
This paper deals with the newly modification of Beta-type Bernstein operators, preserving constant and Korovkin's other test functions ei=ti, i=1,2 in limit case. Then the uniform convergence of the constructed operators is given. The rate of convergence is obtained in terms of modulus of continuity, Peetre-K functionals and Lipschitz class functions. After that, the Voronovskaya-type asymptotic result for these operators is established. At last, the graphical results of the newly defined operators are discussed.
Citation: Qing-Bo Cai, Melek Sofyalıoğlu, Kadir Kanat, Bayram Çekim. Some approximation results for the new modification of Bernstein-Beta operators[J]. AIMS Mathematics, 2022, 7(2): 1831-1844. doi: 10.3934/math.2022105
[1] | Mohammad Ayman-Mursaleen, Md. Nasiruzzaman, Nadeem Rao, Mohammad Dilshad, Kottakkaran Sooppy Nisar . Approximation by the modified λ-Bernstein-polynomial in terms of basis function. AIMS Mathematics, 2024, 9(2): 4409-4426. doi: 10.3934/math.2024217 |
[2] | Mustafa Kara . Approximation properties of the new type generalized Bernstein-Kantorovich operators. AIMS Mathematics, 2022, 7(3): 3826-3844. doi: 10.3934/math.2022212 |
[3] | Erkan Agyuz . On the convergence properties of generalized Szász–Kantorovich type operators involving Frobenious–Euler–Simsek-type polynomials. AIMS Mathematics, 2024, 9(10): 28195-28210. doi: 10.3934/math.20241367 |
[4] | Bo-Yong Lian, Qing-Bo Cai . Approximation properties of Stancu type Szász-Mirakjan operators. AIMS Mathematics, 2023, 8(9): 21769-21780. doi: 10.3934/math.20231110 |
[5] | Purshottam Narain Agrawal, Behar Baxhaku, Abhishek Kumar . Approximation properties of generalized Baskakov operators. AIMS Mathematics, 2021, 6(7): 6986-7016. doi: 10.3934/math.2021410 |
[6] | Guorong Zhou, Qing-Bo Cai . Bivariate λ-Bernstein operators on triangular domain. AIMS Mathematics, 2024, 9(6): 14405-14424. doi: 10.3934/math.2024700 |
[7] | B. B. Jena, S. K. Paikray, S. A. Mohiuddine, Vishnu Narayan Mishra . Relatively equi-statistical convergence via deferred Nörlund mean based on difference operator of fractional-order and related approximation theorems. AIMS Mathematics, 2020, 5(1): 650-672. doi: 10.3934/math.2020044 |
[8] | Abdullah Alotaibi, M. Mursaleen . Approximation of Jakimovski-Leviatan-Beta type integral operators via q-calculus. AIMS Mathematics, 2020, 5(4): 3019-3034. doi: 10.3934/math.2020196 |
[9] | Nazmiye Gonul Bilgin, Yusuf Kaya, Melis Eren . Security of image transfer and innovative results for (p,q)-Bernstein-Schurer operators. AIMS Mathematics, 2024, 9(9): 23812-23836. doi: 10.3934/math.20241157 |
[10] | Ibtesam Alshammari, Islam M. Taha . On fuzzy soft β-continuity and β-irresoluteness: some new results. AIMS Mathematics, 2024, 9(5): 11304-11319. doi: 10.3934/math.2024554 |
This paper deals with the newly modification of Beta-type Bernstein operators, preserving constant and Korovkin's other test functions ei=ti, i=1,2 in limit case. Then the uniform convergence of the constructed operators is given. The rate of convergence is obtained in terms of modulus of continuity, Peetre-K functionals and Lipschitz class functions. After that, the Voronovskaya-type asymptotic result for these operators is established. At last, the graphical results of the newly defined operators are discussed.
Approximation theory, an old area of mathematical research, has an extensive potential for applications to a wide variety of areas. Bernstein operators are one of the most widely-investigated linear and positive operators in the theory of approximation. Bernstein operators are defined by [2] as
Bm(k;x)=m∑p=0(mp)xm(1−x)m−pk(pm),m≥1 | (1.1) |
for function k∈C[0,1] and x∈[0,1]. After that, numereous variations of linear positive operators are studied by researchers such as [3,4,5,6,7,8,11,12,13,14,15,16,17].
In 2020, Usta [18] introduced a new modification of Bernstein operators. For k∈C(0,1), m∈N and x∈(0,1)
B∗m(k;x)=1mm∑p=0(mp)(p−mx)2xp−1(1−x)m−p−1k(pm). | (1.2) |
In this modification, the constructed operators preserve constant test function and Korovkin's other test functions ti, i=1,2 in limit case. Usta [18] gave B∗m(e0;x)=1, B∗m(e1;x)=m−2mx+1m, B∗m(e2;x)=m2−7m+6m2x2+5m−6m2x+1m2 and the approximation results of the B∗m(k;x) operators. Motivated by this work, we develop a Beta-type modification of Bernstein operators. The newly constructed Bernstein-Beta operators are presented for k∈C[0,1] as follows:
~Bm(k;x)=1mm∑p=0(mp)(p−mx)2xp−1(1−x)m−p−11β(p+1,m−p+1)∫10up(1−u)m−pk(u)du, | (1.3) |
where x∈(0,1), m∈N and β(p+1,m−p+1) denotes the Beta function. For r,s>0 Beta function is defined by
β(r,s)=∫10ur−1(1−u)s−1du. | (1.4) |
We can easily see that for a,b∈R and k,f∈C[0,1]
~Bm(ak+bf;x)=1mm∑p=0(mp)(p−mx)2xp−1(1−x)m−p−11β(p+1,m−p+1)×∫10up(1−u)m−p(ak(u)+bf(u))du=1mm∑p=0(mp)(p−mx)2xp−1(1−x)m−p−11β(p+1,m−p+1)×∫10up(1−u)m−p(ak(u))du+1mm∑p=0(mp)(p−mx)2xp−1(1−x)m−p−11β(p+1,m−p+1)×∫10up(1−u)m−p(bf(u))du=a~Bm(k;x)+b~Bm(f;x). |
Also, for k≥0, ~Bm(k;x)≥0. Thus, ~Bm(k;x) operators are linear and positive.
Lemma 2.1. For each x∈(0,1), we obtain
~Bm(e0;x)=1,~Bm(e1;x)=m−2m+2x+2m+2,~Bm(e2;x)=(m−6)(m−1)(m+3)(m+2)x2+8m−12(m+3)(m+2)x+6(m+3)(m+2),~Bm(e3;x)=(m−1)(m−2)(m−12)(m+4)(m+3)(m+2)x3+18(m−4)(m−1)(m+4)(m+3)(m+2)x2+18(3m−4)(m+4)(m+3)(m+2)x+24(m+4)(m+3)(m+2),~Bm(e4;x)=(m−1)(m−2)(m−3)(m−20)(m+5)(m+4)(m+3)(m+2)x5x−1−(m−1)(m−2)(m2−55m+300)(m+5)(m+4)(m+3)(m+2)x4x−1+8(m−1)(4m2−65m+150)(m+5)(m+4)(m+3)(m+2)x3x−1−24(m−5)(9m−10)(m+5)(m+4)(m+3)(m+2)x2x−1+579−363m(m+5)(m+4)(m+3)(m+2)xx−1−120(m+5)(m+4)(m+3)(m+2)1x−1 |
where ei=ti for i=0,1,2,3,4.
Proof. By using the definition of Beta function (1.4), it is clear that
~Bm(e0;x)=B∗m(e0;x)=1. |
For i=1, k(t)=t,
~Bm(e1;x)=1mm∑p=0(mp)(p−mx)2xp−1(1−x)m−p−11β(p+1,m−p+1)∫10up+1(1−u)m−pdu=1mm∑p=0(mp)(p−mx)2xp−1(1−x)m−p−1β(p+2,m−p+1)β(p+1,m−p+1)=1mm∑p=0(mp)(p−mx)2xp−1(1−x)m−p−1p+1m+2=mm+2B∗m(e1;x)+1m+2B∗m(e0;x)=mm+2(m−2mx+1m)+1m+2=m−2m+2x+2m+2. |
For i=2, k(t)=t2,
~Bm(e2;x)=1mm∑p=0(mp)(p−mx)2xp−1(1−x)m−p−11β(p+1,m−p+1)∫10up+2(1−u)m−pdu=1mm∑p=0(mp)(p−mx)2xp−1(1−x)m−p−1β(p+3,m−p+1)β(p+1,m−p+1)=1mm∑p=0(mp)(p−mx)2xp−1(1−x)m−p−1p2+3p+2(m+3)(m+2)=m2(m+3)(m+2)B∗m(e2;x)+3m(m+3)(m+2)B∗m(e1;x)+2(m+3)(m+2)B∗m(e0;x)=m2(m+3)(m+2)(m2−7m+6m2x2+5m−6m2x+1m2)+3m(m+3)(m+2)(m−2mx+1m)+2(m+3)(m+2)=(m−6)(m−1)(m+3)(m+2)x2+8m−12(m+3)(m+2)x+6(m+3)(m+2). |
The proofs of ~Bm(e3;x) and ~Bm(e4;x) can be obtained in the same manner.
Lemma 2.2. For each x∈(0,1), we write
~Bm(t−x;x)=−4m+2x+2m+2,~Bm((t−x)2;x)=−4(m−6)(m+3)(m+2)x2+4m−24(m+3)(m+2)x+6(m+3)(m+2),~Bm((t−x)4;x)=3(m+5)(m+4)(m+3)(m+2)1x−1{4(160−93m+3m2)x5−12(160−93m+3m2)x4+4(560−303m+9m2)x3−4(320−141m+3m2)x2+(353−89m)x−40}. | (2.1) |
Proof. By using following equalities
~Bm(t−x;x)=~Bm(e1;x)−x~Bm(1;x),~Bm((t−x)2;x)=~Bm(e2;x)−2x~Bm(e1;x)+x2~Bm(1;x),~Bm((t−x)4;x)=~Bm(e4;x)−4x~Bm(e3;x)+6x2~Bm(e2;x)−4x3~Bm(e1;x)+x4~Bm(1;x), |
we finish the proof of the lemma.
Remark 1. We have the following results
limm→∞m~Bm(t−x;x)=−4x+2, | (2.2) |
limm→∞m~Bm((t−x)2;x)=−4x(1−x), | (2.3) |
limm→∞m2~Bm((t−x)4;x)=36(x−1)2x2. | (2.4) |
Let the Banach space of all continuous functions k on [0,1] is denoted by C[0,1] endowed with the norm
‖k‖=maxx∈(0,1)|k(x)|. |
Theorem 3.1. For every k∈C[0,1]
‖~Bm(k;x)−k(x)‖→0, | (3.1) |
uniformly as m→∞.
Proof. It can be seen easily from Lemma 2.1 that
limm→∞~Bm(ei;x)=xi,i=0,1,2. |
Then we apply Korovkin's theorem [19], which concludes the proof.
For k∈C[0,1], the modulus of continuity is given by
ω(k,δ):=sup|t−x|≤δsup x∈(0,1)|k(t)−k(x)|,δ>0. |
Additionally, modulus of continuity of the function k has the following property [1]:
|k(t)−k(x)|≤(1+(t−x)2δ2)ω(k,δ),δ>0. | (4.1) |
Theorem 4.1. For each x∈(0,1) and k∈C[0,1], we have
|~Bm(k;x)−k(x)|≤2ω(k,δm), | (4.2) |
where
δm(x)=√−4(m−6)x2+4(m−6)x+6(m+3)(m+2). | (4.3) |
Proof. By using the linearity of the ~Bm operators and Eq (4.1), we obtain
|~Bm(k;x)−k(x)|=|1mm∑p=0(mp)(p−mx)2xp−1(1−x)m−p−11β(p+1,m−p+1)×∫10up(1−u)m−pk(u)du−k(x)|≤1mm∑p=0(mp)(p−mx)2xp−1(1−x)m−p−11β(p+1,m−p+1)×∫10up(1−u)m−p|k(u)−k(x)|du≤1mm∑p=0(mp)(p−mx)2xp−1(1−x)m−p−11β(p+1,m−p+1)×∫10up(1−u)m−p(1+(u−x)2δ2)ω(k,δ)du=(1+1δ2−4(m−6)x2+4(m−6)x+6(m+3)(m+2))ω(k,δ). |
If we choose
δ=δm=√−4(m−6)x2+4(m−6)x+6(m+3)(m+2) |
then we arrive at
|~Bm(k;x)−k(x)|≤2ω(k,√−4(m−6)x2+4(m−6)x+6(m+3)(m+2)), |
which is the required result.
Right now, we show the rate of convergence of ~Bm(k;x) by using the function k, which belongs to Lipschitz class. A function k is said to be in the Lipschitz class k∈LipK(c) if the inequality
|k(t)−k(x)|≤K|t−x|c;∀t,x∈(0,1) | (4.4) |
holds. Hölder inequality [10] is defined as for p>1 and 1p+1q=1
m∑r=0|ξrηr|≤(m∑r=0(ξr)p)1p(m∑r=0(ηr)q)1q. | (4.5) |
Theorem 4.2. Let k∈LipK(c) and 0<c≤1 then we write
|~Bm(k;x)−k(x)|≤Kδcm(x), |
where δm(x) is the same as (4.3).
Proof. Let k belongs to Lipschitz class LipK(c) and 0<c≤1. From (4.4) and by using the linearity and monotonicity of the operators ~Bm, we get
|~Bm(k;x)−k(x)|≤~Bm(|k(t)−k(x)|;x)≤K~Bm(|t−x|c;x). |
By choosing p=2c, q=22−c in the Hölder inequality, we get
|~Bm(k;x)−k(x)|≤K{~Bm((t−x)2;x)}c2≤Kδcm(x). |
Here, δm(x) is as given in (4.3). Thus, we write
|~Bm(k;x)−k(x)|≤K(−4(m−6)x2+4(m−6)x+6(m+3)(m+2))c2. |
Now, the rate of convergence of the newly constructed operators ~Bm(k;x) is investigated by using the Peetre-K functionals.
Lemma 4.3. For x∈(0,1) and k∈C[0,1], we obtain
|~Bm(k;x)|≤||k||. | (4.6) |
Proof. From the definition of ~Bm(k;x) operators, we have
|~Bm(k;x)|=|1mm∑p=0(mp)(p−mx)2xp−1(1−x)m−p−11β(p+1,m−p+1)∫10up(1−u)m−pk(u)du|≤1mm∑p=0(mp)(p−mx)2xp−1(1−x)m−p−11β(p+1,m−p+1)∫10up(1−u)m−p|k(u)|du≤||k||~Bm(1;x)=||k||. |
Let C2[0,1] be the space of the functions k, for which k,k′ and k″ are continuous on [0,1]. We write the norm of function k in this space as follows:
‖k‖C2[0,1]=‖k‖C[0,1]+‖k′‖C[0,1]+‖k″‖C[0,1]. |
The classical Peetre-K functional is defined as
K(k,δ):=infu∈C2[0,1]{‖k−u‖C[0,1]+δ‖u″‖C[0,1]} |
and second modulus of smoothness of the function is given by
ω2(k,δ):=sup0<h<δ supx,x+h∈(0,1)|k(x+2h)−2k(x+h)+k(x)| |
where δ>0. By DeVore and Lorentz [9], it is known that for M>0
K(k,δ)≤Mω2(k,√δ). | (4.7) |
Theorem 4.4. Let x∈(0,1) and k∈C[0,1]. Then for each m∈N, there exists a positive constant M such that
|~Bm(k;x)−k(x)|≤Mω2(k,αm(x))+2ω(k,βm(x)). |
Here
αm(x)=√18(1−2x)2−4s2(−1+x)x+8s(1−3x+3x2)(2+s)2(3+s) |
and
βm(x)=|−4x+2m+2|. |
Proof. We introduce the proof by defining an auxiliary operator B∗∗m:C[0,1]→C[0,1] by
B∗∗m(s;x)=~Bm(s;x)−s((m−2)x+2m+2)+s(x). | (4.8) |
From Lemma 2.1, we have
B∗∗m(1;x)=1,B∗∗m(t−x;x)=~Bm((t−x);x)−((m−2)x+2m+2−x)+x−x=−4m+2x+2m+2−((m−2)x+2m+2−x)+x−x=0. | (4.9) |
For s∈C2[0,1], we write by using the Taylor expansion that
s(t)=s(x)+(t−x)s′(x)+∫tx(t−u)s″(u)du,t∈(0,1). | (4.10) |
Applying B∗∗m operator to both sides of the equation (4.10), we obtain
B∗∗m(s;x)=B∗∗m(s(x)+(t−x)s′(x)+∫tx(t−u)s″(u)du)=s(x)+B∗∗m((t−x)s′(x);x)+B∗∗m(∫tx(t−u)s″(u)du). |
So,
B∗∗m(s;x)−s(x)=s′(x)B∗∗m((t−x);x)+B∗∗m(∫tx(t−u)s″(u)du). |
By using (4.9) and (4.8), we achieve
B∗∗m(s;x)−s(x)=B∗∗m(∫tx(t−u)s″(u)du)=~Bm(∫tx(t−u)s″(u)du)−∫(m−2)x+2m+2x((m−2)x+2m+2−u)s″(u)du+∫xx((m−2)x+2m+2−u)s″(u)du. | (4.11) |
Furthermore
|∫tx(t−u)s″(u)du|≤∫tx|t−u||s″(u)|du≤||s″||∫tx|t−u|du≤(t−x)2||s″||, | (4.12) |
and
|∫(m−2)x+2m+2x((m−2)x+2m+2−u)s″(u)du|≤||s″||∫(m−2)x+2m+2x((m−2)x+2m+2−u)du=||s″||2((m−2)x+2m+2−x)2=||s″||2((m−2)x+2m+2−x)2. | (4.13) |
When we rewrite (4.12) and (4.13) in the absolute value of (4.11). Then we get
|B∗∗s−m(s;x)−s(x)|≤||s″||~Bm((t−x)2;x)+||s″||2((m−2)x+2m+2−x)2=||s″||(~Bm((t−x)2;x)+12((m−2)x+2m+2−x)2)=||s″||α2m(x), |
where
αm(x)=√~Bm((t−x)2;x)+12((m−2)x+2m+2−x)2=√18(1−2x)2−4s2(−1+x)x+8s(1−3x+3x2)(2+s)2(3+s). |
Right now, we will try to find a bound for the auxiliary operator B∗∗m(s;x). In the light of the Lemma 4.3 and using Cauchy-Schwarz inequality we obtain
|B∗∗m(s;x)|=|~Bm(s;x)−s((m−2)x+2m+2)+s(x)|≤|~Bm(s;x)|+|s((m−2)x+2m+2)|+|s(x)|≤3||s||. |
Consequently,
|~Bm(k;x)−k(x)|=|B∗∗m(k;x)−k(x)+k((m−2)x+2m+2)−k(x)+s(x)−s(x)+B∗∗m(s;x)−B∗∗m(s;x)|≤|B∗∗m(k−s;x)−(k−s)(x)|+|B∗∗m(s;x)−s(x)|+|k((m−2)x+2m+2)−k(x)|≤4||k−s||+||s″||α2m(x)+ω(k,βm(x))(|(m−2)x+2m+2−x|βm(x)+1)=4(||k−s||+||s″||α2m(x))+2ω(k,|(m−2)x+2m+2−x|), | (4.14) |
where
βm(x)=|(m−2)x+2m+2−x|=|−4x+2m+2|. |
So, for all k∈C2[0,1] by taking the infimum of the Eq (4.14), we get
|~Bm(k;x)−k(x)|≤4K(s,α2m(x))+2ω(k,βm(x)). | (4.15) |
As a result, using Eq (4.7), we obtain
|~Bm(k;x)−k(x)|≤Mω2(k,αm(x))+2ω(k,βm(x)). | (4.16) |
Thusly, the proof is finished.
In 1932, Voronovskaya [20] obtained the convergence rate of the Bernstein operators (1.1) to the function k. In this part, we derive a Voronovskaya-type asymptotic formula for ~Bm(k;x) operators.
Theorem 5.1. Let k be integrable on the interval (0,1), also k′ and k″ exist at a fixed point x∈(0,1). Then we have
limm→∞m(~Bm(k;x)−k(x))=(−4x+2)k′(x)−2x(1−x)k″(x). | (5.1) |
Proof. By using the well-known Taylor's formula, we write
k(t)=k(x)+(t−x)k′(x)+(t−x)22k″(x)+R(t,x)(t−x)2. | (5.2) |
Here, R(t,x):=k″(ξ)−k″(x)2 is the remainder term. ξ is situated between x and t. Also, limt→xR(t,x)=0. When we apply ~Bm operators to (5.2), we obtain
~Bm(k;x)−k(x)=k′(x)~Bm((t−x);x)+k″(x)2~Bm((t−x)2;x)+~Bm(R(t,x)(t−x)2;x). | (5.3) |
By multiplying (5.3) by m and take the limit as m goes to infinity, we achieve
limm→∞m(~Bm(k;x)−k(x))=limm→∞mk′(x)~Bm((t−x);x)+limm→∞mk″(x)2~Bm((t−x)2;x)+limm→∞m~Bm(R(t,x)(t−x)2;x). |
By taking into consideration Eqs (2.2) and (2.3), we obtain
limm→∞mk′(x)~Bm((t−x);x)=k′(x)limm→∞m~Bm((t−x);x)=k′(x)(−4x+2) |
and
limm→∞mk″(x)2~Bm((t−x)2;x)=k″(x)2limm→∞m~Bm((t−x)2;x)=k″(x)2(−4x(1−x)). |
Thus we have
limm→∞m(~Bm(k;x)−k(x))=(−4x+2)k′(x)−2x(1−x)k″(x)+limm→∞m~Bm(R(t,x)(t−x)2;x). | (5.4) |
By using the Cauchy-Schwarz inequality for the remainder term, we write
m~Bm(R(t,x)(t−x)2;x)≤√m2~Bm(R2(t,x);x)√~Bm((t−x)4;x). | (5.5) |
We already know the term ~Bm((t−x)4;x) from Eq (2.1). Since R2(.,x) is continuous at t∈(0,1) and limt→xR(t,x)=0, we observe that
limm→∞~Bm(R2(t,x);x)=R2(x,x)=0. | (5.6) |
Hence, by using (2.1), (5.5), (5.6) and positivity of the linear operators ~Bm, we have
limm→∞m~Bm(R(t,x)(t−x)2;x)=0. | (5.7) |
Finally, by substituting (5.7) in (5.4), we achieve
limm→∞m(~Bm(k;x)−k(x))=(−4x+2)k′(x)−2x(1−x)k″(x), |
which is the desired result.
In last section, we give the convergence behaviour of the newly constructed operators ~Bm with function k.
Example 1. Let the function k be
k(x)=1−cos(4ex). |
The convergence behaviour of the operators ~Bm(k;x) is illustrated in Figure 1, where k(x)=1−cos(4ex), x∈(0,1) and m∈{100,300,500,1000}.
The error estimation for operators ~Bm(k;x) to the function k(x)=1−cos(4ex) is presented in Table 1 for different values of m.
m | max|~Bm(k;x)−k(x)| |
100 | 0.22148 |
300 | 0.082166 |
500 | 0.050427 |
1000 | 0.025653 |
Example 2. Let the function k be chosen as
k(x)=(x−14)(x−12)(x−34). |
We have shown the convergence behaviour of the ~Bm(k;x) Bernstein-Beta operators to the function k in Figure 2 for m∈{20,50,100,200}.
The error results of the operators ~Bm(k;x) to the function k(x)=(x−14)(x−12)(x−34) are given in Table 2 for different values of m.
m | max|~Bm(k;x)−k(x)| |
20 | 0.04621 |
50 | 0.02309 |
100 | 0.01251 |
200 | 0.00652 |
When we investigate these two examples, we understand that for the increasing values of m, the graph of the operators ~Bm(k;x) goes to the graph of the function k.
This work is supported by the Natural Science Foundation of Fujian Province of China (Grant No. 2020J01783), the Project for High-level Talent. Innovation and Entrepreneurship of Quanzhou (Grant No. 2018C087R) and the Program for New Century Excellent Talents in Fujian Province University. We also thank Fujian Provincial Big Data Research Institute of Intelligent Manufacturing of China.
The authors declared there is no conflict of interest associated with this work.
[1] | F. Altomare, M. Campiti, Korovkin-type approximation theory and its applications, Berlin-New York: Walter de Gruyter, 1994,266–274. |
[2] | S. N. Bernstein, Démonstration du théorem de Weierstrass fondée sur le calculu des probabilités, Commun. Kharkov Math. Soc., 13 (1912), 1–2. |
[3] |
N. L. Braha, Korovkin type theorem for Bernstein-Kantorovich operators via power summability method, Anal. Math. Phys., 10 (2020), 62. doi: 10.1007/s13324-020-00407-x. doi: 10.1007/s13324-020-00407-x
![]() |
[4] |
N. L. Braha, Some properties of modified Szász-Mirakyan operators in polynomial spaces via the power summability method, J. Appl. Anal., 26 (2020), 79–90. doi: 10.1515/jaa-2020-2006. doi: 10.1515/jaa-2020-2006
![]() |
[5] |
N. L. Braha, U. Kadak, Approximation properties of the generalized Szasz operators by multiple Appell polynomials via power summability method, Math. Method. Appl. Sci., 43 (2020), 2337–2356. doi: 10.1002/mma.6044. doi: 10.1002/mma.6044
![]() |
[6] |
N. L. Braha, V. Loku, Korovkin type theorems and its applications via αβ-statistically convergence, J. Math. Inequal., 14 (2020), 951–966. doi: 10.7153/jmi-2020-14-62. doi: 10.7153/jmi-2020-14-62
![]() |
[7] |
N. L. Braha, T. Mansour, M. Mursaleen, Some properties of Kantorovich-Stancu-type generalization of Szász operators including Brenke-type polynomials via power series summability method, J. Funct. Space., 2020 (2020), 3480607. doi: 10.1155/2020/3480607. doi: 10.1155/2020/3480607
![]() |
[8] |
Q.-B. Cai, B.-Y. Lian, G. Zhou, Approximation properties of λ-Bernstein operators, J. Inequal. Appl., 2018 (2018), 61. doi: 10.1186/s13660-018-1653-7. doi: 10.1186/s13660-018-1653-7
![]() |
[9] | R. A. DeVore, G. G. Lorentz, Constructive approximation, Berlin: Springer, 1993,177. |
[10] | O. Hölder, Über einen Mittelwertsatz, Göttinger Nachr., 1889, 38–47. |
[11] |
A. Kajla, T. Acar, Blending type approximation by generalized Bernstein-Durrmeyer type operators, Miskolc Math. Notes, 19 (2018), 319–336. doi: 10.18514/MMN.2018.2216. doi: 10.18514/MMN.2018.2216
![]() |
[12] |
M. Mursaleen, M. Ahasan, F. Khan, Generalized Bernstein type operators on unbounded interval and some approximation properties, Filomat, 33 (2019), 2797–2808. doi: 10.2298/FIL1909797A. doi: 10.2298/FIL1909797A
![]() |
[13] |
S. A. Mohiuddine, T. Acar, A. Alotaibi, Construction of a new family of Bernstein–Kantorovich operators, Math. Method. Appl. Sci., 40 (2017), 7749–7759. doi: 10.1002/mma.4559. doi: 10.1002/mma.4559
![]() |
[14] |
S. A. Mohiuddine, F. Özger, Approximation of functions by Stancu variant of Bernstein–Kantorovich operators based on shape parameter α, RACSAM, 114 (2020), 70. doi: 10.1007/s13398-020-00802-w. doi: 10.1007/s13398-020-00802-w
![]() |
[15] | F. Özger, K. Demirci, S. Yıldız, Approximation by Kantorovich variant of λ−Schurer operators and related numerical results, In: Topics in contemporary mathematical analysis and applications, Boca Raton: CRC Press, 2020, 77–94. |
[16] |
F. Özger, H. M. Srivastava, S. A. Mohiuddine, Approximation of functions by a new class of generalized Bernstein–Schurer operators, RACSAM, 114 (2020), 173. doi: 10.1007/s13398-020-00903-6. doi: 10.1007/s13398-020-00903-6
![]() |
[17] |
H. M. Srivastava, F. Özger, S. A. Mohiuddine, Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter λ, Symmetry, 11 (2019), 316. doi: 10.3390/sym11030316. doi: 10.3390/sym11030316
![]() |
[18] |
F. Usta, On new modification of Bernstein operators: theory and applications, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 1119–1124. doi: 10.1007/s40995-020-00919-y. doi: 10.1007/s40995-020-00919-y
![]() |
[19] | P. P. Korovkin, On convergence of linear operators in the space of continuous functions, (Russian), Dokl. Akad. Nauk. SSSR, 90 (1953), 961–964. |
[20] | E. Voronovskaya, Determination de la forme asymptotique dapproximation des functions par polynomes de M. Bernstein, C. R. Acad. Sci. URSS, 79 (1932), 79–85. |
1. | Gülten TORUN, On Approximation Properties of Stancu Type Post-Widder Operators Preserving Exponential Functions, 2022, 2147-9542, 173, 10.54287/gujsa.1113567 | |
2. | Yu-Jie Liu, Wen-Tao Cheng, Wen-Hui Zhang, Pei-Xin Ye, Approximation Properties of the Blending-Type Bernstein–Durrmeyer Operators, 2022, 12, 2075-1680, 5, 10.3390/axioms12010005 | |
3. | Ülkü DİNLEMEZ KANTAR, İsmet YÜKSEL, Investigating (p,q)-hybrid Durrmeyer-type operators in terms of their approximation properties, 2022, 2147-9542, 1, 10.54287/gujsa.1029633 | |
4. |
Abhishek Senapati, Ajay Kumar, Tanmoy Som,
Rate of Convergence of λ -Bernstein-Beta type operators,
2024,
0369-8203,
10.1007/s40010-024-00903-w
|
|
5. | Nadire Fulda Odabaşı, İsmet Yüksel, Parametric Extension of a Certain Family of Summation-Integral Type Operators, 2023, 44, 2587-2680, 315, 10.17776/csj.1173496 |
m | max|~Bm(k;x)−k(x)| |
100 | 0.22148 |
300 | 0.082166 |
500 | 0.050427 |
1000 | 0.025653 |
m | max|~Bm(k;x)−k(x)| |
20 | 0.04621 |
50 | 0.02309 |
100 | 0.01251 |
200 | 0.00652 |