Processing math: 64%
Research article

Approximation properties of the new type generalized Bernstein-Kantorovich operators

  • Received: 28 September 2021 Accepted: 01 December 2021 Published: 10 December 2021
  • MSC : 41A25, 41A36, 47A58

  • In this paper, we introduce new type of generalized Kantorovich variant of α-Bernstein operators and study their approximation properties. We obtain estimates of rate of convergence involving first and second order modulus of continuity and Lipschitz function are studied for these operators. Furthermore, we establish Voronovskaya type theorem of these operators. The last section is devoted to bivariate new type α-Bernstein-Kantorovich operators and their approximation behaviors. Also, some graphical illustrations and numerical results are provided.

    Citation: Mustafa Kara. Approximation properties of the new type generalized Bernstein-Kantorovich operators[J]. AIMS Mathematics, 2022, 7(3): 3826-3844. doi: 10.3934/math.2022212

    Related Papers:

    [1] Qing-Bo Cai, Melek Sofyalıoğlu, Kadir Kanat, Bayram Çekim . Some approximation results for the new modification of Bernstein-Beta operators. AIMS Mathematics, 2022, 7(2): 1831-1844. doi: 10.3934/math.2022105
    [2] Mohammad Ayman-Mursaleen, Md. Nasiruzzaman, Nadeem Rao, Mohammad Dilshad, Kottakkaran Sooppy Nisar . Approximation by the modified $ \lambda $-Bernstein-polynomial in terms of basis function. AIMS Mathematics, 2024, 9(2): 4409-4426. doi: 10.3934/math.2024217
    [3] Zhongbin Zheng, Jinwu Fang, Wentao Cheng, Zhidong Guo, Xiaoling Zhou . Approximation properties of modified (p, q)-Szász-Mirakyan-Kantorovich operators. AIMS Mathematics, 2020, 5(5): 4959-4973. doi: 10.3934/math.2020317
    [4] Guorong Zhou, Qing-Bo Cai . Bivariate $ \lambda $-Bernstein operators on triangular domain. AIMS Mathematics, 2024, 9(6): 14405-14424. doi: 10.3934/math.2024700
    [5] Nazmiye Gonul Bilgin, Yusuf Kaya, Melis Eren . Security of image transfer and innovative results for (p,q)-Bernstein-Schurer operators. AIMS Mathematics, 2024, 9(9): 23812-23836. doi: 10.3934/math.20241157
    [6] Bo-Yong Lian, Qing-Bo Cai . Approximation properties of Stancu type Szász-Mirakjan operators. AIMS Mathematics, 2023, 8(9): 21769-21780. doi: 10.3934/math.20231110
    [7] Purshottam Narain Agrawal, Behar Baxhaku, Abhishek Kumar . Approximation properties of generalized Baskakov operators. AIMS Mathematics, 2021, 6(7): 6986-7016. doi: 10.3934/math.2021410
    [8] Erkan Agyuz . On the convergence properties of generalized Szász–Kantorovich type operators involving Frobenious–Euler–Simsek-type polynomials. AIMS Mathematics, 2024, 9(10): 28195-28210. doi: 10.3934/math.20241367
    [9] Sima Karamseraji, Shokrollah Ziari, Reza Ezzati . Approximate solution of nonlinear fuzzy Fredholm integral equations using bivariate Bernstein polynomials with error estimation. AIMS Mathematics, 2022, 7(4): 7234-7256. doi: 10.3934/math.2022404
    [10] Wissem Jedidi, Hristo S. Sendov, Shen Shan . Classes of completely monotone and Bernstein functions defined by convexity properties of their spectral measures. AIMS Mathematics, 2024, 9(5): 11372-11395. doi: 10.3934/math.2024558
  • In this paper, we introduce new type of generalized Kantorovich variant of α-Bernstein operators and study their approximation properties. We obtain estimates of rate of convergence involving first and second order modulus of continuity and Lipschitz function are studied for these operators. Furthermore, we establish Voronovskaya type theorem of these operators. The last section is devoted to bivariate new type α-Bernstein-Kantorovich operators and their approximation behaviors. Also, some graphical illustrations and numerical results are provided.



    Approximation theory has an important place in application areas such as analysis and CAGD. In particular, Bernstein polynomials play an important role in approximation theory. Hence, due to the increasing interest in Bernstein polynomials, the question arises of how to construct its modifications that give better convergence results. That's why the books of Lorentz [4] and Lupaş [5] are of great importance.

    For ψC(I=[0,1]), the classical Bernstein-Kantorovich operators are defined by

    Bρ(ψ;ζ)=ρϑ=0pρ,ϑ(ζ)ϑ+1ρ+1ϑρ+1ψ(t),   ζI, (1.1)

    where pρ,ϑ(ζ)=(ρϑ)ζϑ(1ζ)ρϑ is the Bernstein basis function. For Kantorovich-type modifications of Bernstein operators, we refer to the articles [6,7,8,9,10,11,12,13,14,15]. Recently, Chen et al. [1] introduced a generalization of the α-Bernstein operators as follows:

    T(α)ρ(ζ)=ρϑ=0p(α)ρ,ϑ(ζ)ψ(ϑρ),   ζI, (1.2)

    where p(α)ρ,ϑρ2(ζ)=[(ρ2ϑ)(1α)ζ+(ρ2ϑ2)(1α)(1ζ)+(ρϑ)αζ(1ζ)]ζi1(1ζ)ρϑ1,ζ[0,1].The authors of [1] have studied many approximation properties of α-Bernstein operators (1.2) such as rate of convergence and shape of preserving properties. After that, Mohiuddine et al. [16] introduced the Kantorovich variant of α-Bernstein operators (1.2) and examined the approximation properties. In [20], authors presented a Kantorovich variant of the operators proposed by [1] based on non-negative parameters and studied the estimate of the rate of approximation by using the modulus of smoothnes and Lipschitz type function for these operators. Very recently, Deo et al.[17] studied the direct local approximation theorem, Voronovskaya type asymtotic estimate formula and bounded variation for α-Bernstein-Kantorovich operators [16].

    Mohiuddine and Özger [18] introduced Stancu variant of α -Bernstein-Kantorovich operators and studied approximation properties for these operators. Very recently, Q. B. Cai et al. [19] introduced the bivariate α-Bernstein-Kantorovich operators based q-integer and studied degree of approximation for these bivariate operators in terms of the partial moduli of continuity and Peetre's K-functional. We present the following new type generalized Kantorovich-Bernstein operators.

    In [2] Kantorovich variant of Tρ,α(ψ;ζ) (1.2) defined as follows:

    Kρ,α(ψ;ζ)=(ρ+1)ρϑ=0p(α)ρ,ϑ(ϑ+1)(ρ+1)ϑ(ρ+1)ψ(t)dt.

    In this paper, we introduce the new type generalized Kantorovich variant of Tαρ(ψ,ζ) as follows:

    Klρ,α(ψ;ζ)=ρϑ=0p(α)ρ,ϑ10...10ψ(ϑ+t1+...+tlρ+l)dt1...dtl, (2.1)

    where ψ[0,1], lZ+ and α[0,1].

    In particular, if l=1 and α=1, then the operator

    Kρ,α(ψ;ζ)=ρϑ=0p(α)ρ,ϑ10ψ(ϑ+tρ+1)dt,

    i.e., it reduces to classical Bernstein - Kantorovich operators. In this work, C[0,1] denote the space of all bounded real valued continuous function on [0,1]. This space is equipped with the following norm:

    ψ=supζ[0,1]|ψ(ζ)|.

    Moments of positive operators have an important place in the approximation theory. Therefore, from the definition of Klρ,α(ψ;ζ) and next two lemmas, we can derive the formula for moments of Klρ,α(tm;ζ).

    Lemma 1. The following formulas hold

    (ϑ+t1+...+tlρ+l)m=j0+...+jl=m(mj0,...,jl)ϑj0tj11...tjll(ρ+l)m

    and

    10...10ϑj0tj11...tjll(ρ+l)mdt1...dtl=ϑj0(ρ+l)m(j1+1)...(jl+1).

    Lemma 2. [1] Let α[0,1]. Then moments of theoperators Tαρ(ζ) (1.2) are asfollows:

    T(α)ρ(1;ζ)=1,T(α)ρ(ζ;ζ)=ζ,T(α)ρ(ζ2;ζ)=ζ2+ρ+2(1α)ρ2ζ(1ζ),T(α)ρ(ζ3;ζ)=ζ3+3[ρ+2(1α)]ρ2ζ2(1ζ)+ρ+6(1α)ρ3ζ(1ζ)(12ζ),T(α)ρ(ζ4;ζ)=ζ4+6[ρ+2(1α)]ρ2ζ3(1ζ)+4[ρ+6(1α)]ρ3ζ2(12ζ)(1ζ)+[12(ρ6)(1α)+3ρ(ρ2)]ζ(1ζ)+[14(1α)+ρ]ρ4ζ(1ζ).

    Lemma 3. For α[0,1],lZ+ and ρN, we have

    Klρ,α(tm;ζ)=j0+...+jl=m(mj0,...,jl)ρj0(ρ+l)m(j1+1)...(jl+1)T(α)ρ(tj0;ζ), (2.2)

    where

    T(α)ρ(ψ;ζ)=ρϑ=0ψ(ϑρ)p(α)ρ,ϑ(ζ), (see [1]).

    Proof. It follows from (2.1) that

    Klρ,α(tm;ζ)=ρϑ=0p(α)ρ,ϑ(ζ)10...10(ϑ+t1+...+tlρ+l)mdt1...dtl=ρϑ=0p(α)ρ,ϑ(ζ)j0+...+jl=m(mj0,...,jl)1010...10ϑj0tj11...tjll(ρ+l)mdt1...dtl=ρϑ=0p(α)ρ,ϑ(ζ)j0+...+jl=m(mj0,...,jl)ϑj0(ρ+l)m(j1+1)...(jl+1)=j0+...+jl=m(mj0,...,jl)ρj0(ρ+l)m(j1+1)...(jl+1)ρϑ=0ϑj0ρj0p(α)ρ,ϑ(ζ)=j0+...+jl=m(mj0,...,jl)ρj0(ρ+l)m(j1+1)...(jl+1)T(α)ρ(tj0;ζ).

    Using formula (2.2), we can calculate Klρ,α(tj;ζ) for j=0,1,2.

    Lemma 4. Let α[0,1],lZ+ and ρN, We have

    (i)Klρ,α(1;ζ)=1,(ii)Klρ,α(t;ζ)=l2(ρ+l)+ρ(ρ+l)ζ,(iii)Klρ,α(t2;ζ)=3l2+l12(ρ+l)2+(ρ(l+1)+2(1α))(ρ+l)2ζ+(ρ2ρ2(1α)(ρ+l)2)ζ2.

    Proof. We give the proof for only Klρ,α(t2;ζ). Using (2.2), we get

    Klρ,α(t2;ζ)=j0+...+jl=2(2j0,...,jl)ρj0(ρ+l)m(j1+1)...(jl+1)T(α)ρ(tj0;ζ)=(l2)12(ρ+l)2+(l1)13(ρ+l)2+(l1)ρ(ρ+l)2τ+ρ2(ρ+l)2(ζ2+ρ+2(1α)ρ2ζ(1ζ))=3l2+l12(ρ+l)2+(ρ(l+1)+2(1α))(ρ+l)2ζ+(ρ2(ρ+2(1α))(ρ+l)2)ζ2.

    The linearity property of Klρ,α(ψ;ζ) allows us to obtain the next lemma.

    Lemma 5. Let α[0,1], ρN and lZ+. For every ζ[0,1] there holds

    Klρ,α(tζ;ζ)=l(12ζ)2(ρ+l),Klρ,α((tζ)2;ζ)=3l2+l12(ρ+l)2+(ρ+22αl2)(ρ+l)2ζ+l2ρ+2α2(ρ+l)2ζ2=μ2ρ,α

    Proof. Using the linearity property of Klρ,α(t;ζ) and Lemma 4, we can prove all the above equalites with the same method. Thus, we give proof for only Klρ,α((tζ)2;ζ).

    Klρ,α((tζ)2;ζ)=Klρ,α(t2;ζ)2ζKlρ,α(t;ζ)+ζ2Klρ,α(1;ζ)=3l2+l12(ρ+l)2+(ρ(l+1)+2(1α))(ρ+l)2ζ+(ρ2(ρ+2(1α))(ρ+l)2)ζ22ζ(l2(ρ+l)+ρ(ρ+l)ζ)+ζ2=3l2+l12(ρ+l)2+ρ+22αl2(ρ+l)2ζ+l2ρ+2α2(ρ+l)2ζ2.

    Lemma 6. Let α[0,1],ρN and lZ+. For every ζ[0,1] there hold

    limρ(ρ+l)Klρ,α((tζ);ζ)=l(12ζ)2,limρ(ρ+l)Klρ,α((tζ)2;ζ)=ζζ2.

    Proof. By Lemma 5, we have

    limρ(ρ+l)Klρ,α((tζ);ζ)=limρ(ρ+l)l(12ζ)2(ρ+l)=l(12ζ)2

    and

    limρ(ρ+l)Klρ,α((tζ)2;ζ)=limρ(ρ+l)3l2+l12(ρ+l)2+(ρ+22αl2)(ρ+l)2ζ+(l2ρ+2α2)(ρ+l)2ζ2=ζζ2.

    In the next theorem, we examined Korovkin type approximation theorem for Klρ,α(ψ;ζ).

    Theorem 7. Let α[0,1],ρN and lZ+. For each ψC[0,1], we have  Klρ,α(ψ;ζ)ψ on [0,1], where the symbol denotes the uniform convergence.

    Proof. By the Korovkin's Theorem it is sufficient to show that

    limρKlρ,α(tm;ζ)ζmC[0,1]=0,   m=0,1,2.

    By Lemma 4 (i), (ii) and (iii), it is clear that

    limρKlρ,α(1;ζ)1C[0,1]=0

    and

    |Klρ,α(t;ζ)ζ|=|l(12ζ)2(ρ+l)|

    which yields

    limρKlρ,α(t;ζ)ζC[0,1]=0.

    Similarly

    |Klρ,α(t2;ζ)ζ2|=3l2+l12(ρ+l)2+(ρ+22αl2)(ρ+l)2ζ+(l2ρ+2α2)(ρ+l)2ζ2

    which concludes

    limρKlρ,α(t2;ζ)ζ2C[0,1]=0

    Thus the proof is completed.

    For ψC[0,1] and δ>0,first and second order modulus of smoothness for ψ defined as

    w(ψ,δ)=sup0<hδ supζ,ζ+h[0,1]|ψ(ζ+h)ψ(ζ)|,

    and

    ω2(ψ;δ)=sup0<hδ supζ,ζ+h[0,1] |ψ(ζh)2ψ(ζ)+ψ(ζ+h)|.

    Recall that the Peetre's K-functional is defined by

    K2(ψ;δ)=infgC2[0,1]{ψg+δg}    δ>0,

    where C2[0,1]:={gC[0,1]:g,gC[0,1]}.

    Then, we know that (Theorem 2.4 in [21]),

    K2(ψ;δ)Lω2(ψ;δ), (3.1)

    where L absolute constant.

    Lemma 8. Let ψC[0,1]. Consider the operators

    Klρ,α(ψ;ζ)=Klρ,α(ψ;ζ)+ψ(ζ)ψ(l2(ρ+l)+ρρ+lζ) (3.2)

    Then, for all gC2[0,1], we have

    |Klρ,α(g;τ)g(τ)|[3l2+l12(ρ+l)2+(ρ+22αl2)(ρ+l)2ζ+l2ρ+2α2(ρ+l)2ζ2+(l2(ρ+l)+ρρ+lζζ)2]g. (3.3)

    Proof. From (3.2) we have

    Klρ,α((tζ);ζ)=Klρ,α((tζ);ζ)[l2(ρ+l)+ρρ+lζζ]=Klρ,α(t;ζ)ζKlρ,α(1;ζ)(l2(ρ+l)+ρρ+lζ)+ζ=0. (3.4)

    Let ζ[0,1] and gC2[0,1]. Using the Taylor's formula,

    g(t)g(ζ)=(tζ)g(ζ)+tζ(tu)g(u)du, (3.5)

    Applying Klρ,α to both sides of the (3.5) and using (3.4), we have

    Klρ,α(g;ζ)g(ζ)=Klρ,α((tζ)g(ζ);ζ)+Klρ,α(tζ(tu)g(u)du;ζ)=g(ζ)Klρ,α((tζ);ζ)+Klρ,α(tζ(tu)g(u)du;ζ)l2(ρ+l)+ρρ+lζζ(l2(ρ+l)+ρρ+lζu)g(u)du=Klρ,α(tζ(tu)g(u)du;ζ)l2(ρ+l)+ρρ+lζζ(l2(ρ+l)+ρρ+lζu)g(u)du.

    On the other hand, since

    tζ|tu||g(u)|dugtζ|tu|du(tζ)2g

    and

    |l2(ρ+l)+ρρ+lζζ(l2(ρ+l)+ρρ+lζu)g(u)du|(l2(ρ+l)+ρρ+lζζ)2g,

    we conclude that

    |Klρ,α(g;ζ)g(ζ)|=|Klρ,α(tζ(tu)g(u)du;ζ)l2(ρ+l)+ρρ+lζζ(l2(ρ+l)+ρρ+lζu)g(u)du|gKlρ,α((tζ)2;ζ)+(l2(ρ+l)+ρρ+lζζ)2g.

    Using Lemma 5, we get

    |Klρ,α(g;ζ)g(ζ)|[3l2+l12(ρ+l)2+(ρ+22αl2)(ρ+l)2ζ+l2ρ+2α2(ρ+l)2ζ2+(l2(ρ+l)+ρρ+lζζ)2]g.

    Theorem 9. Let ρN,α[0,1] and lZ+. Then, for every ψC[0,1], there exists aconstant M>0 such that

    |Klρ,α(ψ;ζ)ψ(ζ)|Mω2(ψ;δlρ,α(ζ))+ω(ψ;βlρ,α(ζ)),

    where

    δlρ,α(ζ)=[3l2+l12(ρ+l)2+(ρ+22αl2)(ρ+l)2ζ+l2ρ+2α2(ρ+l)2ζ2+(l2(ρ+l)+ρρ+lζζ)2]g

    and

    βlρ,α(ζ)=|l2(ρ+l)+(ρρ+l1)ζ|.

    Proof. It follows from Lemma 8, that

    |Klρ,α(ψ;ζ)ψ(ζ)||Klρ,α(ψ;ζ)ψ(ζ)|+|ψ(ζ)ψ(l2(ρ+l)+ρρ+lζ)||Klρ,α(ψg;ζ)(ψg)(ζ)|+|ψ(ζ)ψ(l2(ρ+l)+ρρ+lζ)|+|Klρ,α(g;ζ)g(ζ)||Klρ,α(ψg;ζ)|+|(ψg)(ζ)|+|ψ(ζ)ψ(l2(ρ+l)+ρρ+lζ)|+|Klρ,α(g;ζ)g(ζ)|.

    Now, considering the boundedness of  the Klρ,α and inequality (3.3), we get

    |Klρ,α(ψ;ζ)ψ(ζ)|4ψg+|ψ(ζ)ψ(l2(ρ+l)+ρρ+lζ)|+[3l2+l12(ρ+l)2+(ρ+22αl2)(ρ+l)2ζ+l2ρ+2α2(ρ+l)2ζ2+(l2(ρ+l)+ρρ+lζζ)2]g4ψg+ω(ψ;|(l2(ρ+l)+(ρρ+l1)ζ)2|)+δlρ,α(ζ)g.

    Now, taking infimum on the right side over all gC2[0,1] and using (3.1), we get the following result

    |Klρ,α(ψ;ζ)ψ(ζ)|4K2(ψ;δlρ,α(ζ))+ω(ψ;βρ(ζ))Mω2(ψ;δlρ,α(ζ))+ω(ψ;βlρ,α(ζ)).

    Let us consider the Lipschitz-type with two parameters [22]. For β10,β2>0, we define

    Lipβ1,β2M(η)={ψC[0,1]:|ψ(t)ψ(ζ)|M|tζ|η(t+β1ζ2+β2ζ)η2;t[0,1],ζ(0,1]},

    where 0<η1.

    Theorem 10. Let ψ Lipβ1,β2M(η). Thenfor all ζ(0,1], we have

    |Klρ,α(ψ;ζ)ψ(ζ)|M(Klρ,α((tζ)2;ζ)β1ζ2+β2ζ)η2.

    Proof. Let we prove theorem for the case 0<η1, applying Holder's inequality with p=2η,q=22η,

    |Klρ,α(ψ;ζ)ψ(ζ)|ρϑ=0p(α)ρ,ϑ10...10|ψ(ϑ+t1+...+tlρ+l)ψ(ζ)|dt1...dtlρϑ=0p(α)ρ,ϑ(10...10|ψ(ϑ+t1+...+tlρ+l)ψ(ζ)|2ηdt1...dtl)η2{ρϑ=0p(α)ρ,ϑ10...10|ψ(ϑ+t1+...+tlρ+l)ψ(ζ)|2ηdt1...dtl}η2{ρϑ=0p(α)ρ,ϑ}2η2=(ρϑ=0p(α)ρ,ϑ10...10|ψ(ϑ+t1+...+tlρ+l)ψ(ζ)|2ηdt1...dtl)η2M(ρϑ=0p(α)ρ,ϑ10...10(ϑ+t1+...+tlρ+lζ)2(ϑ+t1+...+tlρ+l+β1ζ2+β2ζ)dt1...dtl)η2M(β1ζ2+β2x)η2(ρϑ=0p(α)ρ,ϑ10...10(ϑ+t1+...+tlρ+lζ)2dt1...dtl)η2=M(β1x2+β2x)η2(Klρ,α((tx)2;x))η2

    Theorem 11. Let ψC[0,1], α[0,1] and lZ+. Then the inequality

    |Klρ,α(ψ;ζ)ψ(ζ)|2w(ψ,δlρ,α(ζ))

    takes place, where δlρ,α(ζ)=Klρ,α(tζ)2.

    Proof. It is known that

    |ψ(t)ψ(ζ)|w(ψ,δ)((tζ)2δ2+1), for any δ>0,

    So, we have

    |Klρ,α(ψ;ζ)ψ(ζ)|Klρ,α(|ψ(t)ψ(ζ)|;ζ)w(ψ,δ)(1δ2Klρ,α((tζ)2;ζ)+1)

    Choosing δ=δρ(ζ)=Klρ,α(tζ)2, we have

    |Klρ,α(ψ;ζ)ψ(ζ)|2w(ψ,δlρ,α(ζ))

    Let Ck[I] denote space of k-times continuously differentiable function on I.

    Theorem 12. For any ψC1[0,1] and ζ[0,1], we have

    |Klρ,α(ψ;ζ)ψ(ζ)||l(12ζ)2(ρ+l)||ψ(ζ)|+2Klρ,α((tζ)2;ζ)w(ψ,Klρ,α((tζ)2;ζ)) (3.6)

    Proof. Let ψC1[0,1]. For any t[0,1],ζ[0,1], we have

    ψ(t)ψ(ζ)=ψ(ζ)(tζ)+tζ(ψ(u)ψ(ζ))du.

    Using Klρ,α(.;ζ) on both sides of the above equation, we have

    Klρ,α(ψ(t)ψ(ζ);ζ)=ψ(ζ)Klρ,α((tζ);ζ)+Klρ,α(tζ(ψ(u)ψ(ζ))du;ζ).

    Using the property of modulus of continuity |ψ(t)ψ(ζ)|w(ψ,δ)(|tζ|δ+1),δ>0, we obtain

    |tζ(ψ(u)ψ(ζ))du|w(ψ,δ)((tζ)2δ+|tζ|),

    it follows that

    |Klρ,α(ψ;ζ)ψ(ζ)||ψ(ζ)||(Klρ,α(tζ);ζ)|+w(ψ,δ){1δKlρ,α((tζ)2;ζ)+Klρ,α(|tζ|;ζ)}

    From Cauchy-Schwarz inequality, we have

    |Klρ,α(ψ;ζ)ψ(ζ)||ψ(ζ)||(Klρ,α(tζ);ζ)|+w(ψ,δ){1δKlρ,α((tζ)2;ζ)+1}Klρ,α((tζ)2;ζ)

    Now, taking δ=Klρ,α((tζ)2;ζ), we obtain (3.6).

    In the next section, we state the direct global approximation theorem for operators Klρ,α(ψ;ζ).

    Let AC[0,1] denote the absolutely continuous on [0,1]. For ψC[0,1], the first and second order Ditzian-Totik moduli of smoothness are defined by

    wθ(ψ,δ)=sup0<hδsup ζ,ζ+hθ(ζ)[0,1]|ψ(ζ+hθ(ζ))ψ(ζ)|

    and

    w2,ϕ(ψ,δ)=sup0<hδ supζ,ζ+hϕ(ζ)[0,1]|ψ(ζhϕ(ζ))2ψ(ζ)+ψ(ζ+hϕ(ζ))|,

    respectively.

    Moreover, the second-order modified K-functional for ψC[0,1] is defined by

    K2,ϕ(ψ,δ)=inf{ψg+δϕ2g+δ2g:gW2(ϕ)},

    where δ>0,ϕ(x)=x(1x)(x[0,1])and

    W2(ϕ)={gC[0,1]:gAC[0,1],ϕ2gC[0,1]}.

    It is well-known [23] that, for any δ>0,

    K2,ϕ(ψ,δ2)Dw2,ϕ(ψ,δ), (4.1)

    holds for some absolute constant D>0.

    Theorem 13. Let ρN,α[0,1] and lZ+. Then, for every ψC[0,1] and ζ[0,1], there exist an absolute C>0 such that

    Klρ,α(ψ;ζ)ψ(ζ)Cw2,ϕ(ψ,1ρ+l)+wθl(ψ,lρ+l), (4.2)

    where θl=l(1+2x).

    Proof. If we use the operators Klρ,α given by (3.2), then for a given gW2(ϕ), we obtain that

    |Klρ,α(g;ζ)g(ζ)|Klρ,α(|tζ|tu|g(u)du|;ζ)+|l2(ρ+l)+ρρ+lζζ|l2(ρ+l)+ρζρ+lu||g(u)|du|.

    Let λρ(ζ)=ζ(1ζ)+l(ρ+l). Taking u=βζ+(1β)t, β[0,1],and also using concavity λρ, we have

    |tu|λρ(u)=β|ζt|λρ(u)β|ζt|λρ(t)+β(λρ(ζ)λρ(t))|ζt|λρ(ζ).

    Using the last inequality, we observe that

    |tζ|tu|g(u)du|=|tζ|tu|λρ(u)g(u)λρ(u)du|λρgλρ(ζ)(tu)2. (4.3)

    Then we get from (4.3) that

    |Klρ,α(g;ζ)g(ζ)|1λρ(ζ)Klρ,α((tζ)2;ζ)λρg+1λρ(ζ)(l(12x)2(ρ+l))2λρg2l2λρg(ρ+l)2l2λρgρ+l(ϕ2g+1ρ+lg).

    On the other hand, since the operators Klρ,α(g;ζ) are uniformly bounded, we get

    |Klρ,α(ψ;ζ)ψ(ζ)||Klρ,α(ψg;ζ)|+|Klρ,α(g;ζ)g(ζ)|+|ψ(ζ)g(ζ)|+|ψ(l2(ρ+l)+ρζρ+l)ψ(ζ)|4l2[ψg+(1ρ+lϕg+1(ρ+l)2g)]+|ψ(l2(ρ+l)+ρζρ+l)ψ(ζ)|.

    Taking infimum on the right hand side of the above inequality over all gW2(ϕ), we obtain

    |Klρ,α(ψ;ζ)ψ(ζ)|4l2K2,ϕ(ψ,1ρ+l)+|ψ(l2(ρ+l)+ρρ+lζ)ψ(ζ)|.

    Now, using the function θl(ζ)=l+2xl, we can also get

    |ψ(l2(ρ+l)+ρρ+lζ)ψ(ζ)|=|ψ(ζ+θl(ζ)l2(ρ+l)+ρρ+lζζθl(ζ))ψ(ζ)|suptIl(ζ)|ψ(t+θl(t)l2xl(ρ+l)θl(ζ)ψ(t))|wθl(ψ;|l2xl|(ρ+l)θl(ζ))wθl(ψ;l(ρ+l)),

    where Il(ζ)={t[0,1]:t+θl(t)l2xl(ρ+l)[0,1]}. Finally, using (4.1), we get desired result.

    Here, we Voronovskaya type result for the Klρ,α(ψ;ζ) operators.

    Theorem 14. Let ψC[0,1]. If ψ exist ata point ζ[0,1], then we have

    limρ(ρ+l)[Klρ,α(ψ;ζ)ψ(ζ)]=(l2ζl)ψ(ζ)+12ζ(1ζ)ψ(ζ),

    where pN,lZ+ and α[0,1].

    Proof. For ζ[0,1], the Taylor's formula ψ is given by

    ψ(t)=ψ(ζ)+ψ(ζ)(tζ)+12ψ(ζ)(tζ)2+r(t,ζ)(tζ)2, (5.1)

    Here r(t,ζ) is Peano form of remainder and r(.,ζ)C[0,1] and limtζr(t,ζ)=0. Applying the operator Klρ,α to (5.1), we get

    Klρ,α(ψ;ζ)ψ(ζ)=ψ(ζ)Klρ,α((tζ);ζ)+12ψ(ζ)Klρ,α((tζ)2;ζ)+Klρ,α(r(t,ζ)(tζ)2;ζ).

    Using Cauchy-Schwarz inequality in the last term, we have

    Klρ,α(r(t,ζ)(tζ)2;ζ)Klρ,α(r2(t,ζ);ζ)Klρ,α((tζ)4;ζ).

    Observe that r2(t,ζ)=0 and r2(.,ζ)C[0,1].

    Hence from Theorem 7,

    limρKγρ,α(r2(t,ζ);ζ)=r2(ζ,ζ)=0

    uniformly for ζ[0,1].

    Therefore

    limρ(ρ+l)[Klρ,α(ψ;ζ)ψ(ζ)]=ψ(ζ)limρ(ρ+l)Klρ,α((tζ);ζ)+12ψ(ζ)limρ(ρ+l)Klρ,α((tζ)2;ζ).

    From Lemma 6,

    limρ(ρ+l)[Klρ,α(ψ;ζ)ψ(ζ)]=(l2ζl)ψ(ζ)+12ζ(1ζ)ψ(ζ).

    Now, we show graphical analysis for the convergence of operators Klρ,α(ψ;ζ) to the function ψ(ζ)=1+ζsin(10ζ).

    In Figure 1, we show the approximation to this function ψ by the operators K2ρ,0.9(ψ;ζ) for ρ=20,50,100 respectively.

    Figure 1.  Approximation to ψ by Klρ,α for l=2,ψ(x)=1+xsin(10x) and ρ=20,50,100.

    Morever, in Table 1, we compute the error of  approximation K2ρ,0.9(ψ;ζ) of our ψ(ζ)=1+ζsin(10ζ) for ρ=20,50,100.

    Table 1.  Error of approximation.
    ζ |Kl20,0.9(ψ;ζ)ψ(ζ)| |Kl50,0.9(ψ;ζ)ψ(ζ)| |Kl100,0.9(ψ;ζ)ψ(ζ)|
    0.15 0.064216061 0.021762009 0.007340463
    0.20 0.14487018 0.087839632 0.063907778
    0.25 0.183644366 0.130465015 0.104166221
    0.30 0.158749953 0.131315495 0.113558559
    0.35 0.071337791 0.086468662 0.087398881
    0.40 0.053489031 0.008709032 0.032989989
    0.45 0.174356459 0.076385157 0.032542776
    0.50 0.247626587 0.139305019 0.088014747
    0.55 0.243166628 0.157342571 0.115543775
    0.60 0.156507953 0.123329353 0.106886498
    0.65 0.012905048 0.049061689 0.066417709
    0.70 0.138822143 0.038181349 0.009556201
    0.75 0.241568052 0.105238164 0.042950102
    0.80 0.250138778 0.125723189 0.072927239
    0.85 0.150111243 0.091301023 0.07198989

     | Show Table
    DownLoad: CSV

    In this section, we introduce the bivariate extension of the operators (2.1). The bivariate extension of the Klρ,α(ψ;ζ) (2.1) can be defined by

    Kl1,l2ρ1,ρ2,α1,α2(ψ;ζ,γ)=ρ1ϑ1=0ρ2ϑ2=0p(α1)ρ1,ϑ1p(α2)ρ2,ϑ210...10(10...10ψ(ϑ1+t1+...+tl1ρ1+l1,ϑ2+t1+...+tl2ρ1+l2)dt1...dtl1)dt1...dtl2

    where (ζ.γ)I2=[0,1]×[0,1], α1,α2[0,1] and l1,l2Z+.

    The bivariate α-Bernstein-Kantorovich operators can be rewritten as

    Kl1,l2ρ1,ρ2,α1,α2(;ζ,γ)=Kl1ρ1,α1(;ζ)×Kl1ρ2,α2(;γ)

    Lemma 15. Let eij(ζ,γ)=ζiγj, 0i+j2. For (ζ.γ)I2=[0,1]×[0,1],l1,l2Z+ and α1,α2[0,1], we have

    Kl1,l2ρ1,ρ2,α1,α2(e00;ζ,γ)=1,Kl1,l2ρ1,ρ2,α1,α2(e10;ζ,γ)=l12(ρ1+l1)+ρ1(ρ1+l1)ζ,Kl1,l2ρ1,ρ2,α1,α2(e10;ζ,γ)=l22(ρ2+l2)+ρ2(ρ2+l2)γKl1,l2ρ1,ρ2,α1,α2(e20;ζ,γ)=3l21+l112(ρ1+l1)2+(ρ1(l1+1)+2(1α1))(ρ1+l1)2ζ+(ρ21ρ12(1α1)(ρ1+l1)2)ζ2Kl1,l2ρ1,ρ2,α1,α2(e02;ζ,γ)=3l22+l212(ρ2+l2)2+(ρ2(l2+1)+2(1α2))(ρ2+l2)2γ+(ρ22ρ22(1α2)(ρ2+l2)2)γ2

    Remark 16. According to above Lemma 15, we get

    Kl1,l2ρ1,ρ2,α1,α2(e10ζ;ζ,γ)=l1(12ζ)2(ρ1+l1)Kl1,l2ρ1,ρ2,α1,α2(e01γ;ζ,γ)=l2(12γ)2(ρ2+l2)Kl1,l2ρ1,ρ2,α1,α2((e10ζ)2;ζ,γ)=3l21+l112(ρ1+l1)2+(ρ1+22α1l21)(ρ1+l1)2ζ+l21ρ1+2α12(ρ1+l1)2ζ2=δρ1,α1(ζ)Kl1,l2ρ1,ρ2,α1,α2((e01γ)2;ζ,γ)=3l22+l212(ρ2+l2)2+(ρ2+22α2l22)(ρ2+l2)2γ+l22ρ2+2α22(ρ2+l2)2γ2=δρ2,α2(γ)

    In the next theorem, we obtain the uniform convergence of the bivariate \alpha -Bernstein-Kantorovich operators to the bivariate functions defined on I^{2} = \left[ 0, 1\right] \times \left[ 0, 1\right] .

    Theorem 17. Let C(I^{2}) be the space of continuous bivariate function on I^{2} = \left[0, 1\right] \times \left[ 0, 1\right] . Then for any \psi \in C(I^{2}) , wehave

    \underset{\rho _{1},\rho _{2}\rightarrow \infty }{\lim }\left\Vert K_{\rho _{1},\rho _{2},\alpha _{1},\alpha _{2}}^{l_{1},l_{2}}\psi -\psi \right\Vert = 0.

    Proof. Using Lemma 16, we get

    \begin{eqnarray*} \left\Vert K_{\rho _{1},\rho _{2},\alpha _{1},\alpha _{2}}^{l_{1},l_{2}}e_{00}-e_{00}\right\Vert & = &0,\left\Vert K_{\rho _{1},\rho _{2},\alpha _{1},\alpha _{2}}^{l_{1},l_{2}}e_{10}-e_{10}\right\Vert \rightarrow 0 \\ \left\Vert K_{\rho _{1},\rho _{2},\alpha _{1},\alpha _{2}}^{l_{1},l_{2}}e_{01}-e_{01}\right\Vert &\rightarrow &0,\left\Vert K_{\rho _{1},\rho _{2},\alpha _{1},\alpha _{2}}^{l_{1},l_{2}}\left( e_{20}+e_{02}\right) -\left( e_{20}+e_{02}\right) \right\Vert \rightarrow 0 \text{ as }\rho _{1},\rho _{2}\rightarrow \infty. \end{eqnarray*}

    Hence, by Volkov's theorem [3], we deduce

    \underset{\rho _{1},\rho _{2}\rightarrow \infty }{\lim }\left\Vert K_{\rho _{1},\rho _{2},\alpha _{1},\alpha _{2}}^{l_{1},l_{2}}\psi -\psi \right\Vert = 0.

    We shall use the following modulus of continuity for bivariate real functions:

    w\left( f;\delta _{n},\delta _{m}\right) = \sup \left\{ \left\vert f(t,s)-f(x,y)\right\vert :\left( t,s\right) ,\left( x,y\right) \in I^{2},\left\vert t-x\right\vert \leq \delta _{n},\left\vert s-y\right\vert \leq \delta _{m}\right\}.

    Theorem 18. Let \psi \in C(I^{2}) . Then for all \left(\zeta, \gamma \right) \in I^{2} , the inequality

    \left\vert K_{\rho _{1},\rho _{2},\alpha _{1},\alpha _{2}}^{l_{1},l_{2}}\left( \psi ;\zeta ,\gamma \right) -\psi \left( \zeta ,\gamma \right) \right\vert \leq 4w\left( \psi ;\delta _{\rho _{1,}\alpha _{1}}(\zeta ),\delta _{\rho _{2,}\alpha _{2}}(\gamma )\right)

    holds, where \delta _{\rho _{1, }\alpha _{1}}(\zeta), \delta _{\rho_{2, }\alpha _{2}}(\gamma) are as in Remark 16.

    Proof. By the linearity and positivity properties of the K_{\rho _{1}, \rho _{2}, \alpha _{1}, \alpha _{2}}^{l_{1}, l_{2}} , we can write

    \begin{eqnarray*} \left\vert K_{\rho _{1},\rho _{2},\alpha _{1},\alpha _{2}}^{l_{1},l_{2}}\left( \psi ;\zeta ,\gamma \right) -\psi \left( \zeta ,\gamma \right) \right\vert &\leq &K_{\rho _{1},\rho _{2},\alpha _{1},\alpha _{2}}^{l_{1},l_{2}}\left( \left\vert \psi (t,s)-\psi \left( \zeta ,\gamma \right) \right\vert ;\zeta ,\gamma \right) \\ &\leq &w\left( \psi ;\delta _{1},\delta _{2}\right) \left[ K_{\rho _{1},\alpha _{1}}^{l_{1}}\left( 1;\zeta \right) +\frac{1}{\delta _{1}} K_{\rho _{1},\alpha _{1}}^{l_{1}}\left( \left\vert t-\zeta \right\vert ;\zeta \right) \right] \\ &&\times \left[ K_{\rho _{2},\alpha _{2}}^{l_{1}}\left( 1;\gamma \right) + \frac{1}{\delta _{2}}K_{\rho _{2},\alpha _{2}}^{l_{1}}\left( \left\vert s-\gamma \right\vert ;\gamma \right) \right]. \end{eqnarray*}

    Applying Cauchy-Schwarz inequality, we obtain

    \begin{eqnarray*} K_{\rho _{1},\alpha _{1}}^{l_{1}}\left( \left\vert t-\zeta \right\vert ;\zeta \right) &\leq &K_{\rho _{1},\alpha _{1}}^{l_{1}}\left( \left( t-\zeta \right) ^{2};\zeta \right) ^{\frac{1}{2}}, \\ K_{\rho _{2},\alpha _{2}}^{l_{1}}\left( \left\vert s-\gamma \right\vert ;\gamma \right) &\leq &K_{\rho _{2},\alpha _{2}}^{l_{1}}\left( \left( s-\gamma \right) ^{2};\gamma \right) ^{\frac{1}{2}}. \end{eqnarray*}

    Choosing \delta _{1} = \delta _{\rho _{1, }\alpha _{1}}(\zeta) and \delta _{2} = \delta _{\rho _{2, }\alpha _{2}}(\gamma) , we have desired result.

    Finally, in Figures 2 and 3, we show graphical analysis for the convergence of operators K_{\rho _{1}, \rho _{2}, \alpha _{1}, \alpha _{2}}^{l_{1}, l_{2}}\left(\psi; \zeta, \gamma \right) to the function \psi (\zeta) = \cos (2\pi \zeta)+\sin (3\pi \gamma) .

    Figure 2.  The result of choice n_{1} = 20, n_{2} = 50, \alpha _{1} = \alpha _{2} = 0.2, l_{1} = l_{2} = 2 .
    Figure 3.  The result of choice n_{1} = 100, n_{2} = 80, \alpha _{1} = \alpha _{2} = 0.2, l_{1} = l_{2} = 2 .

    In this paper, we introduced new type of generalized Kantorovich variant of \alpha -Bernstein operators. We obtained estimates of rate of convergence involving first and second order modulus of continuity. Furthermore, we established Voronovskaya type theorem for these operators. Also, some graphical illustrations and numerical results are provided.

    The author declares no conflict of interest.



    [1] X. Chen, J. Tan, Z. Liu, J. Xie, Approximation of functions by a new family of generalized Bernstein operator, J. Math. Anal. Appl., 450 (2017), 244–261. doi: 10.1016/j.jmaa.2016.12.075. doi: 10.1016/j.jmaa.2016.12.075
    [2] S. A. Mohiuddine, T. Acar, A. Alotaibi, Construction of a new family of Bernstein-Kantorovich operators, Math. Method. Appl. Sci., 40 (2017), 7749–7759. doi: 10.1002/mma.4559. doi: 10.1002/mma.4559
    [3] V. I. Volkov, On the convergence of sequences of linear positive operators in the space of continuous functions of two variables, Dokl. Akad. Nauk, 115 (1957), 17–19.
    [4] G. G. Lorentz, Bernstein polynomials, Toronto: Univ. of Toronto Press, 1953.
    [5] A. Lupas, A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on Numerical and Statistical Calculus, 1987.
    [6] N. Deo, M. Dhamija, Better approximation results by Bernstein-Kantorovich operators, Lobachevskii J. Math., 38 (2017), 94–100. doi: 10.1134/S1995080217010085. doi: 10.1134/S1995080217010085
    [7] H. Gonska, M. Heilmann, I. Raşa, Kantorovich operators of order k, Numer. Func. Anal. Opt., 32 (2011), 717–738. doi: 10.1080/01630563.2011.580877. doi: 10.1080/01630563.2011.580877
    [8] M. A. Özarslan, O. Duman, Smoothness poperties of modified Bernstein-Kantorovich operators, Numer. Func. Anal. Opt., 37 (2016), 92–105. doi: 10.1080/01630563.2015.1079219. doi: 10.1080/01630563.2015.1079219
    [9] N. Mahmudov, P. Sabancıgil, Approximation theorems for q -Bernstein-Kantorovich operators, Filomat, 27 (2013), 721–730. doi: 10.2298/FIL1304721M. doi: 10.2298/FIL1304721M
    [10] T. Acar, A. Aral, S. A. Mohiuddine, On Kantorovich modification of (p, q)-Bernstein operators, Iran. J. Sci. Technol. A, 42 (2018), 1459–1464. doi: 10.1007/s40995-017. doi: 10.1007/s40995-017
    [11] F. Özger, Weighted statistical approximation properties of univariate and bivariate \lambda -Kantorovich operators, Filomat, 33 (2019), 3473–3486. doi: 10.2298/FIL1911473O. doi: 10.2298/FIL1911473O
    [12] T. Acar, A. Aral, S. A. Mohiuddine, Approximation by bivariate (p, q)-Bernstein-Kantorovich operators, Iran. J. Sci. Technol. A, 4 (2018), 655–662. doi: 10.1007/s40995-016-0045-4. doi: 10.1007/s40995-016-0045-4
    [13] T. Acar, A. Aral, S. A. Mohiuddine, On Kantorovich modification of (p, q)-Baskakov operators, J. Inequal. Appl., 98 (2016). doi: 10.1186/s13660-016-1045-9.
    [14] A. M. Acu, C. Muraru, Approximation properties of bivariate extension of q-Bernstein-Schurer Kantorovich operators, Results Math., 67 (2015), 265–279. doi: 10.1007/s00025-015-0441-7. doi: 10.1007/s00025-015-0441-7
    [15] Q. B. Cai, The Bézier variant of Kantorovich type \lambda -Bernstein operators, J. Inequal. Appl., 90 (2018). doi: 10.1186/s13660-018-1688-9.
    [16] S. A. Mohiuddine, T. Acar, A. Alotaibi, Construction of a new family of Bernstein-Kantorovich operators, Math. Method. Appl. Sci., 40 (2017), 7749–7759. doi: 10.1002/mma.4559. doi: 10.1002/mma.4559
    [17] N. Deo, R. Pratap, \alpha -Bernstein-Kantorovich operators, Afr. Mat., 31 (2020), 609–618. doi: 10.1007/s13370-019-00746-4. doi: 10.1007/s13370-019-00746-4
    [18] S. A. Mohiuddine, F. Özger, Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter, RACSAM Rev. R. Acad. A, 70 (2020). doi: 10.1007/s13398-020-00802-w.
    [19] Q. B. Cai, W. T. Cheng, B. Çekim, Bivariate \alpha, q -Bernstein-Kantorovich operators and GBS operators of Bivariate \alpha, q -Bernstein-Kantorovich type, Mathematics, 7 (2019), 1161. doi: 10.3390/math7121161. doi: 10.3390/math7121161
    [20] A. Kajla, P. Agarwal, S. Araci, A Kantorovich variant of a generalized Bernstein operators, J. Math. Comput. Sci., 19 (2019), 86–96. doi: 10.22436/jmcs.019.02.03. doi: 10.22436/jmcs.019.02.03
    [21] R. A. Devore, G. G. Lorentz, Constructive approximation, Springer-Verlang, New York, 1993.
    [22] M. A. Özarslan, H. Aktuğlu, Local Approximation peroperties for certain King type operators, Filomat, 27 (2013), 173–182. doi: 10.2298/FILI301173Oç. doi: 10.2298/FILI301173Oç
    [23] Z. Ditzion, V. Totik, Moduli of smoothness, Springer-Verlag, New York, 1987. doi: 10.1007/978-1-4612-4778-7.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2405) PDF downloads(133) Cited by(0)

Figures and Tables

Figures(3)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog