 4 49 0.011172 0
    x50 2 27 0.007787 0 2 27 0.007068 0 25 180 0.032925 3.7E-11 6 60 0.013848 0 4 49 0.011364 0
    x60 2 27 0.007486 0 2 27 0.008 0 9 69 0.013732 0 5 50 0.011986 0 1 14 0.006459 0
    x70 2 27 0.007729 0 2 27 0.008037 0 25 180 0.029996 3.7E-11 6 60 0.012398 0 4 50 0.012351 0
    x80 1 3 0.004163 0 1 3 0.003858 0 1 3 0.003841 0 1 3 0.003691 0 8 26 0.005912 1.88E-11
    1000 x10 1 14 0.006594 0 1 14 0.006499 0 33 76 0.025403 7.79E-11 23 58 0.022122 4.28E-11 4 49 0.012041 0
    x20 2 27 0.00899 0 2 27 0.008246 0 21 161 0.0376 6.85E-11 6 66 0.017943 0 4 49 0.00792 0
    x30 1 14 0.006662 0 1 14 0.005875 0 31 63 0.022674 8.72E-11 23 49 0.021127 4.27E-11 1 14 0.02137 0
    x40 2 27 0.009007 0 2 27 0.009575 0 25 179 0.041317 5.58E-11 5 46 0.014358 0 4 50 0.06797 0
    x50 2 27 0.009047 0 2 27 0.008923 0 25 180 0.042117 4.65E-11 6 59 0.016748 0 8 26 0.039395 5.95E-11
    x60 2 27 0.00939 0 2 27 0.009113 0 9 69 0.018797 0 5 50 0.014086 0 4 49 0.057746 0
    x70 2 27 0.009503 0 2 27 0.009876 0 25 180 0.041626 4.65E-11 6 59 0.015995 0 4 49 0.041586 0
    x80 1 3 0.004261 0 1 3 0.004402 0 1 3 0.003657 0 1 3 0.003832 0 1 14 0.072798 0
    10000 x10 1 14 0.023061 0 1 14 0.023074 0 35 80 0.129582 6.03E-11 24 60 0.097674 4.11E-11 4 50 0.164054 0
    x20 2 27 0.035898 0 2 27 0.037322 0 21 164 0.216364 5.35E-11 6 66 0.08125 0 9 28 0.160535 2.63E-12
    x30 1 14 0.021199 0 1 14 0.021082 0 33 67 0.10905 6.76E-11 24 51 0.085409 4.15E-11 4 49 0.196973 0
    x40 2 27 0.037109 0 2 27 0.037459 0 26 189 0.235984 4.6E-11 6 59 0.076381 0 4 49 0.249326 0
    x50 2 27 0.036095 0 2 27 0.036294 0 26 190 0.221085 4.43E-11 6 59 0.074121 0 1 14 0.093946 0
    x60 2 27 0.036085 0 2 27 0.03981 0 9 69 0.085623 0 5 50 0.06211 0 4 50 0.543017 0
    x70 2 27 0.038158 0 2 27 0.041666 0 26 190 0.240258 4.43E-11 6 59 0.075446 0 9 28 0.202887 3.72E-12
    x80 1 3 0.007806 0 1 3 0.007687 0 1 3 0.007488 0 1 3 0.007325 0 4 49 0.526138 0
    50000 x10 1 14 0.081922 0 1 14 0.083414 0 36 82 0.541356 6.68E-11 24 60 0.416089 9.4E-11 4 49 0.368258 0
    x20 2 27 0.140326 0 2 27 0.144851 0 21 162 0.807446 7.06E-11 6 66 0.337831 0 1 14 0.003984 0
    x30 1 14 0.075495 0 1 14 0.075355 0 34 69 0.486584 7.48E-11 24 51 0.423295 9.67E-11 4 50 0.008395 0
    x40 2 27 0.144768 0 2 27 0.144126 0 26 189 0.999566 9.44E-11 6 59 0.332809 0 7 24 0.004468 7.44E-11
    x50 2 27 0.142742 0 2 27 0.142328 0 27 196 1.025835 3.04E-11 6 59 0.32261 0 4 50 0.007229 0
    x60 2 27 0.146161 0 2 27 0.141539 0 9 69 0.363751 0 5 50 0.252642 0 4 49 0.003732 0
    x70 2 27 0.137162 0 2 27 0.142295 0 27 196 1.075529 3.04E-11 6 59 0.320723 0 1 14 0.004157 0
    x80 1 3 0.022052 0 1 3 0.022394 0 1 3 0.020302 0 1 3 0.021952 0 4 50 0.008577 0
    100000 x10 1 14 0.170899 0 1 14 0.159038 0 36 82 1.047394 9.47E-11 25 62 0.808989 4.06E-11 7 24 0.005938 8.03E-11
    x20 2 27 0.27101 0 2 27 0.276769 0 21 163 1.65595 6.97E-11 6 66 0.673843 0 4 50 0.003566 0
    x30 1 14 0.155212 0 1 14 0.154447 0 35 71 0.963394 5.24E-11 25 53 0.722074 4.23E-11 4 49 0.006346 0
    x40 2 27 0.283305 0 2 27 0.298966 0 27 194 2.086407 5.26E-11 6 59 0.630216 0 1 14 0.005198 0
    x50 2 27 0.28082 0 2 27 0.284577 0 27 194 2.034998 5.36E-11 6 59 0.632952 0 4 50 0.003295 0
    x60 2 27 0.275107 0 2 27 0.283492 0 9 69 0.73778 0 5 50 0.534591 0 7 24 0.006763 8.59E-11
    x70 2 27 0.266159 0 2 27 0.284258 0 27 194 2.066981 5.36E-11 6 59 0.631261 0 4 50 0.004407 0
    x80 1 3 0.039855 0 1 3 0.039435 0 1 3 0.043968 0 1 3 0.041767 0 4 49 0.005924 0

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical comparison of SPRPCG algorithm versus DFSP [26], STCGM [25], and MPRPA algorithms [24].
    Problem 4 SPRPCG(1) SPRPCG(2) MPRPA DFSP STCGM
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    500 x10 1 14 0.006826 0 1 14 0.007826 0 1 14 0.006633 0 2 26 0.019218 0 1 14 0.00379 0
    x20 1 14 0.006307 0 1 14 0.006454 0 2 27 0.009176 0 2 24 0.008969 0 1 14 0.007432 0
    x30 1 14 0.007101 0 1 14 0.007151 0 1 14 0.006891 0 2 24 0.00945 0 1 14 0.004323 0
    x40 1 14 0.00711 0 1 14 0.007319 0 2 27 0.010489 0 5 63 0.019216 0 1 14 0.004346 0
    x50 1 14 0.006932 0 1 14 0.00683 0 1 14 0.00652 0 5 63 0.020158 0 1 14 0.004034 0
    x60 1 14 0.007527 0 1 14 0.007411 0 1 14 0.005606 0 2 24 0.009091 0 1 14 0.009196 0
    x70 1 14 0.007439 0 1 14 0.007114 0 1 14 0.006337 0 5 63 0.018762 0 1 14 0.004103 0
    x80 2 27 0.049849 0 2 27 0.01603 0 1 12 0.006616 0 1 9 0.005235 0 1 14 0.008791 0
    1000 x10 1 14 0.009025 0 1 14 0.009648 0 1 14 0.008993 0 2 26 0.014945 0 1 14 0.003916 0
    x20 1 14 0.008027 0 1 14 0.007585 0 2 27 0.011886 0 2 24 0.011934 0 1 14 0.009405 0
    x30 1 14 0.009139 0 1 14 0.009137 0 1 14 0.008549 0 2 24 0.013415 0 1 14 0.026243 0
    x40 1 14 0.009153 0 1 14 0.008709 0 2 27 0.013689 0 5 63 0.029391 0 1 14 0.032894 0
    x50 1 14 0.00978 0 1 14 0.009065 0 1 14 0.010278 0 5 63 0.029139 0 1 14 0.020722 0
    x60 1 14 0.007148 0 1 14 0.008364 0 1 14 0.007888 0 2 24 0.011702 0 1 14 0.037939 0
    x70 1 14 0.008703 0 1 14 0.010072 0 1 14 0.008224 0 5 63 0.028993 0 1 14 0.033949 0
    x80 2 27 0.023566 0 2 27 0.0236 0 1 12 0.007582 0 1 9 0.007211 0 1 14 0.116722 0
    10000 x10 1 14 0.035678 0 1 14 0.035677 0 1 14 0.034545 0 2 26 0.059988 0 1 14 0.125283 0
    x20 1 14 0.033449 0 1 14 0.032304 0 2 27 0.058071 0 2 24 0.052061 0 1 14 0.096024 0
    x30 1 14 0.035411 0 1 14 0.037456 0 1 14 0.033769 0 2 24 0.057893 0 1 14 0.136805 0
    x40 1 14 0.03611 0 1 14 0.037482 0 2 27 0.073244 0 5 63 0.149776 0 1 14 0.096786 0
    x50 1 14 0.037252 0 1 14 0.038376 0 2 27 0.062793 0 5 63 0.149361 0 1 14 0.292711 0
    x60 1 14 0.03319 0 1 14 0.034843 0 1 14 0.029509 0 2 24 0.052367 0 1 14 0.209517 0
    x70 1 14 0.035739 0 1 14 0.035515 0 2 27 0.061489 0 5 63 0.144616 0 1 14 0.300057 0
    x80 2 27 0.097333 0 2 27 0.091716 0 1 12 0.030227 0 1 9 0.023266 0 1 14 0.208775 0
    50000 x10 1 14 0.153393 0 1 14 0.158395 0 1 14 0.143519 0 2 26 0.264726 0 1 14 0.332781 0
    x20 1 14 0.131391 0 1 14 0.127049 0 2 27 0.239204 0 2 24 0.215807 0 1 14 0.003875 0
    x30 1 14 0.149158 0 1 14 0.153346 0 1 14 0.138068 0 2 24 0.255097 0 1 14 0.003652 0
    x40 1 14 0.148252 0 1 14 0.146291 0 2 27 0.285022 0 5 63 0.634745 0 1 14 0.00406 0
    x50 1 14 0.149375 0 1 14 0.14397 0 2 27 0.284079 0 5 63 0.656865 0 1 14 0.00492 0
    x60 1 14 0.134224 0 1 14 0.133645 0 1 14 0.127057 0 2 24 0.217751 0 1 14 0.003563 0
    x70 1 14 0.142002 0 1 14 0.141666 0 2 27 0.287637 0 5 63 0.646074 0 1 14 0.004908 0
    x80 2 27 0.383604 0 2 27 0.388343 0 1 12 0.117212 0 1 9 0.093164 0 1 14 0.004126 0
    100000 x10 1 14 0.290397 0 1 14 0.278313 0 1 14 0.275099 0 2 26 0.572796 0 1 14 0.004362 0
    x20 1 14 0.258255 0 1 14 0.251781 0 2 27 0.496492 0 2 24 0.515692 0 1 14 0.003318 0
    x30 1 14 0.284833 0 1 14 0.289966 0 1 14 0.270982 0 2 24 0.557129 0 1 14 0.003945 0
    x40 1 14 0.296112 0 1 14 0.283181 0 4 42 0.847157 0 5 63 1.408381 0 1 14 0.003111 0
    x50 1 14 0.282097 0 1 14 0.286251 0 2 27 0.546095 0 5 63 1.457335 0 1 14 0.003803 0
    x60 1 14 0.249396 0 1 14 0.256651 0 1 14 0.254254 0 2 24 0.489583 0 1 14 0.00303 0
    x70 1 14 0.281713 0 1 14 0.294178 0 2 27 0.547392 0 5 63 1.384502 0 1 14 0.004455 0
    x80 2 27 0.761841 0 2 27 0.780406 0 1 12 0.239859 0 1 9 0.182963 0 1 14 0.002743 0

     | Show Table
    DownLoad: CSV
    Table 5.  Numerical comparison of SPRPCG algorithm versus DFSP [26], STCGM [25], and MPRPA algorithms [24].
    Problem 5 SPRPCG(1) SPRPCG(2) MPRPA DFSP STCGM
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    500 x10 2 27 0.031742 0 2 27 0.04209 0 5 61 0.041802 0 7 73 0.059792 0 2 27 0.033139 0
    x20 2 27 0.008489 0 2 27 0.025384 0 3 30 0.026171 0 4 45 0.017053 0 3 40 0.026812 0
    x30 2 27 0.004682 0 2 27 0.006594 0 7 84 0.010716 0 6 69 0.010229 0 3 40 0.00564 0
    x40 3 40 0.009244 0 3 40 0.008962 0 4 35 0.006085 0 5 57 0.011329 0 4 53 0.006817 0
    x50 2 27 0.006779 0 2 27 0.007919 0 94 1214 0.155333 9.21E-11 5 56 0.011371 0 3 40 0.006959 0
    x60 2 27 0.006728 0 2 27 0.008041 0 4 38 0.00796 0 6 72 0.013581 0 2 27 0.004568 0
    x70 2 27 0.006478 0 2 27 0.006652 0 94 1214 0.170393 9.21E-11 5 56 0.01192 0 3 40 0.008646 0
    x80 5 66 0.013512 0 5 66 0.012999 0 2 16 0.005321 0 2 17 0.006361 0 3 40 0.011563 0
    1000 x10 2 27 0.009778 0 2 27 0.009275 0 4 48 0.012698 0 8 84 0.023033 0 4 53 0.011952 0
    x20 2 27 0.009892 0 2 27 0.008778 0 3 30 0.009737 0 4 45 0.012158 0 3 40 0.011994 0
    x30 2 27 0.009887 0 2 27 0.009648 0 6 71 0.016186 0 9 78 0.019961 0 2 27 0.036469 0
    x40 3 40 0.012129 0 3 40 0.011647 0 4 34 0.010774 0 5 56 0.015291 0 3 40 0.04434 0
    x50 2 27 0.009335 0 2 27 0.009274 0 5 51 0.013627 0 5 56 0.014255 0 3 40 0.042221 0
    x60 2 27 0.00897 0 2 27 0.014394 0 4 38 0.010787 0 6 72 0.017204 0 4 53 0.062818 0
    x70 2 27 0.009645 0 2 27 0.008467 0 5 51 0.013366 0 5 56 0.016387 0 3 40 0.046493 0
    x80 5 66 0.017462 0 5 66 0.018425 0 2 16 0.006788 0 2 17 0.007563 0 2 27 0.126165 0
    10000 x10 2 27 0.037271 0 2 27 0.039634 0 4 48 0.061572 0 8 65 0.114416 0 3 40 0.22902 0
    x20 2 27 0.037149 0 2 27 0.061507 0 3 30 0.041141 0 4 45 0.070161 0 3 40 0.17597 0
    x30 2 27 0.040859 0 2 27 0.044393 0 5 56 0.076301 0 9 68 0.104997 0 4 53 0.298447 0
    x40 3 40 0.05355 0 3 40 0.069205 0 4 33 0.046029 0 5 56 0.087023 0 3 40 0.18673 0
    x50 2 27 0.048185 0 2 27 0.049425 0 4 34 0.058705 0 5 56 0.086953 0 2 27 0.319727 0
    x60 2 27 0.043537 0 2 27 0.046542 0 4 38 0.063938 0 6 72 0.106673 0 3 40 0.295781 0
    x70 2 27 0.047107 0 2 27 0.048886 0 4 34 0.060947 0 5 56 0.084679 0 3 40 0.496922 0
    x80 5 66 0.106679 0 5 66 0.1112 0 2 16 0.030821 0 3 30 0.046564 0 4 53 0.461636 0
    50000 x10 2 27 0.209091 0 2 27 0.206392 0 4 48 0.343347 0 10 89 0.61594 0 3 40 0.697509 0
    x20 2 27 0.188112 0 2 27 0.188834 0 3 30 0.223882 0 4 45 0.316733 0 2 27 0.002348 0
    x30 2 27 0.201281 0 2 27 0.201688 0 5 56 0.391772 0 7 71 0.493416 0 3 40 0.004563 0
    x40 3 40 0.296775 0 3 40 0.287346 0 4 33 0.259131 0 5 56 0.39824 0 3 40 0.007643 0
    x50 2 27 0.19805 0 2 27 0.198322 0 4 33 0.247166 0 5 56 0.395003 0 3 40 0.00774 0
    x60 2 27 0.186891 0 2 27 0.188475 0 4 38 0.277752 0 6 72 0.490119 0 3 40 0.005804 0
    x70 2 27 0.210921 0 2 27 0.201636 0 4 33 0.250694 0 5 56 0.397919 0 2 27 0.004488 0
    x80 5 66 0.497911 0 5 66 0.476101 0 2 16 0.131588 0 3 30 0.211239 0 3 40 0.005869 0
    100000 x10 2 27 0.424607 0 2 27 0.401009 0 4 48 0.672367 0 9 67 1.027705 0 3 40 0.004747 0
    x20 2 27 0.388978 0 2 27 0.391899 0 3 30 0.448241 0 4 45 0.689342 0 3 40 0.006402 0
    x30 2 27 0.394533 0 2 27 0.401115 0 5 56 0.80191 0 11 124 1.801222 0 3 40 0.004984 0
    x40 3 40 0.571176 0 3 40 0.615386 0 4 33 0.507612 0 5 56 0.86444 0 2 27 0.003807 0
    x50 2 27 0.404814 0 2 27 0.389485 0 4 33 0.499288 0 5 56 0.869131 0 3 40 0.004945 0
    x60 2 27 0.360131 0 2 27 0.405794 0 4 38 0.583693 0 6 72 1.080131 0 3 40 0.006149 0
    x70 2 27 0.380321 0 2 27 0.382274 0 4 33 0.558948 0 5 56 0.898111 0 3 40 0.007208 0
    x80 5 66 0.940601 0 5 66 0.972183 0 2 16 0.258353 0 3 30 0.494071 0 3 40 0.006065 0

     | Show Table
    DownLoad: CSV

    When compared to the MPRP, STCGM, and DFSP algorithms, the proposed approach solved the Problem 1 with the lowest number of ITER and FVAL. However, for the computing time, the MPRP algorithm won initially and failed to STCGM as the dimension increases. Likewise for Problems 2–5. Moreover, it is remarkable to note that the MPRP algorithm is competing with the STCGM algorithm for computing time with respect to all the considered test problems. Finally, the proposed algorithm outperforms the MPRPA, STCGM, and DFSP algorithms for ITER, and FVAL, but competes with the STCGM algorithm with respect to TIME.

    Furthermore, we used the well-known Dolan and Morˊe [28] performance profile to produce a more exact numerical comparison using the bulk data in all the tables. Figure 1 three subfigures indicate that the SPRPCG algorithm with two directions reflects the upper left curves with regards to 1a and 1b. However, for the 1c, the SPRPCG initially won in the fractions of 0 to approximately 0.9, and later failed to STCGM algorithm. As a result, when compared to the MPRPA, STCGM, and DFSP algorithms, the SPRPCG algorithm has fewer iterations, and function evaluations on average and competes with the STCGM algorithm for CPU time.

    Figure 1.  Comparison of the proposed algorithm with the two directions versus MPRPA and DFSP algorithms.

    IIn this part, we will tackle the motion control of a two-joint planar robotic manipulator using the SPRP projection-based algorithm. The following discrete-time kinematics equation describes the position level of the two-joint planar robot manipulator

    f(ηk)=σk, (4.1)

    where the kinematics function f(.) is defined by

    f(η)=(m1p1m2p2m1r1m2r2), (4.2)

    in which, mj for j=1,2 is the length of the jth rod, p1=cos(η1), r1=sin(η1), p2=cos(η1+η2), and r2=sin(η1+η2). Also, the vector σkR2 stands for the end effector position vector, and the joint angle vector is represented by ηkR2, for more detail about the kinematics equation we refer readers to [29] and the references therein. In our experiment we aimed at solving the series of optimization problems at a time interval tk[0,tf] defined as follows:

    minσkR212σkσdk2. (4.3)

    In this experiment, mj=1 is assigned for j=1,2, and the end effector is regulated to trace a Lissajous curve as provided by

    σdk=(1.5+0.2sinπtk532+0.2sin(πtk5+π3)). (4.4)

    For SPRP algorithm, we initialized b=0.2, a=0.08, θ=0.2, τ=1, ωmin=0.0001, ωmax=104, η0=[0,π3], and the end task duration tf=10s. We further divided the task duration [0,10] into 200 equal parts.

    Figure 2 depicts the experimental findings generated by the SPRP algorithm, including the robot trajectories synthesized by the SPRP algorithm, the end plots of the effector trajectory and the intended route, and the error of the SPRP algorithm on both the vertical x and y axes. It is not difficult to see from Figures 2a and 2b that the SPRP algorithm completes the specified task satisfactorily. Furthermore, Figures 2c and 2d show that the resultant error is around 105.

    Figure 2.  Numerical results generated by SPRP algorithm for the motion control of a two-joint planar robotic manipulator problem.

    A robust descent-scaled PRP projection-based technique for solving monotone nonlinear problems with convex constraints was given. The monotone and Lipschitz continuous assumptions are applied to accomplish the proposed algorithm's global convergence. A detailed numerical comparison with the related algorithms indicated that the proposed technique is much more efficient than the existing algorithms. Furthermore, the proposed technique is used to solve the motion control problem of a two-joint planar robotic manipulator with extremely little error. Finally, the provided technique may be used for various problems, including solving unconstrained optimization problems, generic algebraic nonlinear systems, and so on.

    This research received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, (grant number B05F650018).

    The authors declare no conflict of interest.



    [1] Z. Dai, H. Zhou, F Wen, S. He, Efficient predictability of stock return volatility: The role of stock market implied volatility, N. Am. J. Econ. Financ., 52 (2020), 101174. https://doi.org/10.1016/j.najef.2020.101174 doi: 10.1016/j.najef.2020.101174
    [2] M. Figueiredo, R. Nowak, S. J. Wright, Gradient projection for sparse reconstruction application to compressed sensing and other inverse problems, IEEE J-STSP, 1 (2007), 586–597. https://doi.org/10.1109/JSTSP.2007.910281 doi: 10.1109/JSTSP.2007.910281
    [3] J. M. Ortega, W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, 1970.
    [4] G. Zhou, K. C. Toh, Superlinear convergence of a Newton-type algorithm for monotone equations, J. Optim. Theory Appl., 125 (2005), 205–221. https://doi.org/10.1007/s10957-004-1721-7 doi: 10.1007/s10957-004-1721-7
    [5] J. Sabi'u, A. Shah, M. Y. Waziri, A modified Hager-Zhang conjugate gradient method with optimal choices for solving monotone nonlinear equations, Int. J. Comput. Math., 99 (2022), 332–354. https://doi.org/10.1080/00207160.2021.1910814 doi: 10.1080/00207160.2021.1910814
    [6] E. Polak, G. Ribiˊere, Note sur la convergence de methods de directions conjugees, Rev. Fr. Inform. Rech. Oper., 16 (1969), 35–43.
    [7] W. Cheng, A PRP type method for systems of monotone equations, Math. Comput. Model., 50 (2009), 15–20. https://doi.org/10.1016/j.mcm.2009.04.007 doi: 10.1016/j.mcm.2009.04.007
    [8] M. Fukushima, L. Qi (Eds.), Reformulation: Nonsmooth, piecewise smooth, semismooth and smoothing methods, Kluwer Academic Publishers, 1999.
    [9] G. Yu, A derivative-free method for solving large-scale nonlinear systems of equations, J. Ind. Manag. Optim., 6 (2010), 149–160. https://doi.org/10.3934/jimo.2010.6.149 doi: 10.3934/jimo.2010.6.149
    [10] M. Ahookhosh, K. Amini, S. Bahrami, Two derivative-free projection approaches for systems of large-scale nonlinear monotone equations, Numer. Algor., 64 (2013), 21–42. https://doi.org/10.1007/s11075-012-9653-z doi: 10.1007/s11075-012-9653-z
    [11] G. Yuan, M. Zhang, A three-terms Polak-Ribiˊere-Polyak conjugate gradient algorithm for large-scale nonlinear equations, J. Comput. Appl. Math., 286 (2015), 186–195. https://doi.org/10.1016/j.cam.2015.03.014 doi: 10.1016/j.cam.2015.03.014
    [12] J. Sabi'u, A. M. Gadu, A projected hybrid conjugate gradient method for solving large-scale system of nonlinear equations, Malays. J. Comput. Appl. Math., 1 (2018), 10–20. https://doi.org/10.37231/myjcam.2018.1.2.20 doi: 10.37231/myjcam.2018.1.2.20
    [13] A. B. Abubakar, P. Kumam, An improved three-term derivative-free method for solving nonlinear equations, Comput. Appl. Math., 37 (2018), 6760–6773. https://doi.org/10.1007/s40314-018-0712-5 doi: 10.1007/s40314-018-0712-5
    [14] A. M. Awwal, P. Kumam, A. B. Abubakar, Spectral modified Polak-Ribiére-Polyak projection conjugate gradient method for solving monotone systems of nonlinear equations, Appl. Math. Comput., 362 (2019), 124514. https://doi.org/10.1016/j.amc.2019.06.028 doi: 10.1016/j.amc.2019.06.028
    [15] J. Sabi'u, A. Shah, M. Y. Waziri, M. K. Dauda, A new hybrid approach for solving large-scale monotone nonlinear equations, J. Math. Fund. Sci., 52 (2020), 17–26. https://doi.org/10.5614/j.math.fund.sci.2020.52.1.2 doi: 10.5614/j.math.fund.sci.2020.52.1.2
    [16] H. Feng, T. Li, An accelerated conjugate gradient algorithm for solving nonlinear monotone equations and image restoration problems, Math. Probl. Eng., 2020 (2020), 7945467. https://doi.org/10.1155/2020/7945467 doi: 10.1155/2020/7945467
    [17] J. K. Liu, Derivative-free spectral PRP projection method for solving nonlinear monotone equations with convex constraints (Chinese), Math. Numer. Sin., 38 (2016), 113–124. https://doi.org/10.12286/jssx.2016.2.113 doi: 10.12286/jssx.2016.2.113
    [18] D. Feng, M. Sun, X. Wang, A family of conjugate gradient methods for large-scale nonlinear equations, J. Inequal. Appl., 2017 (2017), 236. https://doi.org/10.1186/s13660-017-1510-0 doi: 10.1186/s13660-017-1510-0
    [19] J. Guo, Z. Wan, A modified spectral PRP conjugate gradient projection method for solving large-scale monotone equations and its application in compressed sensing, Math. Probl. Eng., 2019 (2019), 5261830. https://doi.org/10.1155/2019/5261830 doi: 10.1155/2019/5261830
    [20] Y. Zhou, Y. Wu, X. Li, A new hybrid prpfr conjugate gradient method for solving nonlinear monotone equations and image restoration problems, Math. Probl. Eng., 2020 (2020), 6391321. https://doi.org/10.1155/2020/6391321 doi: 10.1155/2020/6391321
    [21] Y. Hu, Y. Wang, An efficient projected gradient method for convex constrained monotone equations with applications in compressive sensing, J. Appl. Math. Phys., 8 (2020), 983–998. https://doi.org/10.4236/jamp.2020.86077 doi: 10.4236/jamp.2020.86077
    [22] H. Guan, S. Wang, A modified conjugate gradient method for solving large-scale nonlinear equations, Math. Probl. Eng. 2021 (2021), 9919595. https://doi.org/10.1155/2021/9919595 doi: 10.1155/2021/9919595
    [23] A. B. Abubakar, P. Kumam, H. Mohammad, A. H. Ibrahim, PRP-like algorithm for monotone operator equations, Japan J. Indust. Appl. Math., 38 (2021), 805–822. https://doi.org/10.1007/s13160-021-00462-2 doi: 10.1007/s13160-021-00462-2
    [24] M. Y. Waziri, K. Ahmed, A. S. Halilu, A modified PRP-type conjugate gradient projection algorithm for solving large-scale monotone nonlinear equations with convex constraint, J. Comput. Appl. Math., 407 (2022), 114035. https://doi.org/10.1016/j.cam.2021.114035 doi: 10.1016/j.cam.2021.114035
    [25] J. Sabi'u, K. O. Aremu, A. Althobaiti, A. Shah, Scaled three-term conjugate gradient methods for solving monotone equations with application, Symmetry, 14 (2022), 936. https://doi.org/10.3390/sym14050936 doi: 10.3390/sym14050936
    [26] K. Amini, P. Faramarzi, S. Bahrami, A spectral conjugate gradient projection algorithm to solve the large-scale system of monotone nonlinear equations with application to compressed sensing, Int. J. Comput. Math., 99 (2022), 2290–2307. https://doi.org/10.1080/00207160.2022.2047180 doi: 10.1080/00207160.2022.2047180
    [27] J. Barzilai, J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal., 8 (1988), 141–148. https://doi.org/10.1093/imanum/8.1.141 doi: 10.1093/imanum/8.1.141
    [28] E. D. Dolan, J. J. Morˊe, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201–213. https://doi.org/10.1007/s101070100263 doi: 10.1007/s101070100263
    [29] Y. Zhang, L. He, C. Hu, J. Guo, J. Li, Y. Shi, General four-step discrete-time zeroing and derivative dynamics applied to time-varying nonlinear optimization, J. Comput. Appl. Math., 347 (2019), 314–329. https://doi.org/10.1016/j.cam.2018.08.017 doi: 10.1016/j.cam.2018.08.017
  • This article has been cited by:

    1. Saman Babaie–Kafaki, Zohre Aminifard, An augmented memoryless Davidon–Fletcher–Powell method based on the Dai–Liao approach, 2024, 0233-1934, 1, 10.1080/02331934.2024.2395432
    2. Qun Li, Guolin Chen, Maolin Liang, An efficient spectral three-term derivative-free projection algorithm for a large-scale system of monotone nonlinear equations, 2025, 44, 2238-3603, 10.1007/s40314-025-03103-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1815) PDF downloads(80) Cited by(2)

Figures and Tables

Figures(2)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog