In this paper, we propose a Holling-IV predator-prey system considering the perturbation of a slow-varying environmental capacity parameter. This study aims to address how the slowly varying environmental capacity parameter affects the behavior of the system. Based on bifurcation theory and the slow-fast analysis method, the critical condition for the Hopf bifurcation of the autonomous system is given. The oscillatory behavior of the system under different perturbation amplitudes is investigated, corresponding mechanism explanations are given, and it is found that the motion pattern of the non-autonomous system is closely related to the Hopf bifurcation and attractor types of the autonomous system. Meanwhile, there is a bifurcation hysteresis behavior of the system in bursting oscillations, and the bifurcation hysteresis mechanism of the system is analyzed by applying asymptotic theory, and its hysteresis time length is calculated. The final study found that the larger the perturbation amplitude, the longer the hysteresis time. These results can provide theoretical analyses for the prediction, regulation, and control of predator-prey populations.
Citation: Kexin Zhang, Caihui Yu, Hongbin Wang, Xianghong Li. Multi-scale dynamics of predator-prey systems with Holling-IV functional response[J]. AIMS Mathematics, 2024, 9(2): 3559-3575. doi: 10.3934/math.2024174
In this paper, we propose a Holling-IV predator-prey system considering the perturbation of a slow-varying environmental capacity parameter. This study aims to address how the slowly varying environmental capacity parameter affects the behavior of the system. Based on bifurcation theory and the slow-fast analysis method, the critical condition for the Hopf bifurcation of the autonomous system is given. The oscillatory behavior of the system under different perturbation amplitudes is investigated, corresponding mechanism explanations are given, and it is found that the motion pattern of the non-autonomous system is closely related to the Hopf bifurcation and attractor types of the autonomous system. Meanwhile, there is a bifurcation hysteresis behavior of the system in bursting oscillations, and the bifurcation hysteresis mechanism of the system is analyzed by applying asymptotic theory, and its hysteresis time length is calculated. The final study found that the larger the perturbation amplitude, the longer the hysteresis time. These results can provide theoretical analyses for the prediction, regulation, and control of predator-prey populations.
[1] | A. J. Lotka, Elements of Physical Biology, Philadelphia: Lippincott Williams and Wilkins, 1925. |
[2] | V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926), 558–560. https://doi.org/10.1038/118558a0 doi: 10.1038/118558a0 |
[3] | Y. Liu, Y. Yang, Dynamics and bifurcation analysis of a delay non-smooth Filippov Leslie-Gower prey-predator model, Nonlinear Dyn., 111 (2023), 18541–18557. https://doi.org/10.1007/s11071-023-08789-w doi: 10.1007/s11071-023-08789-w |
[4] | Y. Yao, T. Song, Z. Li, Bifurcations of a predator-prey system with cooperative hunting and Holling III functional responses, Nonlinear Dyn., 110 (2022), 915–932. https://doi.org/10.1007/s11071-022-07653-7 doi: 10.1007/s11071-022-07653-7 |
[5] | T. Saha, P. J. Pal, M. Banerjee, Slow-fast analysis of a modified Leslie-Gower model with Holling type I functional response, Nonlinear Dyn., 108 (2022), 4531–4555. https://doi.org/10.1007/s11071-022-07370-1 doi: 10.1007/s11071-022-07370-1 |
[6] | R. Yadav, N. Mukherjee, M. Sen, Spatiotemporal dynamics of a prey–predator model with Allee effect in prey and hunting cooperation in a Holling type III functional response, Nonlinear Dyn., 107 (2022), 1397–1410. https://doi.org/10.1007/s11071-021-07066-y doi: 10.1007/s11071-021-07066-y |
[7] | A. Al. Khabyah, R. Ahmed, M. S. Akram, S. Akhtar, Stability, bifurcation, and chaos control in a discrete predator-prey model with strong Allee effect, AIMS Math., 8 (2023), 8060–8081. https://doi:10.3934/math.2023408 doi: 10.3934/math.2023408 |
[8] | A. Suleman, R. Ahmed, F. S. Alshammari, N. A. Shah, Dynamic complexity of a slow-fast predator-prey model with herd behavior, AIMS Math., 8 (2023), 24446–24472. https://doi:10.3934/math.20231247 doi: 10.3934/math.20231247 |
[9] | C. Qin, J. Du, Y. Hui, Dynamical behavior of a stochastic predator-prey model with Holling-type III functional response and infectious predator, AIMS Math., 7 (2022), 7403–7418. https://doi:10.3934/math.2022413 doi: 10.3934/math.2022413 |
[10] | C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the European pine sawfly, Can. Entomol., 91 (1959), 293–320. |
[11] | C. S. Holling, Some characteristics of simple types of predation and parasitism, Can. Entomol., 91 (1959), 385–398. |
[12] | C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97 (1965), 5–60. |
[13] | W. Sokol, J. A. Howell, Kinetics of phenol oxidation by washed cells, Biotechnol. Bioeng., 23 (1981), 2039–2049. |
[14] | A. Arsie, C. Kottegoda, C. Shan, A predator-prey system with generalized Holling type IV functional response and Allee effects in prey, J. Differ. Equ., 309 (2022), 704–740. https://doi.org/10.1016/j.jde.2021.11.041 doi: 10.1016/j.jde.2021.11.041 |
[15] | H. Wang, P. Liu, Pattern dynamics of a predator-prey system with cross-diffusion, Allee effect and generalized Holling IV functional response, Chaos Soliton Fract., 171 (2023), 113456. https://doi.org/10.1016/j.chaos.2023.113456 doi: 10.1016/j.chaos.2023.113456 |
[16] | T. Zhou, X. Zhang, M. Xiang, Z. Wu, Permanence and almost periodic solution of a predator-prey discrete system with Holling IV functional response, Int. J. Biomath., 9 (2016), 1650035. https://doi.org/10.1142/S1793524516500352 doi: 10.1142/S1793524516500352 |
[17] | Z. Shang, Y. Qiao, Bifurcation analysis of a Leslie-type predator-prey system with simplified Holling type IV functional response and strong Allee effect on prey, Nonlinear Anal. Real., 64 (2022), 103453. https://doi.org/10.1016/j.nonrwa.2021.103453 doi: 10.1016/j.nonrwa.2021.103453 |
[18] | L. Ma, H. Wang, J. Gao, Dynamics of two-species Holling type-II predator-prey system with cross-diffusion, J. Differ. Equ., 365 (2023), 591–635. https://doi.org/10.1016/j.jde.2023.04.035 doi: 10.1016/j.jde.2023.04.035 |
[19] | L. Ma, H. Wang, D. Li, Steady states of a diffusive Lotka-Volterra system with fear effects, Z. Angew. Math. Phys., 74 (2023), 106. https://doi.org/10.1007/s00033-023-01998-8 doi: 10.1007/s00033-023-01998-8 |
[20] | J. C. Huang, D. M. Xiao, Analyses of bifurcations and stability in a predator-prey system with Holling Type-IV functional response, Acta Math. Appl. Sin., 20 (2004), 167–178. https://doi.org/10.1007/s10255-004-0159-x doi: 10.1007/s10255-004-0159-x |
[21] | C. Chai, Y. Shao, Y. Wang, Analysis of a Holling-type IV stochastic prey-predator system with anti-predatory behavior and Lévy noise, AIMS Math., 8 (2023), 21033–21054. https://doi:10.3934/math.20231071 doi: 10.3934/math.20231071 |
[22] | M. Ruan, C. Li, X. Li, Codimension two 1:1 strong resonance bifurcation in a discrete predator-prey model with Holling IV functional response, AIMS Math., 7 (2022), 3150–3168. https://doi:10.3934/math.2022174 doi: 10.3934/math.2022174 |
[23] | B. Xie, N. Zhang, Influence of fear effect on a Holling type III prey-predator system with the prey refuge, AIMS Math., 7 (2022), 1811-1830. https://doi:10.3934/math.2022104 doi: 10.3934/math.2022104 |
[24] | R. FitzHugh, Mathematical models of threshold phenomena in the nerve membrane, Bull. Math. Biophys., 17 (1955), 257–278. |
[25] | X. Han, Q. Bi, Slow passage through canard explosion and mixed-mode oscillations in the forced Van der Pol's equation, Nonlinear Dyn., 68 (2012), 275–283. https://doi.org/10.1007/s11071-011-0226-9 doi: 10.1007/s11071-011-0226-9 |
[26] | M. Krupa, P. Szmolyan, Relaxation oscillation and canard explosion, J. Differ. Equ., 174 (2001), 312–368. https://doi.org/10.1006/jdeq.2000.3929 doi: 10.1006/jdeq.2000.3929 |
[27] | A. F. Vakakis, Relaxation oscillations, subharmonic orbits and chaos in the dynamics of a linear lattice with a local essentially nonlinear attachment, Nonlinear Dyn., 61 (2010), 443–463. https://doi.org/10.1007/s11071-010-9661-2 doi: 10.1007/s11071-010-9661-2 |
[28] | Y. Xia, Z. Zhang, Q. Bi, Relaxation oscillations and the mechanism in a periodically excited vector field with pitchfork-Hopf bifurcation, Nonlinear Dyn., 101 (2020), 37–51. https://doi.org/10.1007/s11071-020-05795-0 doi: 10.1007/s11071-020-05795-0 |
[29] | L. Yaru, L. Shenquan, Canard-induced mixed-mode oscillations and bifurcation analysis in a reduced 3D pyramidal cell model, Nonlinear Dyn., 101 (2020), 531–567. https://doi.org/10.1007/s11071-020-05801-5 doi: 10.1007/s11071-020-05801-5 |
[30] | J. Rinzel, Ordinary and partial differential equations, Lect. Notes Math., 1151 (1985), 304. |
[31] | C. Kuehn, Multiple Time Scale Dynamics, Berlin: Springer, 2015. |
[32] | L. M. Bilinsky, S. M. Baer, Slow passage through a Hopf bifurcation in excitable nerve cables: spatial delays and spatial memory effects, B Math. Biol., 80 (2018), 130–150. https://doi.org/10.1007/s11538-017-0366-2 doi: 10.1007/s11538-017-0366-2 |
[33] | X. Han, Q. Bi, C. Zhang, Y. Yu, Study of mixed-mode oscillations in a parametrically excited van der Pol system, Nonlinear Dyn., 77 (2014), 1285–1296. https://doi.org/10.1007/s11071-014-1377-2 doi: 10.1007/s11071-014-1377-2 |
[34] | C. Wang, X. Zhang, Canards, heteroclinic and homoclinic orbits for a slow-fast predator-prey model of generalized Holling type III, J. Differ. Equ., 267 (2019), 3397–3441. https://doi.org/10.1016/j.jde.2019.04.008 doi: 10.1016/j.jde.2019.04.008 |
[35] | L. Zhao, J. Shen, Relaxation oscillations in a slow-fast predator-prey model with weak Allee effect and Holling-IV functional response, Commun. Nonlinear Sci., 112 (2022), 106517. https://doi.org/10.1016/j.cnsns.2022.106517 doi: 10.1016/j.cnsns.2022.106517 |
[36] | S. G. Glebov, O. M. Kiselev, Applicability of the WKB method in the perturbation problem for the equation of principal resonance, Russ J. Math. Phys., 9 (2002), 60–83. |
[37] | T. Erneux, E. L. Reiss, L. J. Holden, M. Georgiou, Slow passage through bifurcation and limit points- asymptotic theory and applications, Lect. Notes Math., 1493 (1991), 14–28. |