Constrained solutions are required in some practical problems. This paper studies the problem of different constrained solutions for a class of multivariate quadratic matrix equations, which has rarely been studied before. First, the quadratic matrix equations are transformed into linear matrix equations by Newton's method. Second, the different constrained solutions of the linear matrix equations are solved by the modified conjugate gradient method, and then the different constrained solutions of the multivariate quadratic matrix equations are obtained. Finally, the convergence of the algorithm is proved. The algorithm can be well performed on the computers, and the effectiveness of the method is verified by numerical examples.
Citation: Shousheng Zhu. Double iterative algorithm for solving different constrained solutions of multivariate quadratic matrix equations[J]. AIMS Mathematics, 2022, 7(2): 1845-1855. doi: 10.3934/math.2022106
Constrained solutions are required in some practical problems. This paper studies the problem of different constrained solutions for a class of multivariate quadratic matrix equations, which has rarely been studied before. First, the quadratic matrix equations are transformed into linear matrix equations by Newton's method. Second, the different constrained solutions of the linear matrix equations are solved by the modified conjugate gradient method, and then the different constrained solutions of the multivariate quadratic matrix equations are obtained. Finally, the convergence of the algorithm is proved. The algorithm can be well performed on the computers, and the effectiveness of the method is verified by numerical examples.
[1] | N. J. Higham, H. M. Kim, Solving a quadratic matrix equation by Newton's method with exact line searches, SIAM J. Matrix Anal. Appl., 23 (2001), 303–316. doi: 10.1137/S0895479899350976. doi: 10.1137/S0895479899350976 |
[2] | C. R. Chen, R. C. Li, C. F. Ma, Highly accurate doubling algorithm for quadratic matrix equation from quasi-birth-and-death process, Linear Algebra Appl., 583 (2019), 1–45. doi: 10.1016/j.laa.2019.08.018. doi: 10.1016/j.laa.2019.08.018 |
[3] | V. Angelova, M. Hached, K. Jbilou, Sensitivity of the solution to nonsymmetric differential matrix Riccati equation, Mathematics, 9 (2021), 1–18. doi: 10.3390/math9080855. doi: 10.3390/math9080855 |
[4] | D. A. Bini, B. Iannazzo, F. Poloni, A fast Newton's method for a nonsymmetric algebraic Riccati equation, SIAM J. Matrix Anal. Appl., 30 (2008), 276–290. doi: 10.1137/070681478. doi: 10.1137/070681478 |
[5] | P. Benner, Z. Bujanović, P. Kürschner, J. Saak, RADI: A low-rank ADI-type algorithm for large scale algebraic Riccati equations, Numer. Math., 138 (2018), 301–330. doi: 10.1007/s00211-017-0907-5. doi: 10.1007/s00211-017-0907-5 |
[6] | C. L. Liu, J. G. Xue, R. C. Li, Accurate numerical solution for shifted M-matrix algebraic Riccati equations, J. Sci. Comput., 84 (2020), 1–27. doi: 10.1007/s10915-020-01263-4. doi: 10.1007/s10915-020-01263-4 |
[7] | A. G. Wu, H. J. Sun, Y. Zhang, A novel iterative algorithm for solving coupled Riccati equations, Appl. Math. Comput., 364 (2020), 1–14. doi: 10.1016/j.amc.2019.124645. doi: 10.1016/j.amc.2019.124645 |
[8] | S. Koskie, C. Coumarbatch, Z. Gajic, Exact slow-fast decomposition of the singularly perturbed matrix differential Riccati equation, Appl. Math. Comput., 216 (2010), 1401–1411. doi: 10.1016/j.amc.2010.02.040. doi: 10.1016/j.amc.2010.02.040 |
[9] | E. Burlakov, V. Verkhlyutov, I. Malkov, V. Ushakov, Assessment of cortical travelling waves parameters using radially symmetric solutions to neural field equations with microstructure, In: Proceedings of international conference on neuroinformatics, Cham: Springer, 2020, 51–57. doi: 10.1007/978-3-030-60577-3_5. |
[10] | M. Dehghan, M. Hajarian, An iterative algorithm for solving a pair of matrix equations $AYB = E$, $CYD = F$ over generalized centro-symmetric matrices, Comput. Math. Appl., 56 (2008), 3246–3260. doi: 10.1016/j.camwa.2008.07.031. doi: 10.1016/j.camwa.2008.07.031 |
[11] | T. X. Yan, C. F. Ma, The BCR algorithms for solving the reflexive or anti-reflexive solutions of generalized coupled Sylvester matrix equations, J. Franklin I., 357 (2020), 12787–12807. doi: 10.1016/j.jfranklin.2020.09.030. doi: 10.1016/j.jfranklin.2020.09.030 |
[12] | A. P. Liao, Z. Z. Bai, The constrained solutions of two matrix equations, Acta Math. Sinica, 18 (2002), 671–678. doi: 10.1007/s10114-002-0204-8. doi: 10.1007/s10114-002-0204-8 |
[13] | X. M. Liu, K. Y. Zhang, MCG method for a different constrained least square solution of two-variables linear matrix equations for recurrent event data (in Chinese), Acta Math. Appl. Sin., 34 (2011), 938–948. |
[14] | J. H. Long, X. Y. Hu, L. Zhang, Improved Newton's method with exact line searches to solve quadratic matrix equation, J. Comput. Appl. Math., 222 (2008), 645–654. doi: 10.1016/j.cam.2007.12.018. doi: 10.1016/j.cam.2007.12.018 |
[15] | C. H. Guo, W. W. Lin, Convergence rates of some iterative methods for nonsymmetric algebraic Riccati equations arising in transport theory, Linear Algebra Appl., 432 (2010), 283–291. doi: 10.1016/j.laa.2009.08.004. doi: 10.1016/j.laa.2009.08.004 |
[16] | K. Y. Zhang, S. S. Zhu, X. M. Liu, An iterative method to find symmetric solutions of two-variable Riccati matrix equation (in Chinese), Acta Math. Appl. Sin., 36 (2013), 831–839. |
[17] | S. S. Zhu, K. Y. Zhang, An iterative method for different constrained solutions of two-variable Riccati matrix equation (in Chinese), J. Syst. Sci. Math. Sci., 33 (2013), 197–205. doi: 10.12341/jssms12039. doi: 10.12341/jssms12039 |
[18] | C. Q. Lv, C. F. Ma, A modified CG algorithm for solving generalized coupled Sylvester tensor equations, Appl. Math. Comput., 365 (2020), 1–15. doi: 10.1016/j.amc.2019.124699. doi: 10.1016/j.amc.2019.124699 |
[19] | X. D. Zhang, Matrix analysis and applications, 1 Ed., Cambridge: Cambridge University Press, 2017. |