This paper deals with the newly modification of Beta-type Bernstein operators, preserving constant and Korovkin's other test functions $ e_i = t^i $, $ i = 1, 2 $ in limit case. Then the uniform convergence of the constructed operators is given. The rate of convergence is obtained in terms of modulus of continuity, Peetre-$ \mathcal{K} $ functionals and Lipschitz class functions. After that, the Voronovskaya-type asymptotic result for these operators is established. At last, the graphical results of the newly defined operators are discussed.
Citation: Qing-Bo Cai, Melek Sofyalıoğlu, Kadir Kanat, Bayram Çekim. Some approximation results for the new modification of Bernstein-Beta operators[J]. AIMS Mathematics, 2022, 7(2): 1831-1844. doi: 10.3934/math.2022105
This paper deals with the newly modification of Beta-type Bernstein operators, preserving constant and Korovkin's other test functions $ e_i = t^i $, $ i = 1, 2 $ in limit case. Then the uniform convergence of the constructed operators is given. The rate of convergence is obtained in terms of modulus of continuity, Peetre-$ \mathcal{K} $ functionals and Lipschitz class functions. After that, the Voronovskaya-type asymptotic result for these operators is established. At last, the graphical results of the newly defined operators are discussed.
[1] | F. Altomare, M. Campiti, Korovkin-type approximation theory and its applications, Berlin-New York: Walter de Gruyter, 1994,266–274. |
[2] | S. N. Bernstein, Démonstration du théorem de Weierstrass fondée sur le calculu des probabilités, Commun. Kharkov Math. Soc., 13 (1912), 1–2. |
[3] | N. L. Braha, Korovkin type theorem for Bernstein-Kantorovich operators via power summability method, Anal. Math. Phys., 10 (2020), 62. doi: 10.1007/s13324-020-00407-x. doi: 10.1007/s13324-020-00407-x |
[4] | N. L. Braha, Some properties of modified Szász-Mirakyan operators in polynomial spaces via the power summability method, J. Appl. Anal., 26 (2020), 79–90. doi: 10.1515/jaa-2020-2006. doi: 10.1515/jaa-2020-2006 |
[5] | N. L. Braha, U. Kadak, Approximation properties of the generalized Szasz operators by multiple Appell polynomials via power summability method, Math. Method. Appl. Sci., 43 (2020), 2337–2356. doi: 10.1002/mma.6044. doi: 10.1002/mma.6044 |
[6] | N. L. Braha, V. Loku, Korovkin type theorems and its applications via $\alpha \beta$-statistically convergence, J. Math. Inequal., 14 (2020), 951–966. doi: 10.7153/jmi-2020-14-62. doi: 10.7153/jmi-2020-14-62 |
[7] | N. L. Braha, T. Mansour, M. Mursaleen, Some properties of Kantorovich-Stancu-type generalization of Szász operators including Brenke-type polynomials via power series summability method, J. Funct. Space., 2020 (2020), 3480607. doi: 10.1155/2020/3480607. doi: 10.1155/2020/3480607 |
[8] | Q.-B. Cai, B.-Y. Lian, G. Zhou, Approximation properties of $\lambda$-Bernstein operators, J. Inequal. Appl., 2018 (2018), 61. doi: 10.1186/s13660-018-1653-7. doi: 10.1186/s13660-018-1653-7 |
[9] | R. A. DeVore, G. G. Lorentz, Constructive approximation, Berlin: Springer, 1993,177. |
[10] | O. Hölder, Über einen Mittelwertsatz, Göttinger Nachr., 1889, 38–47. |
[11] | A. Kajla, T. Acar, Blending type approximation by generalized Bernstein-Durrmeyer type operators, Miskolc Math. Notes, 19 (2018), 319–336. doi: 10.18514/MMN.2018.2216. doi: 10.18514/MMN.2018.2216 |
[12] | M. Mursaleen, M. Ahasan, F. Khan, Generalized Bernstein type operators on unbounded interval and some approximation properties, Filomat, 33 (2019), 2797–2808. doi: 10.2298/FIL1909797A. doi: 10.2298/FIL1909797A |
[13] | S. A. Mohiuddine, T. Acar, A. Alotaibi, Construction of a new family of Bernstein–Kantorovich operators, Math. Method. Appl. Sci., 40 (2017), 7749–7759. doi: 10.1002/mma.4559. doi: 10.1002/mma.4559 |
[14] | S. A. Mohiuddine, F. Özger, Approximation of functions by Stancu variant of Bernstein–Kantorovich operators based on shape parameter $\alpha$, RACSAM, 114 (2020), 70. doi: 10.1007/s13398-020-00802-w. doi: 10.1007/s13398-020-00802-w |
[15] | F. Özger, K. Demirci, S. Yıldız, Approximation by Kantorovich variant of $\lambda-$Schurer operators and related numerical results, In: Topics in contemporary mathematical analysis and applications, Boca Raton: CRC Press, 2020, 77–94. |
[16] | F. Özger, H. M. Srivastava, S. A. Mohiuddine, Approximation of functions by a new class of generalized Bernstein–Schurer operators, RACSAM, 114 (2020), 173. doi: 10.1007/s13398-020-00903-6. doi: 10.1007/s13398-020-00903-6 |
[17] | H. M. Srivastava, F. Özger, S. A. Mohiuddine, Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter $\lambda$, Symmetry, 11 (2019), 316. doi: 10.3390/sym11030316. doi: 10.3390/sym11030316 |
[18] | F. Usta, On new modification of Bernstein operators: theory and applications, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 1119–1124. doi: 10.1007/s40995-020-00919-y. doi: 10.1007/s40995-020-00919-y |
[19] | P. P. Korovkin, On convergence of linear operators in the space of continuous functions, (Russian), Dokl. Akad. Nauk. SSSR, 90 (1953), 961–964. |
[20] | E. Voronovskaya, Determination de la forme asymptotique dapproximation des functions par polynomes de M. Bernstein, C. R. Acad. Sci. URSS, 79 (1932), 79–85. |