Research article

Existence of stable standing waves for the nonlinear Schrödinger equation with mixed power-type and Choquard-type nonlinearities

  • Received: 06 October 2021 Accepted: 07 December 2021 Published: 10 December 2021
  • MSC : 35Q55

  • The aim of this paper is to study the existence of stable standing waves for the following nonlinear Schrödinger type equation with mixed power-type and Choquard-type nonlinearities

    $ i\partial_t \psi+\Delta \psi+\lambda | \psi|^q \psi+\frac{1}{|x|^\alpha}\left(\int_{\mathbb{R}^N}\frac{| \psi|^p}{|x-y|^\mu|y|^\alpha}dy\right)| \psi|^{p-2} \psi = 0, $

    where $ N\geq3 $, $ 0 < \mu < N $, $ \lambda > 0 $, $ \alpha\geq0 $, $ 2\alpha+\mu\leq{N} $, $ 0 < q < \frac{4}{N} $ and $ 2-\frac{2\alpha+\mu}{N} < p < \frac{2N-2\alpha-\mu}{N-2} $. We firstly obtain the best constant of a generalized Gagliardo-Nirenberg inequality, and then we prove the existence and orbital stability of standing waves in the $ L^2 $-subcritical, $ L^2 $-critical and $ L^2 $-supercritical cases by the concentration compactness principle in a systematic way.

    Citation: Chao Shi. Existence of stable standing waves for the nonlinear Schrödinger equation with mixed power-type and Choquard-type nonlinearities[J]. AIMS Mathematics, 2022, 7(3): 3802-3825. doi: 10.3934/math.2022211

    Related Papers:

  • The aim of this paper is to study the existence of stable standing waves for the following nonlinear Schrödinger type equation with mixed power-type and Choquard-type nonlinearities

    $ i\partial_t \psi+\Delta \psi+\lambda | \psi|^q \psi+\frac{1}{|x|^\alpha}\left(\int_{\mathbb{R}^N}\frac{| \psi|^p}{|x-y|^\mu|y|^\alpha}dy\right)| \psi|^{p-2} \psi = 0, $

    where $ N\geq3 $, $ 0 < \mu < N $, $ \lambda > 0 $, $ \alpha\geq0 $, $ 2\alpha+\mu\leq{N} $, $ 0 < q < \frac{4}{N} $ and $ 2-\frac{2\alpha+\mu}{N} < p < \frac{2N-2\alpha-\mu}{N-2} $. We firstly obtain the best constant of a generalized Gagliardo-Nirenberg inequality, and then we prove the existence and orbital stability of standing waves in the $ L^2 $-subcritical, $ L^2 $-critical and $ L^2 $-supercritical cases by the concentration compactness principle in a systematic way.



    加载中


    [1] H. Brézis, E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486–490. doi: 10.1090/S0002-9939-1983-0699419-3. doi: 10.1090/S0002-9939-1983-0699419-3
    [2] S. Chen, X. Tang, Normalized solutions for nonautonomous Schrödinger equations on a suitable manifold, J. Geom. Anal., 30 (2020), 1637–1660. doi: 10.1007/s12220-019-00274-4. doi: 10.1007/s12220-019-00274-4
    [3] T. Cazenave, P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., 85 (1982), 549–561. doi: 10.1007/BF01403504. doi: 10.1007/BF01403504
    [4] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, Vol. 10, New York University, Courant Institute of Mathematical Sciences, American Mathematical Society, 2003. doi: 10.11429/sugaku.0644425.
    [5] L. Du, F. Gao, M. Yang, Existence and qualitative analysis for nonlinear weighted Choquard equations, arXiv. Available from: https://arXiv.org/abs/1810.11759.
    [6] L. Du, M. Yang, Uniqueness and nondegeneracy of solutions for a critical nonlocal equation, Discrete Contin. Dyn. Syst., 39 (2019), 5847–5866. doi: 10.3934/dcds.2019219. doi: 10.3934/dcds.2019219
    [7] Y. Ding, F. Gao, M. Yang, Semiclassical states for Choquard type equations with critical growth: Critical frequency case, Nonlinearity, 33 (2020), 6695–6728.
    [8] V. D. Dinh, On nonlinear Schrödinger equations with attractive inverse-power potentials, arXiv. Available from: https://arXiv.org/abs/1903.04636.
    [9] B. Feng, R. Chen, J. Liu, Blow-up criteria and instability of normalized standing waves for the fractional Schrödinger-Choquard equation, Adv. Nonlinear Anal., 10 (2021), 311–330. doi: 10.1515/anona-2020-0127. doi: 10.1515/anona-2020-0127
    [10] B. Feng, L. Cao, J. Liu, Existence of stable standing waves for the Lee-Huang-Yang corrected dipolar Gross-Pitaevskii equation, Appl. Math. Lett., 115 (2021), 106952. doi: 10.1016/J.AML.2020.106952. doi: 10.1016/J.AML.2020.106952
    [11] B. Feng, R. Chen, Q. Wang, Instability of standing waves for the nonlinear Schrödinger-Poisson equation in the $L^2$-critical case, J. Dyn. Differ. Equat., 32 (2020), 1357–1370. doi: 10.1007/s10884-019-09779-6. doi: 10.1007/s10884-019-09779-6
    [12] B. Feng, R. Chen, J. Ren, Existence of stable standing waves for the fractional Schrödinger equations with combined power-type and Choquard-type nonlinearities, J. Math. Phys., 60 (2019), 051512. doi: 10.1063/1.5082684. doi: 10.1063/1.5082684
    [13] B. Feng, X. Yuan, On the cauchy problem for the Schrödinger-Hartree equation, Evol. Equ. Control The., 4 (2015), 431–445. doi: 10.3934/eect.2015.4.431. doi: 10.3934/eect.2015.4.431
    [14] B. Feng, H. Zhang, Stability of standing waves for the fractional Schrödinger-Hartree equation, J. Math. Anal. Appl., 460 (2018), 352–364. doi: 10.1016/j.jmaa.2017.11.060. doi: 10.1016/j.jmaa.2017.11.060
    [15] B. Feng, S. Zhu, Stability and instability of standing waves for the fractional nonlinear Schrödinger equations, J. Differ. Equations, 292 (2021), 287–324. doi: 10.1016/j.jde.2021.05.007. doi: 10.1016/j.jde.2021.05.007
    [16] M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal., 74 (1987), 160–197. doi: 10.1016/0022-1236(87)90044-9. doi: 10.1016/0022-1236(87)90044-9
    [17] F. Gao, M. Yang, J. Zhou, Existence of solutions for critical Choquard equations via the concentration-compactness method, P. Roy. Soc. Edinb. A, 150 (2020), 921–954. doi: 10.1017/prm.2018.131. doi: 10.1017/prm.2018.131
    [18] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28 (1997), 1633–1659. doi: 10.1016/S0362-546X(96)00021-1. doi: 10.1016/S0362-546X(96)00021-1
    [19] L. Jeanjean, J. Jendrej, T. T. Le, N. Visciglia, Orbital stability of ground states for a Sobolev critical Schrödinger equation, arXiv. Available from: https://arXiv.org/abs/2008.12084.
    [20] D. Kumar, K. Hosseini, M. K. A. Kaabar, M. Kaplan, S. Salahshour, On some novel solution solutions to the generalized Schrödinger-Boussinesq equations for the interaction between complex short wave and real long wave envelope, J. Ocean Eng. Sci., in press. doi: 10.1016/j.joes.2021.09.008.
    [21] M. K. A. Kaabar, F. Martínez, J. F. Gómez-Aguilar, B. Ghanbari, M. Kaplan, H. Günerhan, New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second-order spatio-temporal dispersion via double Laplace transform method, Math. Methods Appl. Sci., 44 (2021), 11138–11156. doi: 10.1002/mma.7476. doi: 10.1002/mma.7476
    [22] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 57 (1977), 93–105. doi: 10.1002/sapm197757293. doi: 10.1002/sapm197757293
    [23] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349–374. doi: 10.2307/2007032. doi: 10.2307/2007032
    [24] J. Liu, Z. He, B. Feng, Existence and stability of standing waves for the inhomogeneous Gross-Pitaevskii equation with a partial confinement, J. Math. Anal. Appl., 506 (2022), 125604. doi: 10.1016/j.jmaa.2021.125604. doi: 10.1016/j.jmaa.2021.125604
    [25] M. Lewin, S. Rota Nodari, The double-power nonlinear Schrödinger equation and its generalizations: Uniqueness, non-degeneracy and applications, Calc. Var., 59 (2020), 197. doi: 10.1007/s00526-020-01863-w. doi: 10.1007/s00526-020-01863-w
    [26] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 1., Ann. I. H. Poincare C, 1 (1984), 109–145. doi: 10.1016/S0294-1449(16)30428-0. doi: 10.1016/S0294-1449(16)30428-0
    [27] P. L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063–1072. doi: 10.1016/0362-546X(80)90016-4. doi: 10.1016/0362-546X(80)90016-4
    [28] X. Luo, T. Yang, Ground states for 3D dipolar Bose-Einstein condenstes involving quantum fluctuations and Three-Body losses, arXiv. Available from: https://arXiv.org/abs/2011.00804.
    [29] X. Li, J. Zhao, Orbital stability of standing waves for Schrödinger type equations with slowly decaying linear potential, Comput. Math. Appl., 79 (2020), 303–316. doi: 10.1016/j.camwa.2019.06.030. doi: 10.1016/j.camwa.2019.06.030
    [30] B. Noris, H. Tavares, G. Verzini, Normalized solutions for nonlinear Schrödinger systems on bounded domains, Nonlinearity, 32 (2019), 1044–1072.
    [31] R. Penrose, Quantum computation, entanglement and state reduction, Philos. Trans. R. Soc., 356 (1998), 1927–1939. doi: 10.1098/rsta.1998.0256. doi: 10.1098/rsta.1998.0256
    [32] R. Penrose, On gravity role in quantum state reduction, Gen. Relat. Gravit., 28 (1996), 581–600.
    [33] S. I. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Berlin: Akademie Verlag, 1954.
    [34] A. Stefanov, On the normalized ground states of second order PDE's with mixed power non-linearities, Commun. Math. Phys., 369 (2019), 929–971. doi: 10.1007/s00220-019-03484-7. doi: 10.1007/s00220-019-03484-7
    [35] N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differ. Equations, 269 (2020), 6941–6987. doi: 10.1016/j.jde.2020.05.016. doi: 10.1016/j.jde.2020.05.016
    [36] N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case, J. Funct. Anal., 279 (2020), 108610. doi: 10.1016/j.jfa.2020.108610. doi: 10.1016/j.jfa.2020.108610
    [37] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87 (1983), 567–576.
    [38] Y. Wang, Existence of stable standing waves for the nonlinear Schrödinger equation with inverse-power potential and combined power-type and Choquard-type nonlinearities, AIMS Math., 6 (2021), 5837–5850. doi: 10.3934/math.2021345. doi: 10.3934/math.2021345
    [39] Y. Wang, B. Feng, Sharp thresholds of blow-up and global existence for the Schrödinger equation with combined power-type and Choquard-type nonlinearities, Bound. Value Probl., 2019 (2019), 195. doi: 10.1186/s13661-019-01310-6. doi: 10.1186/s13661-019-01310-6
    [40] X. Wang, X. Sun, W. Lv, Orbital stability of generalized Choquard equation, Bound. Value Probl., 2016 (2016), 190. doi: 10.1186/s13661-016-0697-1. doi: 10.1186/s13661-016-0697-1
    [41] M. Yang, Semiclassical ground state solutions for a Choquard type equation in $\mathbb{R}^2$ with critical exponential growth, ESAIM Control Optim. Calc. Var., 24 (2018), 177–209. doi: 10.1051/cocv/2017007. doi: 10.1051/cocv/2017007
    [42] M. Yang, J. C. de Albuquerque, E. D. Silva, M. L. Silva, On the critical cases of linearly coupled Choquard systems, Appl. Math. Lett., 91 (2019), 1–8. doi: 10.1016/j.aml.2018.11.005. doi: 10.1016/j.aml.2018.11.005
    [43] M. Yang, Existence of semiclassical solutions for some critical Schrödinger-Poisson equations with potentials, Nonlinear Anal., 198 (2020), 111874. doi: 10.1016/j.na.2020.111874. doi: 10.1016/j.na.2020.111874
    [44] S. Zhu, Existence of stable standing waves for the fractional Schrödinger equations with combined nonlinearities, J. Evol. Equ., 17 (2017), 1003–1021. doi: 10.1007/s00028-016-0363-1. doi: 10.1007/s00028-016-0363-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2284) PDF downloads(209) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog