
In this paper, we introduce new type of generalized Kantorovich variant of α-Bernstein operators and study their approximation properties. We obtain estimates of rate of convergence involving first and second order modulus of continuity and Lipschitz function are studied for these operators. Furthermore, we establish Voronovskaya type theorem of these operators. The last section is devoted to bivariate new type α-Bernstein-Kantorovich operators and their approximation behaviors. Also, some graphical illustrations and numerical results are provided.
Citation: Mustafa Kara. Approximation properties of the new type generalized Bernstein-Kantorovich operators[J]. AIMS Mathematics, 2022, 7(3): 3826-3844. doi: 10.3934/math.2022212
[1] | Qing-Bo Cai, Melek Sofyalıoğlu, Kadir Kanat, Bayram Çekim . Some approximation results for the new modification of Bernstein-Beta operators. AIMS Mathematics, 2022, 7(2): 1831-1844. doi: 10.3934/math.2022105 |
[2] | Mohammad Ayman-Mursaleen, Md. Nasiruzzaman, Nadeem Rao, Mohammad Dilshad, Kottakkaran Sooppy Nisar . Approximation by the modified $ \lambda $-Bernstein-polynomial in terms of basis function. AIMS Mathematics, 2024, 9(2): 4409-4426. doi: 10.3934/math.2024217 |
[3] | Zhongbin Zheng, Jinwu Fang, Wentao Cheng, Zhidong Guo, Xiaoling Zhou . Approximation properties of modified (p, q)-Szász-Mirakyan-Kantorovich operators. AIMS Mathematics, 2020, 5(5): 4959-4973. doi: 10.3934/math.2020317 |
[4] | Guorong Zhou, Qing-Bo Cai . Bivariate $ \lambda $-Bernstein operators on triangular domain. AIMS Mathematics, 2024, 9(6): 14405-14424. doi: 10.3934/math.2024700 |
[5] | Nazmiye Gonul Bilgin, Yusuf Kaya, Melis Eren . Security of image transfer and innovative results for (p,q)-Bernstein-Schurer operators. AIMS Mathematics, 2024, 9(9): 23812-23836. doi: 10.3934/math.20241157 |
[6] | Bo-Yong Lian, Qing-Bo Cai . Approximation properties of Stancu type Szász-Mirakjan operators. AIMS Mathematics, 2023, 8(9): 21769-21780. doi: 10.3934/math.20231110 |
[7] | Purshottam Narain Agrawal, Behar Baxhaku, Abhishek Kumar . Approximation properties of generalized Baskakov operators. AIMS Mathematics, 2021, 6(7): 6986-7016. doi: 10.3934/math.2021410 |
[8] | Erkan Agyuz . On the convergence properties of generalized Szász–Kantorovich type operators involving Frobenious–Euler–Simsek-type polynomials. AIMS Mathematics, 2024, 9(10): 28195-28210. doi: 10.3934/math.20241367 |
[9] | Sima Karamseraji, Shokrollah Ziari, Reza Ezzati . Approximate solution of nonlinear fuzzy Fredholm integral equations using bivariate Bernstein polynomials with error estimation. AIMS Mathematics, 2022, 7(4): 7234-7256. doi: 10.3934/math.2022404 |
[10] | Wissem Jedidi, Hristo S. Sendov, Shen Shan . Classes of completely monotone and Bernstein functions defined by convexity properties of their spectral measures. AIMS Mathematics, 2024, 9(5): 11372-11395. doi: 10.3934/math.2024558 |
In this paper, we introduce new type of generalized Kantorovich variant of α-Bernstein operators and study their approximation properties. We obtain estimates of rate of convergence involving first and second order modulus of continuity and Lipschitz function are studied for these operators. Furthermore, we establish Voronovskaya type theorem of these operators. The last section is devoted to bivariate new type α-Bernstein-Kantorovich operators and their approximation behaviors. Also, some graphical illustrations and numerical results are provided.
Approximation theory has an important place in application areas such as analysis and CAGD. In particular, Bernstein polynomials play an important role in approximation theory. Hence, due to the increasing interest in Bernstein polynomials, the question arises of how to construct its modifications that give better convergence results. That's why the books of Lorentz [4] and Lupaş [5] are of great importance.
For ψ∈C(I=[0,1]), the classical Bernstein-Kantorovich operators are defined by
Bρ(ψ;ζ)=ρ∑ϑ=0pρ,ϑ(ζ)ϑ+1ρ+1∫ϑρ+1ψ(t), ζ∈I, | (1.1) |
where pρ,ϑ(ζ)=(ρϑ)ζϑ(1−ζ)ρ−ϑ is the Bernstein basis function. For Kantorovich-type modifications of Bernstein operators, we refer to the articles [6,7,8,9,10,11,12,13,14,15]. Recently, Chen et al. [1] introduced a generalization of the α-Bernstein operators as follows:
T(α)ρ(ζ)=ρ∑ϑ=0p(α)ρ,ϑ(ζ)ψ(ϑρ), ζ∈I, | (1.2) |
where p(α)ρ,ϑρ≥2(ζ)=[(ρ−2ϑ)(1−α)ζ+(ρ−2ϑ−2)(1−α)(1−ζ)+(ρϑ)αζ(1−ζ)]ζi−1(1−ζ)ρ−ϑ−1,ζ∈[0,1].The authors of [1] have studied many approximation properties of α-Bernstein operators (1.2) such as rate of convergence and shape of preserving properties. After that, Mohiuddine et al. [16] introduced the Kantorovich variant of α-Bernstein operators (1.2) and examined the approximation properties. In [20], authors presented a Kantorovich variant of the operators proposed by [1] based on non-negative parameters and studied the estimate of the rate of approximation by using the modulus of smoothnes and Lipschitz type function for these operators. Very recently, Deo et al.[17] studied the direct local approximation theorem, Voronovskaya type asymtotic estimate formula and bounded variation for α-Bernstein-Kantorovich operators [16].
Mohiuddine and Özger [18] introduced Stancu variant of α -Bernstein-Kantorovich operators and studied approximation properties for these operators. Very recently, Q. B. Cai et al. [19] introduced the bivariate α-Bernstein-Kantorovich operators based q-integer and studied degree of approximation for these bivariate operators in terms of the partial moduli of continuity and Peetre's K-functional. We present the following new type generalized Kantorovich-Bernstein operators.
In [2] Kantorovich variant of Tρ,α(ψ;ζ) (1.2) defined as follows:
Kρ,α(ψ;ζ)=(ρ+1)ρ∑ϑ=0p(α)ρ,ϑ(ϑ+1)(ρ+1)∫ϑ(ρ+1)ψ(t)dt. |
In this paper, we introduce the new type generalized Kantorovich variant of Tαρ(ψ,ζ) as follows:
Klρ,α(ψ;ζ)=ρ∑ϑ=0p(α)ρ,ϑ1∫0...1∫0ψ(ϑ+t1+...+tlρ+l)dt1...dtl, | (2.1) |
where ψ∈[0,1], l∈Z+ and α∈[0,1].
In particular, if l=1 and α=1, then the operator
Kρ,α(ψ;ζ)=ρ∑ϑ=0p(α)ρ,ϑ1∫0ψ(ϑ+tρ+1)dt, |
i.e., it reduces to classical Bernstein - Kantorovich operators. In this work, C[0,1] denote the space of all bounded real valued continuous function on [0,1]. This space is equipped with the following norm:
‖ψ‖=supζ∈[0,1]|ψ(ζ)|. |
Moments of positive operators have an important place in the approximation theory. Therefore, from the definition of Klρ,α(ψ;ζ) and next two lemmas, we can derive the formula for moments of Klρ,α(tm;ζ).
Lemma 1. The following formulas hold
(ϑ+t1+...+tlρ+l)m=∑j0+...+jl=m(mj0,...,jl)ϑj0tj11...tjll(ρ+l)m |
and
1∫0...1∫0ϑj0tj11...tjll(ρ+l)mdt1...dtl=ϑj0(ρ+l)m(j1+1)...(jl+1). |
Lemma 2. [1] Let α∈[0,1]. Then moments of theoperators Tαρ(ζ) (1.2) are asfollows:
T(α)ρ(1;ζ)=1,T(α)ρ(ζ;ζ)=ζ,T(α)ρ(ζ2;ζ)=ζ2+ρ+2(1−α)ρ2ζ(1−ζ),T(α)ρ(ζ3;ζ)=ζ3+3[ρ+2(1−α)]ρ2ζ2(1−ζ)+ρ+6(1−α)ρ3ζ(1−ζ)(1−2ζ),T(α)ρ(ζ4;ζ)=ζ4+6[ρ+2(1−α)]ρ2ζ3(1−ζ)+4[ρ+6(1−α)]ρ3ζ2(1−2ζ)(1−ζ)+[12(ρ−6)(1−α)+3ρ(ρ−2)]ζ(1−ζ)+[14(1−α)+ρ]ρ4ζ(1−ζ). |
Lemma 3. For α∈[0,1],l∈Z+ and ρ∈N, we have
Klρ,α(tm;ζ)=∑j0+...+jl=m(mj0,...,jl)ρj0(ρ+l)m(j1+1)...(jl+1)T(α)ρ(tj0;ζ), | (2.2) |
where
T(α)ρ(ψ;ζ)=ρ∑ϑ=0ψ(ϑρ)p(α)ρ,ϑ(ζ), (see [1]). |
Proof. It follows from (2.1) that
Klρ,α(tm;ζ)=ρ∑ϑ=0p(α)ρ,ϑ(ζ)1∫0...1∫0(ϑ+t1+...+tlρ+l)mdt1...dtl=ρ∑ϑ=0p(α)ρ,ϑ(ζ)∑j0+...+jl=m(mj0,...,jl)1∫01∫0...1∫0ϑj0tj11...tjll(ρ+l)mdt1...dtl=ρ∑ϑ=0p(α)ρ,ϑ(ζ)∑j0+...+jl=m(mj0,...,jl)ϑj0(ρ+l)m(j1+1)...(jl+1)=∑j0+...+jl=m(mj0,...,jl)ρj0(ρ+l)m(j1+1)...(jl+1)ρ∑ϑ=0ϑj0ρj0p(α)ρ,ϑ(ζ)=∑j0+...+jl=m(mj0,...,jl)ρj0(ρ+l)m(j1+1)...(jl+1)T(α)ρ(tj0;ζ). |
Using formula (2.2), we can calculate Klρ,α(tj;ζ) for j=0,1,2.
Lemma 4. Let α∈[0,1],l∈Z+ and ρ∈N, We have
(i)Klρ,α(1;ζ)=1,(ii)Klρ,α(t;ζ)=l2(ρ+l)+ρ(ρ+l)ζ,(iii)Klρ,α(t2;ζ)=3l2+l12(ρ+l)2+(ρ(l+1)+2(1−α))(ρ+l)2ζ+(ρ2−ρ−2(1−α)(ρ+l)2)ζ2. |
Proof. We give the proof for only Klρ,α(t2;ζ). Using (2.2), we get
Klρ,α(t2;ζ)=∑j0+...+jl=2(2j0,...,jl)ρj0(ρ+l)m(j1+1)...(jl+1)T(α)ρ(tj0;ζ)=(l2)12(ρ+l)2+(l1)13(ρ+l)2+(l1)ρ(ρ+l)2τ+ρ2(ρ+l)2(ζ2+ρ+2(1−α)ρ2ζ(1−ζ))=3l2+l12(ρ+l)2+(ρ(l+1)+2(1−α))(ρ+l)2ζ+(ρ2−(ρ+2(1−α))(ρ+l)2)ζ2. |
The linearity property of Klρ,α(ψ;ζ) allows us to obtain the next lemma.
Lemma 5. Let α∈[0,1], ρ∈N and l∈Z+. For every ζ∈[0,1] there holds
Klρ,α(t−ζ;ζ)=l(1−2ζ)2(ρ+l),Klρ,α((t−ζ)2;ζ)=3l2+l12(ρ+l)2+(ρ+2−2α−l2)(ρ+l)2ζ+l2−ρ+2α−2(ρ+l)2ζ2=μ2ρ,α |
Proof. Using the linearity property of Klρ,α(t;ζ) and Lemma 4, we can prove all the above equalites with the same method. Thus, we give proof for only Klρ,α((t−ζ)2;ζ).
Klρ,α((t−ζ)2;ζ)=Klρ,α(t2;ζ)−2ζKlρ,α(t;ζ)+ζ2Klρ,α(1;ζ)=3l2+l12(ρ+l)2+(ρ(l+1)+2(1−α))(ρ+l)2ζ+(ρ2−(ρ+2(1−α))(ρ+l)2)ζ2−2ζ(l2(ρ+l)+ρ(ρ+l)ζ)+ζ2=3l2+l12(ρ+l)2+ρ+2−2α−l2(ρ+l)2ζ+l2−ρ+2α−2(ρ+l)2ζ2. |
Lemma 6. Let α∈[0,1],ρ∈N and l∈Z+. For every ζ∈[0,1] there hold
limρ→∞(ρ+l)Klρ,α((t−ζ);ζ)=l(1−2ζ)2,limρ→∞(ρ+l)Klρ,α((t−ζ)2;ζ)=ζ−ζ2. |
Proof. By Lemma 5, we have
limρ→∞(ρ+l)Klρ,α((t−ζ);ζ)=limρ→∞(ρ+l)l(1−2ζ)2(ρ+l)=l(1−2ζ)2 |
and
limρ→∞(ρ+l)Klρ,α((t−ζ)2;ζ)=limρ→∞(ρ+l)3l2+l12(ρ+l)2+(ρ+2−2α−l2)(ρ+l)2ζ+(l2−ρ+2α−2)(ρ+l)2ζ2=ζ−ζ2. |
In the next theorem, we examined Korovkin type approximation theorem for Klρ,α(ψ;ζ).
Theorem 7. Let α∈[0,1],ρ∈N and l∈Z+. For each ψ∈C[0,1], we have Klρ,α(ψ;ζ)⇉ψ on [0,1], where the symbol ⇉ denotes the uniform convergence.
Proof. By the Korovkin's Theorem it is sufficient to show that
limρ→∞‖Klρ,α(tm;ζ)−ζm‖C[0,1]=0, m=0,1,2. |
By Lemma 4 (i), (ii) and (iii), it is clear that
limρ→∞‖Klρ,α(1;ζ)−1‖C[0,1]=0 |
and
|Klρ,α(t;ζ)−ζ|=|l(1−2ζ)2(ρ+l)| |
which yields
limρ→∞‖Klρ,α(t;ζ)−ζ‖C[0,1]=0. |
Similarly
|Klρ,α(t2;ζ)−ζ2|=3l2+l12(ρ+l)2+(ρ+2−2α−l2)(ρ+l)2ζ+(l2−ρ+2α−2)(ρ+l)2ζ2 |
which concludes
limρ→∞‖Klρ,α(t2;ζ)−ζ2‖C[0,1]=0 |
Thus the proof is completed.
For ψ∈C[0,1] and δ>0,first and second order modulus of smoothness for ψ defined as
w(ψ,δ)=sup0<h≤δ supζ,ζ+h∈[0,1]|ψ(ζ+h)−ψ(ζ)|, |
and
ω2(ψ;δ)=sup0<h≤δ supζ,ζ+h∈[0,1] |ψ(ζ−h)−2ψ(ζ)+ψ(ζ+h)|. |
Recall that the Peetre's K-functional is defined by
K2(ψ;δ)=infg∈C2[0,1]{‖ψ−g‖+δ‖g′′‖} δ>0, |
where C2[0,1]:={g∈C[0,1]:g′,g′′∈C[0,1]}.
Then, we know that (Theorem 2.4 in [21]),
K2(ψ;δ)≤Lω2(ψ;δ), | (3.1) |
where L absolute constant.
Lemma 8. Let ψ∈C[0,1]. Consider the operators
∗Klρ,α(ψ;ζ)=Klρ,α(ψ;ζ)+ψ(ζ)−ψ(l2(ρ+l)+ρρ+lζ) | (3.2) |
Then, for all g∈C2[0,1], we have
|∗Klρ,α(g;τ)−g(τ)|≤[3l2+l12(ρ+l)2+(ρ+2−2α−l2)(ρ+l)2ζ+l2−ρ+2α−2(ρ+l)2ζ2+(l2(ρ+l)+ρρ+lζ−ζ)2]‖g′′‖. | (3.3) |
Proof. From (3.2) we have
∗Klρ,α((t−ζ);ζ)=Klρ,α((t−ζ);ζ)−[l2(ρ+l)+ρρ+lζ−ζ]=Klρ,α(t;ζ)−ζKlρ,α(1;ζ)−(l2(ρ+l)+ρρ+lζ)+ζ=0. | (3.4) |
Let ζ∈[0,1] and g∈C2[0,1]. Using the Taylor's formula,
g(t)−g(ζ)=(t−ζ)g′(ζ)+t∫ζ(t−u)g′′(u)du, | (3.5) |
Applying ∗Klρ,α to both sides of the (3.5) and using (3.4), we have
∗Klρ,α(g;ζ)−g(ζ)=∗Klρ,α((t−ζ)g′(ζ);ζ)+∗Klρ,α(t∫ζ(t−u)g′′(u)du;ζ)=g′(ζ)∗Klρ,α((t−ζ);ζ)+Klρ,α(t∫ζ(t−u)g′′(u)du;ζ)−l2(ρ+l)+ρρ+lζ∫ζ(l2(ρ+l)+ρρ+lζ−u)g′′(u)du=Klρ,α(t∫ζ(t−u)g′′(u)du;ζ)−l2(ρ+l)+ρρ+lζ∫ζ(l2(ρ+l)+ρρ+lζ−u)g′′(u)du. |
On the other hand, since
t∫ζ|t−u||g′′(u)|du≤‖g′′‖t∫ζ|t−u|du≤(t−ζ)2‖g′′‖ |
and
|l2(ρ+l)+ρρ+lζ∫ζ(l2(ρ+l)+ρρ+lζ−u)g′′(u)du|≤(l2(ρ+l)+ρρ+lζ−ζ)2‖g′′‖, |
we conclude that
|∗Klρ,α(g;ζ)−g(ζ)|=|Klρ,α(t∫ζ(t−u)g′′(u)du;ζ)−l2(ρ+l)+ρρ+lζ∫ζ(l2(ρ+l)+ρρ+lζ−u)g′′(u)du|≤‖g′′‖Klρ,α((t−ζ)2;ζ)+(l2(ρ+l)+ρρ+lζ−ζ)2‖g′′‖. |
Using Lemma 5, we get
|∗Klρ,α(g;ζ)−g(ζ)|≤[3l2+l12(ρ+l)2+(ρ+2−2α−l2)(ρ+l)2ζ+l2−ρ+2α−2(ρ+l)2ζ2+(l2(ρ+l)+ρρ+lζ−ζ)2]‖g′′‖. |
Theorem 9. Let ρ∈N,α∈[0,1] and l∈Z+. Then, for every ψ∈C[0,1], there exists aconstant M>0 such that
|Klρ,α(ψ;ζ)−ψ(ζ)|≤Mω2(ψ;√δlρ,α(ζ))+ω(ψ;βlρ,α(ζ)), |
where
δlρ,α(ζ)=[3l2+l12(ρ+l)2+(ρ+2−2α−l2)(ρ+l)2ζ+l2−ρ+2α−2(ρ+l)2ζ2+(l2(ρ+l)+ρρ+lζ−ζ)2]‖g′′‖ |
and
βlρ,α(ζ)=|l2(ρ+l)+(ρρ+l−1)ζ|. |
Proof. It follows from Lemma 8, that
|Klρ,α(ψ;ζ)−ψ(ζ)|≤|∗Klρ,α(ψ;ζ)−ψ(ζ)|+|ψ(ζ)−ψ(l2(ρ+l)+ρρ+lζ)|≤|∗Klρ,α(ψ−g;ζ)−(ψ−g)(ζ)|+|ψ(ζ)−ψ(l2(ρ+l)+ρρ+lζ)|+|∗Klρ,α(g;ζ)−g(ζ)|≤|∗Klρ,α(ψ−g;ζ)|+|(ψ−g)(ζ)|+|ψ(ζ)−ψ(l2(ρ+l)+ρρ+lζ)|+|∗Klρ,α(g;ζ)−g(ζ)|. |
Now, considering the boundedness of the ∗Klρ,α and inequality (3.3), we get
|Klρ,α(ψ;ζ)−ψ(ζ)|≤4‖ψ−g‖+|ψ(ζ)−ψ(l2(ρ+l)+ρρ+lζ)|+[3l2+l12(ρ+l)2+(ρ+2−2α−l2)(ρ+l)2ζ+l2−ρ+2α−2(ρ+l)2ζ2+(l2(ρ+l)+ρρ+lζ−ζ)2]‖g′′‖≤4‖ψ−g‖+ω(ψ;|(l2(ρ+l)+(ρρ+l−1)ζ)2|)+δlρ,α(ζ)‖g′′‖. |
Now, taking infimum on the right side over all g∈C2[0,1] and using (3.1), we get the following result
|Klρ,α(ψ;ζ)−ψ(ζ)|≤4K2(ψ;δlρ,α(ζ))+ω(ψ;βρ(ζ))≤Mω2(ψ;√δlρ,α(ζ))+ω(ψ;βlρ,α(ζ)). |
Let us consider the Lipschitz-type with two parameters [22]. For β1≥0,β2>0, we define
Lipβ1,β2M(η)={ψ∈C[0,1]:|ψ(t)−ψ(ζ)|≤M|t−ζ|η(t+β1ζ2+β2ζ)η2;t∈[0,1],ζ∈(0,1]}, |
where 0<η≤1.
Theorem 10. Let ψ∈ Lipβ1,β2M(η). Thenfor all ζ∈(0,1], we have
|Klρ,α(ψ;ζ)−ψ(ζ)|≤M(Klρ,α((t−ζ)2;ζ)β1ζ2+β2ζ)η2. |
Proof. Let we prove theorem for the case 0<η≤1, applying Holder's inequality with p=2η,q=22−η,
|Klρ,α(ψ;ζ)−ψ(ζ)|≤ρ∑ϑ=0p(α)ρ,ϑ1∫0...1∫0|ψ(ϑ+t1+...+tlρ+l)−ψ(ζ)|dt1...dtl≤ρ∑ϑ=0p(α)ρ,ϑ(1∫0...1∫0|ψ(ϑ+t1+...+tlρ+l)−ψ(ζ)|2ηdt1...dtl)η2≤{ρ∑ϑ=0p(α)ρ,ϑ1∫0...1∫0|ψ(ϑ+t1+...+tlρ+l)−ψ(ζ)|2ηdt1...dtl}η2{ρ∑ϑ=0p(α)ρ,ϑ}2−η2=(ρ∑ϑ=0p(α)ρ,ϑ1∫0...1∫0|ψ(ϑ+t1+...+tlρ+l)−ψ(ζ)|2ηdt1...dtl)η2≤M(ρ∑ϑ=0p(α)ρ,ϑ1∫0...1∫0(ϑ+t1+...+tlρ+l−ζ)2(ϑ+t1+...+tlρ+l+β1ζ2+β2ζ)dt1...dtl)η2≤M(β1ζ2+β2x)η2(ρ∑ϑ=0p(α)ρ,ϑ1∫0...1∫0(ϑ+t1+...+tlρ+l−ζ)2dt1...dtl)η2=M(β1x2+β2x)η2(Klρ,α((t−x)2;x))η2 |
Theorem 11. Let ψ∈C[0,1], α∈[0,1] and l∈Z+. Then the inequality
|Klρ,α(ψ;ζ)−ψ(ζ)|≤2w(ψ,δlρ,α(ζ)) |
takes place, where δlρ,α(ζ)=√Klρ,α(t−ζ)2.
Proof. It is known that
|ψ(t)−ψ(ζ)|≤w(ψ,δ)((t−ζ)2δ2+1), for any δ>0, |
So, we have
|Klρ,α(ψ;ζ)−ψ(ζ)|≤Klρ,α(|ψ(t)−ψ(ζ)|;ζ)≤w(ψ,δ)(1δ2Klρ,α((t−ζ)2;ζ)+1) |
Choosing δ=δρ(ζ)=√Klρ,α(t−ζ)2, we have
|Klρ,α(ψ;ζ)−ψ(ζ)|≤2w(ψ,δlρ,α(ζ)) |
Let Ck[I] denote space of k-times continuously differentiable function on I.
Theorem 12. For any ψ∈C1[0,1] and ζ∈[0,1], we have
|Klρ,α(ψ;ζ)−ψ(ζ)|≤|l(1−2ζ)2(ρ+l)||ψ′(ζ)|+2√Klρ,α((t−ζ)2;ζ)w(ψ′,√Klρ,α((t−ζ)2;ζ)) | (3.6) |
Proof. Let ψ∈C1[0,1]. For any t∈[0,1],ζ∈[0,1], we have
ψ(t)−ψ(ζ)=ψ′(ζ)(t−ζ)+t∫ζ(ψ′(u)−ψ′(ζ))du. |
Using Klρ,α(.;ζ) on both sides of the above equation, we have
Klρ,α(ψ(t)−ψ(ζ);ζ)=ψ′(ζ)Klρ,α((t−ζ);ζ)+Klρ,α(t∫ζ(ψ′(u)−ψ′(ζ))du;ζ). |
Using the property of modulus of continuity |ψ(t)−ψ(ζ)|≤w(ψ,δ)(|t−ζ|δ+1),δ>0, we obtain
|t∫ζ(ψ′(u)−ψ′(ζ))du|≤w(ψ′,δ)((t−ζ)2δ+|t−ζ|), |
it follows that
|Klρ,α(ψ;ζ)−ψ(ζ)|≤|ψ′(ζ)||(Klρ,α(t−ζ);ζ)|+w(ψ′,δ){1δKlρ,α((t−ζ)2;ζ)+Klρ,α(|t−ζ|;ζ)} |
From Cauchy-Schwarz inequality, we have
|Klρ,α(ψ;ζ)−ψ(ζ)|≤|ψ′(ζ)||(Klρ,α(t−ζ);ζ)|+w(ψ′,δ){1δ√Klρ,α((t−ζ)2;ζ)+1}√Klρ,α((t−ζ)2;ζ) |
Now, taking δ=√Klρ,α((t−ζ)2;ζ), we obtain (3.6).
In the next section, we state the direct global approximation theorem for operators Klρ,α(ψ;ζ).
Let AC[0,1] denote the absolutely continuous on [0,1]. For ψ∈C[0,1], the first and second order Ditzian-Totik moduli of smoothness are defined by
wθ(ψ,δ)=sup0<h≤δsup ζ,ζ+hθ(ζ)∈[0,1]|ψ(ζ+hθ(ζ))−ψ(ζ)| |
and
w2,ϕ(ψ,δ)=sup0<h≤δ supζ,ζ+hϕ(ζ)∈[0,1]|ψ(ζ−hϕ(ζ))−2ψ(ζ)+ψ(ζ+hϕ(ζ))|, |
respectively.
Moreover, the second-order modified K-functional for ψ∈C[0,1] is defined by
K2,ϕ(ψ,δ)=inf{‖ψ−g‖+δ‖ϕ2g′′‖+δ2‖g′′‖:g∈W2(ϕ)}, |
where δ>0,ϕ(x)=√x(1−x)(x∈[0,1])and
W2(ϕ)={g∈C[0,1]:g′∈AC[0,1],ϕ2g′′∈C[0,1]}. |
It is well-known [23] that, for any δ>0,
K2,ϕ(ψ,δ2)≤Dw2,ϕ(ψ,δ), | (4.1) |
holds for some absolute constant D>0.
Theorem 13. Let ρ∈N,α∈[0,1] and l∈Z+. Then, for every ψ∈C[0,1] and ζ∈[0,1], there exist an absolute C>0 such that
‖Klρ,α(ψ;ζ)−ψ(ζ)‖≤Cw2,ϕ(ψ,1√ρ+l)+wθl(ψ,lρ+l), | (4.2) |
where θl=l(1+2x).
Proof. If we use the operators ∗Klρ,α given by (3.2), then for a given g∈W2(ϕ), we obtain that
|∗Klρ,α(g;ζ)−g(ζ)|≤Klρ,α(|t∫ζ|t−u|g′′(u)du|;ζ)+|l2(ρ+l)+ρρ+lζ∫ζ|l2(ρ+l)+ρζρ+l−u||g′′(u)|du|. |
Let λρ(ζ)=ζ(1−ζ)+l(ρ+l). Taking u=βζ+(1−β)t, β∈[0,1],and also using concavity λρ, we have
|t−u|λρ(u)=β|ζ−t|λρ(u)≤β|ζ−t|λρ(t)+β(λρ(ζ)−λρ(t))≤|ζ−t|λρ(ζ). |
Using the last inequality, we observe that
|t∫ζ|t−u|g′′(u)du|=|t∫ζ|t−u|λρ(u)g′′(u)λρ(u)du|≤‖λρg′′‖λρ(ζ)(t−u)2. | (4.3) |
Then we get from (4.3) that
|∗Klρ,α(g;ζ)−g(ζ)|≤1λρ(ζ)Klρ,α((t−ζ)2;ζ)‖λρg′′‖+1λρ(ζ)(l(1−2x)2(ρ+l))2‖λρg′′‖≤2l2‖λρg′′‖(ρ+l)≤2l2‖λρg′′‖ρ+l(‖ϕ2g′′‖+1ρ+l‖g′′‖). |
On the other hand, since the operators ∗Klρ,α(g;ζ) are uniformly bounded, we get
|Klρ,α(ψ;ζ)−ψ(ζ)|≤|∗Klρ,α(ψ−g;ζ)|+|∗Klρ,α(g;ζ)−g(ζ)|+|ψ(ζ)−g(ζ)|+|ψ(l2(ρ+l)+ρζρ+l)−ψ(ζ)|≤4l2[‖ψ−g‖+(1ρ+l‖ϕg′′‖+1(ρ+l)2‖g′′‖)]+|ψ(l2(ρ+l)+ρζρ+l)−ψ(ζ)|. |
Taking infimum on the right hand side of the above inequality over all g∈W2(ϕ), we obtain
|Klρ,α(ψ;ζ)−ψ(ζ)|≤4l2K2,ϕ(ψ,1ρ+l)+|ψ(l2(ρ+l)+ρρ+lζ)−ψ(ζ)|. |
Now, using the function θl(ζ)=l+2xl, we can also get
|ψ(l2(ρ+l)+ρρ+lζ)−ψ(ζ)|=|ψ(ζ+θl(ζ)l2(ρ+l)+ρρ+lζ−ζθl(ζ))−ψ(ζ)|≤supt∈Il(ζ)|ψ(t+θl(t)l2−xl(ρ+l)θl(ζ)−ψ(t))|≤wθl(ψ;|l2−xl|(ρ+l)θl(ζ))≤wθl(ψ;l(ρ+l)), |
where Il(ζ)={t∈[0,1]:t+θl(t)l2−xl(ρ+l)∈[0,1]}. Finally, using (4.1), we get desired result.
Here, we Voronovskaya type result for the Klρ,α(ψ;ζ) operators.
Theorem 14. Let ψ∈C[0,1]. If ψ′′ exist ata point ζ∈[0,1], then we have
limρ→∞(ρ+l)[Klρ,α(ψ;ζ)−ψ(ζ)]=(l2−ζl)ψ′(ζ)+12ζ(1−ζ)ψ′′(ζ), |
where p∈N,l∈Z+ and α∈[0,1].
Proof. For ζ∈[0,1], the Taylor's formula ψ is given by
ψ(t)=ψ(ζ)+ψ′(ζ)(t−ζ)+12ψ′′(ζ)(t−ζ)2+r(t,ζ)(t−ζ)2, | (5.1) |
Here r(t,ζ) is Peano form of remainder and r(.,ζ)∈C[0,1] and limt→ζr(t,ζ)=0. Applying the operator Klρ,α to (5.1), we get
Klρ,α(ψ;ζ)−ψ(ζ)=ψ′(ζ)Klρ,α((t−ζ);ζ)+12ψ′′(ζ)Klρ,α((t−ζ)2;ζ)+Klρ,α(r(t,ζ)(t−ζ)2;ζ). |
Using Cauchy-Schwarz inequality in the last term, we have
Klρ,α(r(t,ζ)(t−ζ)2;ζ)≤√Klρ,α(r2(t,ζ);ζ)√Klρ,α((t−ζ)4;ζ). |
Observe that r2(t,ζ)=0 and r2(.,ζ)∈C[0,1].
Hence from Theorem 7,
limρ→∞Kγρ,α(r2(t,ζ);ζ)=r2(ζ,ζ)=0 |
uniformly for ζ∈[0,1].
Therefore
limρ→∞(ρ+l)[Klρ,α(ψ;ζ)−ψ(ζ)]=ψ′(ζ)limρ→∞(ρ+l)Klρ,α((t−ζ);ζ)+12ψ′′(ζ)limρ→∞(ρ+l)Klρ,α((t−ζ)2;ζ). |
From Lemma 6,
limρ→∞(ρ+l)[Klρ,α(ψ;ζ)−ψ(ζ)]=(l2−ζl)ψ′(ζ)+12ζ(1−ζ)ψ′′(ζ). |
Now, we show graphical analysis for the convergence of operators Klρ,α(ψ;ζ) to the function ψ(ζ)=1+ζsin(10ζ).
In Figure 1, we show the approximation to this function ψ by the operators K2ρ,0.9(ψ;ζ) for ρ=20,50,100 respectively.
Morever, in Table 1, we compute the error of approximation K2ρ,0.9(ψ;ζ) of our ψ(ζ)=1+ζsin(10ζ) for ρ=20,50,100.
ζ | |Kl20,0.9(ψ;ζ)−ψ(ζ)| | |Kl50,0.9(ψ;ζ)−ψ(ζ)| | |Kl100,0.9(ψ;ζ)−ψ(ζ)| |
0.15 | 0.064216061 | 0.021762009 | 0.007340463 |
0.20 | 0.14487018 | 0.087839632 | 0.063907778 |
0.25 | 0.183644366 | 0.130465015 | 0.104166221 |
0.30 | 0.158749953 | 0.131315495 | 0.113558559 |
0.35 | 0.071337791 | 0.086468662 | 0.087398881 |
0.40 | 0.053489031 | 0.008709032 | 0.032989989 |
0.45 | 0.174356459 | 0.076385157 | 0.032542776 |
0.50 | 0.247626587 | 0.139305019 | 0.088014747 |
0.55 | 0.243166628 | 0.157342571 | 0.115543775 |
0.60 | 0.156507953 | 0.123329353 | 0.106886498 |
0.65 | 0.012905048 | 0.049061689 | 0.066417709 |
0.70 | 0.138822143 | 0.038181349 | 0.009556201 |
0.75 | 0.241568052 | 0.105238164 | 0.042950102 |
0.80 | 0.250138778 | 0.125723189 | 0.072927239 |
0.85 | 0.150111243 | 0.091301023 | 0.07198989 |
In this section, we introduce the bivariate extension of the operators (2.1). The bivariate extension of the Klρ,α(ψ;ζ) (2.1) can be defined by
Kl1,l2ρ1,ρ2,α1,α2(ψ;ζ,γ)=ρ1∑ϑ1=0ρ2∑ϑ2=0p(α1)ρ1,ϑ1p(α2)ρ2,ϑ21∫0...1∫0(1∫0...1∫0ψ(ϑ1+t1+...+tl1ρ1+l1,ϑ2+t1+...+tl2ρ1+l2)dt1...dtl1)dt1...dtl2 |
where (ζ.γ)∈I2=[0,1]×[0,1], α1,α2∈[0,1] and l1,l2∈Z+.
The bivariate α-Bernstein-Kantorovich operators can be rewritten as
Kl1,l2ρ1,ρ2,α1,α2(⋅;ζ,γ)=Kl1ρ1,α1(⋅;ζ)×Kl1ρ2,α2(⋅;γ) |
Lemma 15. Let eij(ζ,γ)=ζiγj, 0≤i+j≤2. For (ζ.γ)∈I2=[0,1]×[0,1],l1,l2∈Z+ and α1,α2∈[0,1], we have
Kl1,l2ρ1,ρ2,α1,α2(e00;ζ,γ)=1,Kl1,l2ρ1,ρ2,α1,α2(e10;ζ,γ)=l12(ρ1+l1)+ρ1(ρ1+l1)ζ,Kl1,l2ρ1,ρ2,α1,α2(e10;ζ,γ)=l22(ρ2+l2)+ρ2(ρ2+l2)γKl1,l2ρ1,ρ2,α1,α2(e20;ζ,γ)=3l21+l112(ρ1+l1)2+(ρ1(l1+1)+2(1−α1))(ρ1+l1)2ζ+(ρ21−ρ1−2(1−α1)(ρ1+l1)2)ζ2Kl1,l2ρ1,ρ2,α1,α2(e02;ζ,γ)=3l22+l212(ρ2+l2)2+(ρ2(l2+1)+2(1−α2))(ρ2+l2)2γ+(ρ22−ρ2−2(1−α2)(ρ2+l2)2)γ2 |
Remark 16. According to above Lemma 15, we get
Kl1,l2ρ1,ρ2,α1,α2(e10−ζ;ζ,γ)=l1(1−2ζ)2(ρ1+l1)Kl1,l2ρ1,ρ2,α1,α2(e01−γ;ζ,γ)=l2(1−2γ)2(ρ2+l2)Kl1,l2ρ1,ρ2,α1,α2((e10−ζ)2;ζ,γ)=3l21+l112(ρ1+l1)2+(ρ1+2−2α1−l21)(ρ1+l1)2ζ+l21−ρ1+2α1−2(ρ1+l1)2ζ2=δρ1,α1(ζ)Kl1,l2ρ1,ρ2,α1,α2((e01−γ)2;ζ,γ)=3l22+l212(ρ2+l2)2+(ρ2+2−2α2−l22)(ρ2+l2)2γ+l22−ρ2+2α2−2(ρ2+l2)2γ2=δρ2,α2(γ) |
In the next theorem, we obtain the uniform convergence of the bivariate \alpha -Bernstein-Kantorovich operators to the bivariate functions defined on I^{2} = \left[ 0, 1\right] \times \left[ 0, 1\right] .
Theorem 17. Let C(I^{2}) be the space of continuous bivariate function on I^{2} = \left[0, 1\right] \times \left[ 0, 1\right] . Then for any \psi \in C(I^{2}) , wehave
\underset{\rho _{1},\rho _{2}\rightarrow \infty }{\lim }\left\Vert K_{\rho _{1},\rho _{2},\alpha _{1},\alpha _{2}}^{l_{1},l_{2}}\psi -\psi \right\Vert = 0. |
Proof. Using Lemma 16, we get
\begin{eqnarray*} \left\Vert K_{\rho _{1},\rho _{2},\alpha _{1},\alpha _{2}}^{l_{1},l_{2}}e_{00}-e_{00}\right\Vert & = &0,\left\Vert K_{\rho _{1},\rho _{2},\alpha _{1},\alpha _{2}}^{l_{1},l_{2}}e_{10}-e_{10}\right\Vert \rightarrow 0 \\ \left\Vert K_{\rho _{1},\rho _{2},\alpha _{1},\alpha _{2}}^{l_{1},l_{2}}e_{01}-e_{01}\right\Vert &\rightarrow &0,\left\Vert K_{\rho _{1},\rho _{2},\alpha _{1},\alpha _{2}}^{l_{1},l_{2}}\left( e_{20}+e_{02}\right) -\left( e_{20}+e_{02}\right) \right\Vert \rightarrow 0 \text{ as }\rho _{1},\rho _{2}\rightarrow \infty. \end{eqnarray*} |
Hence, by Volkov's theorem [3], we deduce
\underset{\rho _{1},\rho _{2}\rightarrow \infty }{\lim }\left\Vert K_{\rho _{1},\rho _{2},\alpha _{1},\alpha _{2}}^{l_{1},l_{2}}\psi -\psi \right\Vert = 0. |
We shall use the following modulus of continuity for bivariate real functions:
w\left( f;\delta _{n},\delta _{m}\right) = \sup \left\{ \left\vert f(t,s)-f(x,y)\right\vert :\left( t,s\right) ,\left( x,y\right) \in I^{2},\left\vert t-x\right\vert \leq \delta _{n},\left\vert s-y\right\vert \leq \delta _{m}\right\}. |
Theorem 18. Let \psi \in C(I^{2}) . Then for all \left(\zeta, \gamma \right) \in I^{2} , the inequality
\left\vert K_{\rho _{1},\rho _{2},\alpha _{1},\alpha _{2}}^{l_{1},l_{2}}\left( \psi ;\zeta ,\gamma \right) -\psi \left( \zeta ,\gamma \right) \right\vert \leq 4w\left( \psi ;\delta _{\rho _{1,}\alpha _{1}}(\zeta ),\delta _{\rho _{2,}\alpha _{2}}(\gamma )\right) |
holds, where \delta _{\rho _{1, }\alpha _{1}}(\zeta), \delta _{\rho_{2, }\alpha _{2}}(\gamma) are as in Remark 16.
Proof. By the linearity and positivity properties of the K_{\rho _{1}, \rho _{2}, \alpha _{1}, \alpha _{2}}^{l_{1}, l_{2}} , we can write
\begin{eqnarray*} \left\vert K_{\rho _{1},\rho _{2},\alpha _{1},\alpha _{2}}^{l_{1},l_{2}}\left( \psi ;\zeta ,\gamma \right) -\psi \left( \zeta ,\gamma \right) \right\vert &\leq &K_{\rho _{1},\rho _{2},\alpha _{1},\alpha _{2}}^{l_{1},l_{2}}\left( \left\vert \psi (t,s)-\psi \left( \zeta ,\gamma \right) \right\vert ;\zeta ,\gamma \right) \\ &\leq &w\left( \psi ;\delta _{1},\delta _{2}\right) \left[ K_{\rho _{1},\alpha _{1}}^{l_{1}}\left( 1;\zeta \right) +\frac{1}{\delta _{1}} K_{\rho _{1},\alpha _{1}}^{l_{1}}\left( \left\vert t-\zeta \right\vert ;\zeta \right) \right] \\ &&\times \left[ K_{\rho _{2},\alpha _{2}}^{l_{1}}\left( 1;\gamma \right) + \frac{1}{\delta _{2}}K_{\rho _{2},\alpha _{2}}^{l_{1}}\left( \left\vert s-\gamma \right\vert ;\gamma \right) \right]. \end{eqnarray*} |
Applying Cauchy-Schwarz inequality, we obtain
\begin{eqnarray*} K_{\rho _{1},\alpha _{1}}^{l_{1}}\left( \left\vert t-\zeta \right\vert ;\zeta \right) &\leq &K_{\rho _{1},\alpha _{1}}^{l_{1}}\left( \left( t-\zeta \right) ^{2};\zeta \right) ^{\frac{1}{2}}, \\ K_{\rho _{2},\alpha _{2}}^{l_{1}}\left( \left\vert s-\gamma \right\vert ;\gamma \right) &\leq &K_{\rho _{2},\alpha _{2}}^{l_{1}}\left( \left( s-\gamma \right) ^{2};\gamma \right) ^{\frac{1}{2}}. \end{eqnarray*} |
Choosing \delta _{1} = \delta _{\rho _{1, }\alpha _{1}}(\zeta) and \delta _{2} = \delta _{\rho _{2, }\alpha _{2}}(\gamma) , we have desired result.
Finally, in Figures 2 and 3, we show graphical analysis for the convergence of operators K_{\rho _{1}, \rho _{2}, \alpha _{1}, \alpha _{2}}^{l_{1}, l_{2}}\left(\psi; \zeta, \gamma \right) to the function \psi (\zeta) = \cos (2\pi \zeta)+\sin (3\pi \gamma) .
In this paper, we introduced new type of generalized Kantorovich variant of \alpha -Bernstein operators. We obtained estimates of rate of convergence involving first and second order modulus of continuity. Furthermore, we established Voronovskaya type theorem for these operators. Also, some graphical illustrations and numerical results are provided.
The author declares no conflict of interest.
[1] |
X. Chen, J. Tan, Z. Liu, J. Xie, Approximation of functions by a new family of generalized Bernstein operator, J. Math. Anal. Appl., 450 (2017), 244–261. doi: 10.1016/j.jmaa.2016.12.075. doi: 10.1016/j.jmaa.2016.12.075
![]() |
[2] |
S. A. Mohiuddine, T. Acar, A. Alotaibi, Construction of a new family of Bernstein-Kantorovich operators, Math. Method. Appl. Sci., 40 (2017), 7749–7759. doi: 10.1002/mma.4559. doi: 10.1002/mma.4559
![]() |
[3] | V. I. Volkov, On the convergence of sequences of linear positive operators in the space of continuous functions of two variables, Dokl. Akad. Nauk, 115 (1957), 17–19. |
[4] | G. G. Lorentz, Bernstein polynomials, Toronto: Univ. of Toronto Press, 1953. |
[5] | A. Lupas, A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on Numerical and Statistical Calculus, 1987. |
[6] |
N. Deo, M. Dhamija, Better approximation results by Bernstein-Kantorovich operators, Lobachevskii J. Math., 38 (2017), 94–100. doi: 10.1134/S1995080217010085. doi: 10.1134/S1995080217010085
![]() |
[7] |
H. Gonska, M. Heilmann, I. Raşa, Kantorovich operators of order k, Numer. Func. Anal. Opt., 32 (2011), 717–738. doi: 10.1080/01630563.2011.580877. doi: 10.1080/01630563.2011.580877
![]() |
[8] |
M. A. Özarslan, O. Duman, Smoothness poperties of modified Bernstein-Kantorovich operators, Numer. Func. Anal. Opt., 37 (2016), 92–105. doi: 10.1080/01630563.2015.1079219. doi: 10.1080/01630563.2015.1079219
![]() |
[9] |
N. Mahmudov, P. Sabancıgil, Approximation theorems for q -Bernstein-Kantorovich operators, Filomat, 27 (2013), 721–730. doi: 10.2298/FIL1304721M. doi: 10.2298/FIL1304721M
![]() |
[10] |
T. Acar, A. Aral, S. A. Mohiuddine, On Kantorovich modification of (p, q)-Bernstein operators, Iran. J. Sci. Technol. A, 42 (2018), 1459–1464. doi: 10.1007/s40995-017. doi: 10.1007/s40995-017
![]() |
[11] |
F. Özger, Weighted statistical approximation properties of univariate and bivariate \lambda -Kantorovich operators, Filomat, 33 (2019), 3473–3486. doi: 10.2298/FIL1911473O. doi: 10.2298/FIL1911473O
![]() |
[12] |
T. Acar, A. Aral, S. A. Mohiuddine, Approximation by bivariate (p, q)-Bernstein-Kantorovich operators, Iran. J. Sci. Technol. A, 4 (2018), 655–662. doi: 10.1007/s40995-016-0045-4. doi: 10.1007/s40995-016-0045-4
![]() |
[13] | T. Acar, A. Aral, S. A. Mohiuddine, On Kantorovich modification of (p, q)-Baskakov operators, J. Inequal. Appl., 98 (2016). doi: 10.1186/s13660-016-1045-9. |
[14] |
A. M. Acu, C. Muraru, Approximation properties of bivariate extension of q-Bernstein-Schurer Kantorovich operators, Results Math., 67 (2015), 265–279. doi: 10.1007/s00025-015-0441-7. doi: 10.1007/s00025-015-0441-7
![]() |
[15] | Q. B. Cai, The Bézier variant of Kantorovich type \lambda -Bernstein operators, J. Inequal. Appl., 90 (2018). doi: 10.1186/s13660-018-1688-9. |
[16] |
S. A. Mohiuddine, T. Acar, A. Alotaibi, Construction of a new family of Bernstein-Kantorovich operators, Math. Method. Appl. Sci., 40 (2017), 7749–7759. doi: 10.1002/mma.4559. doi: 10.1002/mma.4559
![]() |
[17] |
N. Deo, R. Pratap, \alpha -Bernstein-Kantorovich operators, Afr. Mat., 31 (2020), 609–618. doi: 10.1007/s13370-019-00746-4. doi: 10.1007/s13370-019-00746-4
![]() |
[18] | S. A. Mohiuddine, F. Özger, Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter, RACSAM Rev. R. Acad. A, 70 (2020). doi: 10.1007/s13398-020-00802-w. |
[19] |
Q. B. Cai, W. T. Cheng, B. Çekim, Bivariate \alpha, q -Bernstein-Kantorovich operators and GBS operators of Bivariate \alpha, q -Bernstein-Kantorovich type, Mathematics, 7 (2019), 1161. doi: 10.3390/math7121161. doi: 10.3390/math7121161
![]() |
[20] |
A. Kajla, P. Agarwal, S. Araci, A Kantorovich variant of a generalized Bernstein operators, J. Math. Comput. Sci., 19 (2019), 86–96. doi: 10.22436/jmcs.019.02.03. doi: 10.22436/jmcs.019.02.03
![]() |
[21] | R. A. Devore, G. G. Lorentz, Constructive approximation, Springer-Verlang, New York, 1993. |
[22] |
M. A. Özarslan, H. Aktuğlu, Local Approximation peroperties for certain King type operators, Filomat, 27 (2013), 173–182. doi: 10.2298/FILI301173Oç. doi: 10.2298/FILI301173Oç
![]() |
[23] | Z. Ditzion, V. Totik, Moduli of smoothness, Springer-Verlag, New York, 1987. doi: 10.1007/978-1-4612-4778-7. |
\zeta | \left\vert K_{20, 0.9}^{l}(\psi; \zeta)-\psi (\zeta)\right\vert | \left\vert K_{50, 0.9}^{l}(\psi; \zeta)-\psi (\zeta)\right\vert | \left\vert K_{100, 0.9}^{l}(\psi; \zeta)-\psi (\zeta)\right\vert |
0.15 | 0.064216061 | 0.021762009 | 0.007340463 |
0.20 | 0.14487018 | 0.087839632 | 0.063907778 |
0.25 | 0.183644366 | 0.130465015 | 0.104166221 |
0.30 | 0.158749953 | 0.131315495 | 0.113558559 |
0.35 | 0.071337791 | 0.086468662 | 0.087398881 |
0.40 | 0.053489031 | 0.008709032 | 0.032989989 |
0.45 | 0.174356459 | 0.076385157 | 0.032542776 |
0.50 | 0.247626587 | 0.139305019 | 0.088014747 |
0.55 | 0.243166628 | 0.157342571 | 0.115543775 |
0.60 | 0.156507953 | 0.123329353 | 0.106886498 |
0.65 | 0.012905048 | 0.049061689 | 0.066417709 |
0.70 | 0.138822143 | 0.038181349 | 0.009556201 |
0.75 | 0.241568052 | 0.105238164 | 0.042950102 |
0.80 | 0.250138778 | 0.125723189 | 0.072927239 |
0.85 | 0.150111243 | 0.091301023 | 0.07198989 |
\zeta | \left\vert K_{20, 0.9}^{l}(\psi; \zeta)-\psi (\zeta)\right\vert | \left\vert K_{50, 0.9}^{l}(\psi; \zeta)-\psi (\zeta)\right\vert | \left\vert K_{100, 0.9}^{l}(\psi; \zeta)-\psi (\zeta)\right\vert |
0.15 | 0.064216061 | 0.021762009 | 0.007340463 |
0.20 | 0.14487018 | 0.087839632 | 0.063907778 |
0.25 | 0.183644366 | 0.130465015 | 0.104166221 |
0.30 | 0.158749953 | 0.131315495 | 0.113558559 |
0.35 | 0.071337791 | 0.086468662 | 0.087398881 |
0.40 | 0.053489031 | 0.008709032 | 0.032989989 |
0.45 | 0.174356459 | 0.076385157 | 0.032542776 |
0.50 | 0.247626587 | 0.139305019 | 0.088014747 |
0.55 | 0.243166628 | 0.157342571 | 0.115543775 |
0.60 | 0.156507953 | 0.123329353 | 0.106886498 |
0.65 | 0.012905048 | 0.049061689 | 0.066417709 |
0.70 | 0.138822143 | 0.038181349 | 0.009556201 |
0.75 | 0.241568052 | 0.105238164 | 0.042950102 |
0.80 | 0.250138778 | 0.125723189 | 0.072927239 |
0.85 | 0.150111243 | 0.091301023 | 0.07198989 |