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Abstract: The aim of this paper is to study the existence of stable standing waves for the following
nonlinear Schrödinger type equation with mixed power-type and Choquard-type nonlinearities

i∂tψ + ∆ψ + λ|ψ|qψ +
1
|x|α

(∫
RN

|ψ|p

|x − y|µ|y|α
dy

)
|ψ|p−2ψ = 0,

where N ≥ 3, 0 < µ < N, λ > 0, α ≥ 0, 2α + µ ≤ N, 0 < q < 4
N and 2 − 2α+µ

N < p < 2N−2α−µ
N−2 . We

firstly obtain the best constant of a generalized Gagliardo-Nirenberg inequality, and then we prove the
existence and orbital stability of standing waves in the L2-subcritical, L2-critical and L2-supercritical
cases by the concentration compactness principle in a systematic way.
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1. Introduction

In this paper, we consider the Cauchy problem for the following nonlinear Schrödinger equation
with mixed power-type and Choquard-type nonlinearities i∂tψ + ∆ψ + λ|ψ|qψ + 1

|x|α

(∫
RN

|ψ|p

|x−y|µ |y|α dy
)
|ψ|p−2ψ = 0, (t, x) ∈ [0,T ) × RN ,

ψ(0) = ψ0 ∈ H1(RN),
(1.1)

where N ≥ 3, 0 < µ < N, λ > 0, α ≥ 0, 2α + µ ≤ N, 0 < q < 4
N , 2 − 2α+µ

N < p < 2N−2α−µ
N−2 and

ψ(t, x) : [0,T ) × RN → C is the complex function with 0 < T ≤ ∞.
The Eq (1.1) has several physical origins and backgrounds, which applied in various modeling

scenarios arising from phenomena in science and engineering and depended on different parameter
configuration, see, e.g. [20,21]. In the mathematical case λ = 0, α = 0 and p = 2, the Eq (1.1) reduces
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to the well-known Hartree equation, in which this type Schrödinger equations have been studied in [4,
13, 14] by considering the corresponding Cauchy problem. In the physical case N = 3, λ = 0, α = 0,
p = 2 and µ = 2, it was introduced by Pekar in [33] to describe the quantum theory about the polaron at
rest in mathematical physics. After then, Lions in [27] used it to describe an electron trapped in its own
pole. In a way, it approximated to the Hartee-Fock theory about one component plasma. Afterwards,
this equation was proposed by Penrose in [31, 32] as a model of self-gravitating matter and usually
called as the Schrödinger-Newton equation.

Recently, this type of equation has been studied extensively in [2,5,9–11,19,24,29,30,35,38,39,44].
Equation (1.1) admits a class of special solutions, which are called standing waves, namely solutions
of the form ψ(t, x) = eiωtu(x), where ω ∈ R is a frequency and u ∈ H1(RN) is a nontrivial solution
satisfying the elliptic equation

− ∆u + ωu = λ|u|qu +
1
|x|α

(∫
RN

|u|p

|x − y|µ|y|α
dy

)
|u|p−2u. (1.2)

The Eq (1.2) is variational, whose action functional is defined by

Aω(u) := E(u) +
ω

2
‖u‖2L2 ,

where the corresponding energy functional is defined on H1(RN) by

E(u) :=
1
2

∫
RN
|∇u|2dx −

λ

q + 2

∫
RN
|u|q+2dx −

1
2p

∫
RN

∫
RN

|u|p|u|p

|x|α|x − y|µ|y|α
dxdy. (1.3)

To begin with, we shall focus on the existence of ground state and recall this definition.

Definition 1.1. We say that uc is a ground state of (1.2) on S (c) if it is a solution having minimal
energy among all the solutions which belong to S (c). Namely, if

E(uc) = in f
{
E(u), u ∈ S (c),

(
E|S (c)

)′ (u) = 0
}
,

where
S (c) := {u ∈ H1(RN) : ‖u‖2L2 = c}.

Subsequently, for the evolutional type equation (1.1), one of the most important problems is to study
the stability of standing waves, which is defined as follows.

Definition 1.2. Let u be a solution of (1.2). We say that the standing wave eiωtu(x) is orbitally stable
if for each ε > 0, there is a δ > 0 such that if initial data ψ0 ∈ H1(RN) and ‖ψ0 − u‖H1(RN ) < δ, then the
corresponding solution to (1.1) with ψ|t=0 = ψ0 satisfies

sup
t∈R

inf
θ∈R
‖ψ(t, ·) − eiθu‖H1(RN ) < ε.

Otherwise, we say that the standing wave is unstable.

Generally, there are two major methods in the research of the orbital stability of standing waves.
The first one is the Grillakis-Shatah-Strauss theory about general stability/instability criterion in [16].
As a matter of fact, if we assume certain spectral properties of the linearization of (1.2) about uω,
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the criterion means that the standing wave eiωtuω(x) is orbitally stable when ∂
∂ω
‖uω‖2L2 > 0 or unstable

when ∂
∂ω
‖uω‖2L2 < 0. Moreover, it also turns out that this method is extremely useful in the case of

homogeneous nonlinearities. In this paper, however, we consider the non-homogeneous Schrödinger
equation with mixed power-type and Choquard-type nonlinearities. On the one hand, it is difficult for
us to verify some properties of the spectrum. On the other hand, the sign of ∂

∂ω
‖uω‖2L2 is hard to be

verified for the Eq (1.1). Therefore, this method might be hard to work, see, e.g. [25, 34].
The other is the idea introduced by Cazenave and Lions in [3], which constructs orbitally stable

standing waves to (1.1) is to consider the constrained minimization problems. For this method, we
know that it only makes use of the conservation laws and the compactness of any minimizing
sequences. Therefore, this method is quite general and may be applied to many situations. According
to the idea, we naturally obtain the stability of the set of the constrained energy minimizers, and then
we recall the following definition, as introduced in [3].

Definition 1.3. We say that the setM is orbitally stable if for each ε > 0, there is a δ > 0 such that
if initial data ψ0 ∈ H1(RN) and inf

u∈M
‖ψ0 − u‖H1(RN ) < δ, then the corresponding solution to (1.1) with

ψ|t=0 = ψ0 satisfies
sup
t∈R

inf
u∈M
‖ψ(t, ·) − u‖H1(RN ) < ε.

In view of the Definition 1.3, in order to study the stability, we require that the solution of (1.1)
exists globally, at least for initial data ψ0 sufficiently close toM. According to the results, all solutions
for the nonlinear Schrödinger equation exist globally in the L2-subcritical case. Therefore, the stability
of standing waves has been studied extensively in [2, 5, 8, 29]. In the L2-supercritical case, however,
according to the local well-posedness theory, the solution of NLS with small initial data exists globally,
and the solution may blow up in finite time for some large initial data. Therefore, the existence of
stable standing waves in this case is of particular interest. Meanwhile, this type of problems have been
considered in [18, 19, 35] by studying the corresponding minimization problem recently.

At this point, the nonlinear Schrödinger equation have attracted much attention. When α = 0, Li
and Zhao [29] showed the existence and orbital stability of standing waves in the mass subcritical case
and mass critical case. Chen and Tang [2] obtained the existence of normalized ground states. The
ground states of the NLS equation with combined power-type nonlinearities was studied by Jeanjean
in [19] and Soave in [35, 36]. The related content with Choquard-type nonlinearities was obtained by
Feng and Chen in [9, 12]. In the case N = 3, λ = 0, α = 0, p = 2 and µ = 2, the existence and orbital
stability of standing waves were proved by Cazenave and Lions in [3].

From a mathematical point of view, however, the Choquard-type equation (1.2) also stimulated
a lot of interest see, e.g. [6, 7, 17, 41–43]. In the case λ = 0, Du, Gao and Yang [5] studied the
existence of positive ground state in the energy subcritical and the energy critical cases, established the
regularity and symmetry by the moving plane method in integral forms. Furthermore, the existence
and uniqueness of positive solutions was proved by Lieb [22] and Lions [27], and the orbital stability
of generalized Choquard-type equation was obtained by Wang, Sun and Lv [40].

In this paper, the study of the existence and stability of standing waves for (1.1) with α > 0 in the
energy space H1 is of particular interest, in which the time of existence only depends on the H1-norm
of initial data. Therefore, by the Gagliardo-Nirenberg inequality and the concentration compactness
principle in the study of orbital stability of standing waves, see, e.g. [3,14,15,17,26,44], we can obtain
the following main results:
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In the mass subcritical case, i.e., 2 − 2α+µ

N < p < 2+2N−2α−µ
N and c > 0, or in the mass critical case,

i.e., p =
2+2N−2α−µ

N and 0 < c < ‖Qp‖
2
L2 , where Qp is a ground state to the elliptic equation

− ∆Qp + Qp =
1
|x|α

(∫
RN

|Qp|
p

|x − y|µ|y|α
dy

)
|Qp|

p−2Qp, (1.4)

it is easy for us to see that the energy functional is bounded from below on S (c). In particular, for
α = 0, in view of (1.4), the Riesz potential Iµ : RN → R is defined by

Iµ(x) =
Γ(µ2 )

Γ( N−µ
2 )π

N
2 2N−µ|x|µ

with Γ(s) =

∫ ∞

0
xs−1e−xdx, s > 0.

Therefore, applying the concepts by Cazenave and Lions in [3], we consider the following constrained
minimization problem

m(c) := inf
u∈S (c)

E(u). (1.5)

However, compared with the work for the classical Schrödinger equation, there are two major
difficulties in the analysis of stable standing waves. One is that the Eq (1.2) does not enjoy the scaling
invariance and the space translation invariance due to the inhomogeneous nonlinearity

1
|x|α

(∫
RN

|u|p

|x−y|µ |y|α dy
)
|u|p−2u, the other is that the nonlinear term with a convolution is difficult to handle.

Therefore, the usual methods cannot work. In order to overcome these difficulties, we need to prove
the boundedness of the translation sequence {yn}, and then apply it to prove the compactness of all
minimizing sequences for (1.5). Based on the result, we can obtain the existence of minimizers for the
minimization problem (1.5) and the stability of standing waves.

Theorem 1.4. Let N ≥ 3, 0 < µ < N, λ > 0, α ≥ 0, 2α + µ ≤ N and 0 < q < 4
N . Assume one of the

following conditions hold:

(1) 2 − 2α+µ

N < p < 2+2N−2α−µ
N , c > 0;

(2) p =
2+2N−2α−µ

N , 0 < c < ‖Qp‖
2
L2 , where Qp is the solution of Eq (1.4).

Then the setMc := {u ∈ H1(RN) : u ∈ S (c), E(u) = m(c)} is not empty and orbitally stable.

In the mass supercritical case, i.e., 2+2N−2α−µ
N < p < 2N−2α−µ

N−2 , it is obvious that the energy functional
is unbounded from below on S (c). Indeed, if we define us(x) = s

N
2 u(sx) for s > 0 such that ‖us‖

2
L2 =

‖u‖2L2 = c, then we have

E(us) =
s2

2

∫
RN
|∇u|2dx −

λs
Nq
2

q + 2

∫
RN
|u|q+2dx −

sN p−2N+2α+µ

2p

∫
RN

∫
RN

|u|p|u|p

|x|α|x − y|µ|y|α
dxdy. (1.6)

In view of (1.6), we can obtain that E(us) → −∞ as s → ∞. Therefore, we cannot study the
existence of stable standing waves for (1.1) by considering the global minimization problem (1.5).
Applying the concepts by Jeanjean in [19], Luo and Yang in [28], we consider the following constrained
local minimization problem

m(c) := inf
u∈V(c)

E(u), (1.7)
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where V(c) := S (c) ∩ Br0 = {u ∈ S (c) : ‖∇u‖2L2 < r0} for r0 > 0 with c ∈ (0, c0), and Br0 is defined by

Br0 := {u ∈ H1(RN) : ‖∇u‖2L2 < r0}.

More precisely, we can obtain the property that

−∞ < m(c) := inf
u∈V(c)

E(u) < 0 ≤ inf
u∈∂V(c)

E(u),

where ∂V(c) := {u ∈ S (c) : ‖∇u‖2L2 = r0}.
However, the energy functional of (1.3) does not keep invariant by translation due to the

inhomogeneous nonlinearity 1
|x|α

(∫
RN

|u|p

|x−y|µ |y|α dy
)
|u|p−2u. Similarly, in order to prove the compactness

of all minimizing sequences for the minimization problem (1.7), we can solve it by proving the
boundedness of any translation sequences. As consequence, we can obtain the existence of
minimizers for the minimization problem (1.7) and the stability of standing waves.

Theorem 1.5. Let N ≥ 3, 0 < µ < N, λ > 0, α ≥ 0, 2α + µ ≤ N, 0 < q < 4
N and 2+2N−2α−µ

N < p <
2N−2α−µ

N−2 . Then there exists a c0 > 0 with c ∈ (0, c0) such that the following conclusions hold:

(1) ∅ ,Mc := {u ∈ H1(RN) : u ∈ V(c), E(u) = m(c)} ⊂ V(c) ⊂ S (c);

(2) The setMc is orbitally stable.

This paper is organized as follows. In section 2, we give some preliminaries. Next, we obtain the
best constant of the Gagliardo-Nirenberg inequality (2.5). In section 3, we prove the Theorem 1.4. In
section 4, we give some properties for (1.1) in the mass supercritical case. In section 5, we prove the
Theorem 1.5. In section 6, we make a summary for this paper.

Notation: Throughout this paper, we use the following notation. C > 0 stands for a constant that may
be different from line to line when it does not cause any confusion. H1(RN) is the usual Sobolev space

with norm ‖u‖H1 =
(∫
RN (|∇u|2 + |u|2)dx

) 1
2 . Ls(RN) with 1 ≤ s < ∞ denotes the Lebesgue space with the

norm ‖u‖Ls =
(∫
RN |u|sdx

) 1
s . BR(y) denotes the ball in RN centered at y with radius R.

2. Preliminaries

In this section, we we will collect some preliminaries, and then we obtain the best constant of the
Gagliardo-Nirenberg inequality (2.6).

Lemma 2.1. ( [13]) Let N ≥ 3, 0 < µ < N, λ > 0, α ≥ 0, 2α + µ ≤ N, 0 < q < 4
N , 2 − 2α+µ

N < p <
2N−2α−µ

N−2 and ψ0 ∈ H1(RN). Then, there exists T = T (‖ψ0‖H1) such that (1.1) admits a unique solution
ψ ∈ C

(
[0,T ),H1

)
. Let [0,T ∗) be the maximal time interval on which the solution ψ(t) is well-defined,

if T ∗ < ∞, then lim
t→T ∗
‖ψ(t)‖H1 = ∞. Moreover, there are conservations of mass and energy,

‖ψ(t)‖2L2 = ‖ψ0‖
2
L2 , E(ψ(t)) = E(ψ0),

for all 0 ≤ t < T ∗.

Next, we can establish the following Gagliardo-Nirenberg inequality related to (1.2) and the
concentration compactness principle.
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Lemma 2.2. ( [39]) Let N ≥ 3 and 0 < q < 4
N−2 , then the following sharp Gagliardo-Nirenberg

inequality

‖u‖q+2
Lq+2 ≤ C(q)‖u‖q+2− Nq

2
L2 ‖∇u‖

Nq
2

L2 ,

holds for any u ∈ H1(RN). The sharp constant C(q) is

C(q) =
2q + 4

4 + 2q − Nq

(
4 − Nq + 2q)

Nq

) Nq
4 1
‖Qq‖

q
L2

,

where Qq is a ground state solution of the elliptic equation −∆Qq + Qq = |Qq|
qQq.

In particular, in the L2-critical case, i.e., q = 4
N , C(q) =

q+2
2‖Qq‖

q
L2

.

Lemma 2.3. ( [4]) Let N ≥ 3 and {un}
∞
n=1 be a bounded sequence in H1(RN) satisfying:∫

RN
|un|

2dx = λ,

where λ > 0 is fixed. Then there exists a subsequence {unk}
∞
k=1 satisfying one of the three possibilities:

(i) (Compactness) There exists {ynk}
∞
k=1 ⊂ R

N such that unk(· − ynk)→ u as k → ∞ in L2(RN), namely

∀ ε > 0, ∃R > 0,
∫

BR(ynk )
|unk(x)|2dx ≥ λ − ε;

(ii) (Vanishing)

lim
k→∞

sup
y∈RN

∫
BR(y)
|unk(x)|2dx = 0 for all R < ∞;

(iii) (Dichotomy) There exists σ ∈ (0, λ) and u(1)
nk , u(2)

nk bounded in H1(RN) such that:

|u(1)
nk | + |u

(2)
nk | ≤ |unk |,

Supp u(1)
nk ∩ Supp u(2)

nk = ∅,

‖u(1)
nk ‖H1 + ‖u(2)

nk ‖H1 ≤ C‖unk‖H1 ,

‖u(1)
nk ‖

2
L2 → σ, ‖u(2)

nk ‖
2
L2 → λ − σ, as k → ∞,

lim inf
k→∞

∫
RN

(
|∇unk |

2 − |∇u(1)
nk |

2 − |∇u(2)
nk |

2
)

dx ≥ 0,

‖unk − (u(1)
nk + u(2)

nk )‖Ls → 0 as k → 0 for all 2 ≤ s < 2N
N−2 (2 ≤ s < ∞ if N = 1).

(2.1)

Lemma 2.4. (Hardy-Littlewood-Sobolev inequality [23]) Let N ≥ 3, p > 1, r > 1, 0 < µ < N, α ≥ 0,
2α + µ ≤ N, u ∈ Lp(RN) and v ∈ Lr(RN). Then, there exists a constant C(α, µ,N, p, r), independent of
u, v, such that ∣∣∣∣∣∫

RN

∫
RN

u(x)v(y)
|x|α|x − y|µ|y|α

dxdy
∣∣∣∣∣ ≤ C(α, µ,N, p, r)‖u‖Lp‖v‖Lr , (2.2)

where
1
p

+
1
r

+
2α + µ

N
= 2.
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Remark 2.5. (1) By the Lemma 2.4, we know that |x|−µ ∗ v ∈ L
Ns

N−(N−µ)s (RN) for v ∈ Ls(RN) with
s ∈ (1, N

N−µ ) and ∫
RN

∣∣∣|x|−µ ∗ v
∣∣∣ Ns

N−(N−µ)s dx ≤ C
(∫
RN
|v|sdx

) N
N−(N−µ)s

,

where C > 0 is a constant depending only on N, α, µ and s.
(2) By the Lemma 2.4 and the Sobolev embedding theorem, we can obtain that∫

RN

∫
RN

|u|p|u|p

|x|α|x − y|µ|y|α
dxdy ≤ C

(∫
RN
|u|

2N p
2N−2α−µ dx

)2− 2α+µ
N

≤ C‖u‖2p
H1(RN ), (2.3)

for p ∈ [2 − 2α+µ

N , 2N−2α−µ
N−2 ] if N ≥ 3 and p ∈ [2 − 2α+µ

N ,+∞] if N = 1, 2, where C > 0 is a constant
depending only on N, α, µ and p.

By applying the idea of M.Weinstein [37], the best constant for the generalized Gagliardo-Nirenberg
inequality (2.6) can be obtained by considering the existence of the following functional

Jα,µ,p(u) =

(∫
RN |∇u|2dx

) N p−2N+2α+µ
2

(∫
RN |u|2dx

) 2p−N p+2N−2α−µ
2∫

RN

∫
RN

|u|p |u|p
|x|α |x−y|µ |y|α dxdy

. (2.4)

More precisely, we can obtain the following theorem.

Theorem 2.6. Let N ≥ 3, 0 < µ < N, α ≥ 0, 2α + µ ≤ N and 2 − 2α+µ

N < p < 2N−2α−µ
N−2 , then∫

RN

∫
RN

|u|p|u|p

|x|α|x − y|µ|y|α
dxdy ≤ Cα,µ,p

(∫
RN
|∇u|2dx

) N p−2N+2α+µ
2

(∫
RN
|u|2dx

) 2p−N p+2N−2α−µ
2

. (2.5)

The best constant in the generalized Gagliardo-Nirenberg inequality is defined by

Cα,µ,p =
2p

2p − N p + 2N − 2α − µ

(
2p − N p + 2N − 2α − µ

N p − 2N + 2α + µ

) N p−2N+2α+µ
2

‖Qp‖
2−2p
L2 ,

where Qp is a ground state solution of the elliptic equation (1.4).
In particular, in the L2-critical case, i.e., p =

2+2N−2α−µ
N , Cα,µ,p = p‖Qp‖

2−2p
L2 .

Proof. To start with, by Lemma 2.4 and applying the interpolation inequality and Sobolev imbedding,
we can obtain that∫

RN

∫
RN

|u|p|u|p

|x|α|x − y|µ|y|α
dxdy ≤ C‖u‖2p

L
2N p

2N−2α−µ

≤ Cα,µ,p

(∫
RN
|∇u|2dx

) N p−2N+2α+µ
2

(∫
RN
|u|2dx

) 2p−N p+2N−2α−µ
2

. (2.6)

Based on the above results, the functional (2.4) is well-defined. Thus, we consider a minimizing
sequence {un} and the following variational problem

J := in f
{
Jα,µ,p(u), u ∈ H1(RN) \ {0}

}
. (2.7)
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By the Gagliardo-Nirenberg inequality, we have J > 0. Similarly, we set a minimizing sequence
{vn}

∞
n=1, which is defined by vn(x) = µnun(λnx) with

λn =
‖un‖L2

‖∇un‖L2
and µn =

‖un‖
N−2

2
L2

‖∇un‖
N
2
L2

,

so that ‖vn‖L2 = ‖∇vn‖L2 = 1 and J(vn) = J(un)→ J > 0 as n→ ∞.
By the Schwarz symmetrization properties, namely∫

RN
|v∗|pdx =

∫
RN
|v|pdx and

∫
RN
|∇v∗|2dx ≤

∫
RN
|∇v|2dx,

we may assume that vn is spherically symmetric and satisfies ‖v∗n‖H1 ≤ ‖vn‖H1 . Consequently, there
exists a subsequence, which we still denote by {vn}

∞
n=1, and v ∈ H1(RN) such that vn ⇀ v in H1(RN) and

vn → v in L
2N

2N−2α−µ (RN). Since ‖v‖L2 = lim
n→∞
‖vn‖L2 , it implies that

‖v‖L2 = ‖∇v‖L2 = 1 and J(v) = J.

On the basis of the standard variational principle, if w ∈ H1(RN), we have

dJα,µ,p(v + tw)
dt

∣∣∣
t=0

= 0.

Then, we can obtain that v satisfies the following elliptic equation

−
N p − 2N + 2α + µ

2
∆v +

2p − N p + 2N − 2α − µ
2

v = pJ
1
|x|α

(∫
RN

|v|p

|x − y|µ|y|α
dy

)
|v|p−2v.

Now, we define v(x) = au(bx) with b =
(

2p−N p+2N−2α−µ
N p−2N+2α+µ

) 1
2 and a =

(
(2p−N p+2N−2α−µ)

N−µ
2 +1

2pJ(N p−2N+2α+µ)
N−µ

2

) 1
2p−2

, so that u is

a solution of (1.4) and J(u) = J(v) = J.
Then, we can establish the following Pohozaev identity (see Lemma 3.1 in [5]) related to (1.4).

Multiplying (1.4) by Qp and by x · ∇Qp, and integrating by parts, we have∫
RN
|∇Qp|

2dx +

∫
RN
|Qp|

2dx =

∫
RN

∫
RN

|Qp|
p|Qp|

p

|x|α|x − y|µ|y|α
dxdy, (2.8)

and

(N − 2)
∫
RN
|∇Qp|

2dx + N
∫
RN
|Qp|

2dx =
2N − 2α − µ

p

∫
RN

∫
RN

|Qp|
p|Qp|

p

|x|α|x − y|µ|y|α
dxdy. (2.9)

From these identities, we can get the following relations

‖∇Qp‖
2
L2 =

N p − 2N + 2α + µ

2p

∫
RN

∫
RN

|Qp|
p|Qp|

p

|x|α|x − y|µ|y|α
dxdy =

2N − N p − 2α − µ
N p − 2p − 2N + 2α + µ

‖Qp‖
2
L2 , (2.10)

and ∫
RN

∫
RN

|Qp|
p|Qp|

p

|x|α|x − y|µ|y|α
dxdy =

2p
2p − N p + 2N − 2α − µ

‖Qp‖
2
L2 . (2.11)
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Having said all of above, we derive the best constant

Cα,µ,p =
1
J

=
2p

2p − N p + 2N − 2α − µ

(
2p − N p + 2N − 2α − µ

N p − 2N + 2α + µ

) N p−2N+2α+µ
2

‖Qp‖
2−2p
L2 .

�

Theorem 2.7. Assume N ≥ 3, 0 < µ < N, α ≥ 0, 2α+µ ≤ N and u ∈ H1(RN) is a ground state solution
of the elliptic equation (1.4).

If p ≥ 2N−2α−µ
N−2 or p ≤ 2 − 2α+µ

N , then the equation has no nontrivial solution.

Proof. Once we have the Theorem 2.6, combined with (2.8) and (2.9), we can obtain that(
(N − 2) −

2N − 2α − µ
p

) ∫
RN
|∇u|2dx +

(
N −

2N − 2α − µ
p

) ∫
RN
|u|2dx = 0.

If p ≥ 2N−2α−µ
N−2 or p ≤ 2 − 2α+µ

N , then u ≡ 0. The conclusion was arrived. �

3. Proof of Theorem 1.4

In this section, we prove the Theorem 1.4 in seven steps.

Step 1. We prove that the minimization problem (1.5) is well-defined and every minimization
sequence of (1.5) is bounded in H1(RN). By the definition of E(u) and applying the Lemma 2.2 and
the Young inequality, see, e.g. [29, 39], we have

E(u) ≥
(
1
2
− ε

)
‖∇u‖2L2 − δ1(ε, ‖u‖L2) −

1
2p

∫
RN

∫
RN

|u|p|u|p

|x|α|x − y|µ|y|α
dxdy. (3.1)

for any ε > 0 and u ∈ S (c).
In the case 2 − 2α+µ

N < p < 2+2N−2α−µ
N , we have 0 < N p − 2N + 2α + µ < 2, which implies that

E(u) ≥
(
1
2
− ε

)
‖∇u‖2L2 − δ1(ε, ‖u‖L2) − ε‖∇u‖2L2 − δ2(ε, ‖u‖L2)

=

(
1
2
− 2ε

)
‖∇u‖2L2 − δ3(ε, ‖u‖L2) ≥ −δ3(ε, ‖u‖L2) > −∞.

In the case p =
2+2N−2α−µ

N , we have N p − 2N + 2α + µ = 2, 2p − N p + 2N − 2α − µ ≤ 4
N , 1

2p ≤
N

2N+4

and Cα,µ,p ≤
N+2

N ‖Qp‖
− 4

N

L2 . By (3.1) and ‖u‖L2 < ‖Qp‖L2 , it follows from the Theorem 2.6 that

E(u) ≥
(
1
2
− ε

)
‖∇u‖2L2 − δ1(ε, ‖u‖L2) −

1
2

(
‖u‖L2

‖Qp‖L2

) 4
N

‖∇u‖2L2

=
1
2

1 − (
‖u‖L2

‖Qp‖L2

) 4
N

− 2ε

 ‖∇u‖2L2 − δ1(ε, ‖u‖L2) ≥ −δ1(ε, ‖u‖L2) > −∞.

Therefore, E(u) has a lower bound and the variational problem (1.5) is well-defined. Moreover, it is
easy for us to see that every minimization sequence of (1.5) is bounded in H1(RN).
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Step 2. We do the scaling transform of the energy functional (1.3) for s > 0 sufficiently small.
Based on the above analysis, in the case 2 − 2α+µ

N < p < 2+2N−2α−µ
N or p =

2+2N−2α−µ
N , in view of (1.6),

we can find an s > 0 sufficiently small such that E(us) < 0.
Next, we choose {un}

∞
n=1 ⊂ S (c) be a minimizing sequence bounded in H1(RN) satisfying

‖un‖
2
L2 = c, lim

n→∞
E(un) = m(c).

Then, there exists a subsequence {unk}
∞
k=1 such that one of the three possibilities in Lemma 2.3 holds.

Step 3. We prove that the vanishing case in Lemma 2.3 does not occur. If not, by Lion’s lemma, we
have unk → 0 in Ls(RN) as k → ∞ for all s ∈ (2, 2N

N−2 ). Hence,∫
RN
|unk |

q+2dx→ 0 and
∫
RN

∫
RN

|unk |
p|unk |

p

|x|α|x − y|µ|y|α
dxdy→ 0,

and thus,

lim
k→∞

E(unk) = lim
k→∞

1
2

∫
RN
|∇unk |

2dx ≥ 0,

which contradicts m(c) < 0. Hence, the vanishing does not occur.

Step 4. We prove that the dichotomy case in Lemma 2.3 does not occur. To begin with, we recall
that

m(θη) ≤ θm(η) for η ∈ (0, c) and θ ∈ (1,
c
η

). (3.2)

Indeed, by choosing {un}
∞
n=1 ⊂ S (η) satisfying lim

n→∞
E(un) = m(η), we can obtain that ‖

√
θun‖

2
L2 =

θ‖un‖
2
L2 = θη and

m(θη) ≤ lim inf
n→∞

θ

2
‖∇un‖

2
L2 −

λθ
q+2

2

q + 2
‖un‖

q+2
Lq+2 −

θp

2p

∫
RN

∫
RN

|un|
p|un|

p

|x|α|x − y|µ|y|α
dxdy

< lim inf
n→∞

θ

(
1
2
‖∇un‖

2
L2 −

λ

q + 2
‖un‖

q+2
Lq+2 −

1
2p

∫
RN

∫
RN

|un|
p|un|

p

|x|α|x − y|µ|y|α
dxdy

)
= θm(η). (3.3)

Hence, we can obtain that

m(c) < m(η) + m(c − η) ≤ m(η) + m∞(c − η) for any η ∈ (0, c), (3.4)

where m(0) = 0, m∞(c − η) = inf
S (c−η)

E∞(u) and E∞(u) = 1
2‖∇u‖2L2 −

λ
q+2‖u‖

q+2
Lq+2 .

Afterwards, we suppose by contradiction that (iii) in Lemma 2.3 holds. Thus, there exist {u(1)
nk } and

{u(2)
nk } such that

dnk = dist{Supp u(1)
nk
, Supp u(2)

nk
} → ∞,

and ∫
Rn
|u(1)

nk
|2dx→ σ,

∫
Rn
|u(2)

nk
|2dx→ c − σ,
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as k → ∞. Similar to the proof of the Brézis-Lieb Lemma [1], we know that

|un − u|p − |un|
p → |u|p,

in Ls(RN) for s ∈ [2, 2N
N−2 ) as n→ ∞, which implies that∫

RN

|un|
p

|x|α|x − y|µ|y|α
dy −

∫
RN

|un − u|p

|x|α|x − y|µ|y|α
dy→

∫
RN

|u|p

|x|α|x − y|µ|y|α
dy,

in L
2N

2α+µ (RN) as n→ ∞. Hence, by some basic calculation we can obtain that∫
RN
|u|q+2dx −

∫
RN
|u(1)

nk
|q+2dx =

∫
RN
|u(2)

nk
|q+2dx + 2

∫
RN
|u(1)

nk
|q+2|u(2)

nk
|q+2dx,

and ∫
RN

(
|x|−µ ∗ (

1
|x|α
|un|

p)
)

(
1
|x|α
|un|

p)dx −
∫
RN

(
|x|−µ ∗ (

1
|x|α
|u(1)

nk
|p)

)
(

1
|x|α
|u(1)

nk
|p)dx

=

∫
RN

(
|x|−µ ∗ (

1
|x|α
|u(2)

nk
|p)

)
(

1
|x|α
|u(2)

nk
|p)dx + 2

∫
RN

(
|x|−µ ∗ (

1
|x|α
|u(2)

nk
|p)

)
(

1
|x|α
|u(1)

nk
|p)dx.

By the Lemma 2.3, we know that Supp u(1)
nk ∩ Supp u(2)

nk = ∅, then∫
RN
|u(1)

nk
|q+2|u(2)

nk
|q+2dx→ 0 and

∫
RN

∫
RN

|u(1)
nk |

p|u(2)
nk |

p

|x|α|x − y|µ|y|α
dxdy→ 0, as k → ∞.

We consequently obtain that

m(c) = lim
k→∞

(
1
2

∫
RN
|∇unk |

2dx −
λ

q + 2

∫
RN
|unk |

q+2dx −
1

2p

∫
RN

∫
RN

|unk |
p|unk |

p

|x|α|x − y|µ|y|α
dxdy

)
≥ lim inf

k→∞

1
2

∫
RN
|∇u(1)

nk
|2dx −

λ

q + 2

∫
RN
|u(1)

nk
|q+2dx −

1
2p

∫
RN

∫
RN

|u(1)
nk |

p|u(1)
nk |

p

|x|α|x − y|µ|y|α
dxdy

 + ok(1)

+ lim inf
k→∞

1
2

∫
RN
|∇u(2)

nk
|2dx −

λ

q + 2

∫
RN
|u(2)

nk
|q+2dx −

1
2p

∫
RN

∫
RN

|u(2)
nk |

p|u(2)
nk |

p

|x|α|x − y|µ|y|α
dxdy


≥ m(σ) + m∞(c − σ) + ok(1).

Letting k → ∞, we have m(c) ≥ m(σ) + m∞(c − σ), which is a contradiction with (3.4). Hence, the
dichotomy does not occur.

Applying the concentration compactness principle of the Lemma 2.3, there exists a sequence {ynk}
∞
k=1

such that ∫
BR(ε)(ynk )

|unk(x)|2dx ≥ λ − ε. (3.5)

If we denote ũnk(·) = unk(· + ynk), then there exists ũ satisfying
∫
RN |ũ(x)|2dx = λ, namely

ũnk ⇀ ũ in H1(RN) and ũnk → ũ in Ls(RN) for all s ∈ [2,
2N

N − 2
).
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Step 5. We prove that the compactness case in Lemma 2.3 will occur. We firstly prove that the
sequence {ynk}

∞
k=1 is bounded. Indeed, if it was not true, then up to a subsequence, we assume that

|ynk | → ∞ as n→ ∞. We consequently deduce that∫
RN

(
|x|−µ ∗ (

1
|x|α
|unk |

p)
)

1
|x|α
|unk |

pdx =

∫
RN

(
|x + ynk |

−µ ∗ (
1

|x + ynk |
α
|ũnk |

p)
)

1
|x + ynk |

α
|ũnk |

pdx→ 0,

as k → ∞, which yields m(c) ≥ m∞(c). In fact, by the definition of m∞(c), we know that m∞(c) is
attained by a nontrivial function vc, which yields

m∞(c) = lim
k→∞

E∞(ũnk) ≥
1
2
‖∇ũ‖2L2 −

λ

q + 2
‖ũ‖q+2

Lq+2 .

We can see that ũ is a minimizer of m∞(c), and then we can obtain

m(c) < m∞(c) −
1

2p

∫
RN

∫
RN

|vc|
p|vc|

p

|x|α|x − y|µ|y|α
dxdy < m∞(c).

This yields m(c) + 1
2p

∫
RN

∫
RN

|vc |
p |vc |

p

|x|α |x−y|µ |y|α dxdy < m∞(c), which is a contradiction with m(c) ≥ m∞(c).
Accordingly, {ynk}

∞
k=1 is bounded, and up to subsequence, we assume that lim

k→∞
ynk = y0. We consequently

deduce that

‖unk(x) − ũ(x − y0)‖Ls ≤ ‖unk(x + ynk) − ũ(x)‖Ls + ‖ũnk(x − ynk + y0) − ũ(x)‖Ls → 0,

which implies unk → ũ(x − y0) in Ls(RN) for all s ∈ [2, 2N
N−2 ), namely u(x) = ũ(x − y0) and

m(c) = lim inf
k→∞

E(unk) ≥ E(u) ≥ m(c).

Therefore, E(u) = m(c) and unk → u in H1(Rn) as k → ∞. This completes the proof.

Step 6. We prove that the Cauchy problem (1.1) admits a global solution ψ(t) with ψ(0) = ψ0 if
2 − 2α+µ

N < p < 2+2N−2α−µ
N and ψ0 ∈ H1(RN) or p =

2+2N−2α−µ
N and ‖ψ0‖L2 < ‖Qp‖L2 .

Indeed, by Lemma 2.1, we know that it suffices to bound ‖∇ψ(t)‖L2 in the existence time. By Lemma
2.2, Theorem 2.6, the conversation law and the Young inequality, we have

‖∇ψ(t)‖2L2 = 2E(ψ(t)) +
2λ

q + 2
‖ψ(t)‖q+2

Lq+2 +
1
p

∫
RN

∫
RN

|ψ(t)|p|ψ(t)|p

|x|α|x − y|µ|y|α
dxdy

≤ 2E(ψ(0)) + 2ε‖∇ψ(t)‖2L2 + 2δ1(ε, ‖ψ(t)‖L2)

+
Cα,µ,p

p
‖∇ψ(t)‖N p−2N+2α+µ

L2 ‖ψ(t)‖2p−N p+2N−2α−µ
L2 . (3.6)

Similar to the step 1, in the case 2 − 2α+µ

N < p < 2+2N−2α−µ
N , we have

‖∇ψ(t)‖2L2 ≤ 2E(ψ(0)) + 2ε‖∇ψ(t)‖2L2 + 2δ1(ε, ‖ψ(t)‖L2) + 2ε‖∇ψ(t)‖2L2 + 2δ2(ε, ‖ψ(t)‖2L2).

In the case p =
2+2N−2α−µ

N , we have

‖∇ψ(t)‖2L2 ≤ 2E(ψ(0)) + 2ε‖∇ψ(t)‖2L2 + 2δ1(ε, ‖ψ(t)‖L2) +

(
‖ψ(t)‖L2

‖Qp‖L2

) 4
N

‖∇ψ(t)‖2L2 .
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The above argument implies the boundedness of ‖∇ψ(t)‖2L2 since ‖ψ(t)‖L2 = ‖ψ(0)‖L2 < ‖Qp‖L2 . Then
we come to the conclusion.

Step 7. We prove that the set Mc is orbitally stable. We firstly observed that the solution ψ of
(1.1) exists globally, then argue by contradiction that there exist constant ε0 > 0 and a sequence
{ψ0,n}

∞
n=1 ⊂ H1(RN) such that

inf
u∈Mc
‖ψ0,n − u‖H1(RN ) <

1
n

(3.7)

and there exists {tn}
∞
n=1 ⊂ R

+ such that the corresponding solution sequence ψn(tn) of (1.1) satisfies

sup
tn∈R

inf
u∈Mc
‖ψn(tn) − u‖H1(RN ) ≥ ε0. (3.8)

Subsequently, we claim that there exists v ∈ Mc satisfies lim
n→∞
‖ψ0,n − v‖H1(RN ) = 0. Indeed, in view

of (3.7), there exists {vn}
∞
n=1 ⊂ S (c) be a minimizing sequence such that

‖ψ0,n − vn‖H1(RN ) <
2
n
, (3.9)

Due to {vn}
∞
n=1 ⊂ Mc be a minimizing sequence, by the argument above, there exists v ∈ Mc satisfies

lim
n→∞
‖vn − v‖H1(RN ) = 0. (3.10)

Thus, the claim follows from (3.9) and (3.10) immediately. Consequently,

lim
n→∞
‖ψ0,n‖

2
L2 = ‖v‖2L2 = c, lim

n→∞
E(ψ0,n) = E(v) = m(c).

By the conservation of mass and energy, we have

lim
n→∞
‖ψn(tn)‖2L2 = c, lim

n→∞
E(ψn(tn)) = E(v) = m(c).

Similarly, by the argument above, we can see that {ψn(tn)}∞n=1 is bounded in H1(RN). Hence,

E(ψ̃n) =
c

‖ψn(tn)‖2
L2

E(ψn(tn)) +

( √
c

‖ψn(tn)‖L2

)2

−

( √
c

‖ψn(tn)‖L2

)q+2 λ

q + 2
‖ψn(tn)‖q+2

Lq+2

+

( √
c

‖ψn(tn)‖L2

)2

−

( √
c

‖ψn(tn)‖L2

)2p 1
2p

∫
RN

∫
RN

|ψn(tn)|p|ψn(tn)|p

|x|α|x − y|µ|y|α
dxdy,

for ψ̃n =
√

c·ψn(tn)
‖ψn(tn)‖L2

and ‖ψ̃n‖
2
L2 = c. From the above results, we have

lim
n→∞

E(ψ̃n) = lim
n→∞

E(ψn(tn)) = m(c).

Hence, {ψ̃n(tn)}∞n=1 is a minimizing sequence of (1.5). By the analysis above, there exists ṽ ∈ Mc

satisfies
ψ̃n → ṽ in H1(RN). (3.11)

By the definition of ψ̃n, we know

ψ̃n − ψn(tn)→ 0 in H1(RN). (3.12)

We consequently obtain that ψn(tn) → ṽ in H1(RN), and which contradicts (3.8). This completes the
proof.
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4. The supercritical case

By the definition of E(u) and applying the Lemma 2.2 and Theorem 2.6, we have

E(u) ≥
1
2
‖∇u‖2L2 −

λC1

q + 2
‖∇u‖

Nq
2

L2 ‖u‖
q+2− Nq

2
L2 −

C2

2p
‖∇u‖N p−2N+2α+µ

L2 ‖u‖2p−N p+2N−2α−µ
L2

= ‖∇u‖2L2 f
(
‖u‖2L2 , ‖∇u‖2L2

)
, (4.1)

where C1 = C(q), C2 = Cα,µ,p. First of all, we define the following function of two variables, namely

f (c, r) =
1
2
−
λC1

q + 2
‖∇u‖

Nq
2 −2

L2 ‖u‖
q+2− Nq

2
L2 −

C2

2p
‖∇u‖N p−2N+2α+µ−2

L2 ‖u‖2p−N p+2N−2α−µ
L2 .

Now, according to the configurations of parameters above, we note that

β1 =
Nq
2
− 2, β2 = q + 2 −

Nq
2
, β3 = N p − 2N + 2α + µ − 2, β4 = 2p − N p + 2N − 2α − µ,

And then, substitute the notation into the function, we have

gc(r) := f (c, r) =
1
2
−
λC1

q + 2
r
β1
2 c

β2
2 −

C2

2p
r
β3
2 c

β4
2 for (c, r) ∈ (0,∞) × (0,∞).

In the L2-supercritical case, however, we notice that if N ≥ 3, 0 < µ < N, α ≥ 0, 2α+µ ≤ N, 0 < q < 4
N

and 2+2N−2α−µ
N < p < 2N−2α−µ

N−2 , then

β1 ∈ (−2, 0), β2 ∈ (
4
N
, 2), β3 ∈ (0,

4
N − 2

), β4 ∈ (0,
4
N

).

Lemma 4.1. The function gc(r) has a unique global maximum and the maximum value satisfies
max

r>0
gc(r) > 0 i f c < c0,

max
r>0

gc(r) = 0 i f c = c0,

max
r>0

gc(r) < 0 i f c > c0,

where

c0 :=
(

1
2(A + B)

) N
2

> 0, (4.2)

with

A =
λC1

q + 2

(
−
β3

β1

(q + 2)C2

2pλC1

) β1
β1−β3

> 0, B =
C2

2p

(
−
β3

β1

(q + 2)C2

2pλC1

) β3
β1−β3

> 0. (4.3)

Proof. By the definition of gc(r), we can obtain by some calculation that

gc
′(r) = −

β1

2
λC1

q + 2
r
β1
2 −1c

β2
2 −

β3

2
C2

2p
r
β3
2 −1c

β4
2 .
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Hence, there has unique solution of the equation g′c(r) = 0, namely

rc =

(
−
β3

β1

(q + 2)C2

2pλC1

) 2
β1−β3

c
β4−β2
β1−β3 . (4.4)

Moreover, considering in the analysis of gc(r) we know that gc(r)→ −∞ as r → 0 and gc(r)→ −∞ as
r → +∞. Therefore, we can deduce that rc is the unique global maximum point of gc(r), namely

max
r>0

gc(r) =
1
2
−
λC1

q + 2

(
−
β3

β1

(q + 2)C2

2pλC1

) β1
β1−β3

c
β1β4−β1β2

2(β1−β3) c
β2
2

−
C2

2p

(
−
β3

β1

(q + 2)C2

2pλC1

) β3
β1−β3

c
β3β4−β2β3

2(β1−β3) c
β4
2

=
1
2
− (A + B)c

β1β4−β2β3
2(β1−β3) .

In view of (4.2), we can obtain that max
r>0

gc0(rc0) = 0, and hence the lemma follows. �

Lemma 4.2. Let f (c1, r1) ≥ 0 for (c1, r1) ∈ (0,∞) × (0,∞). Then for any c2 ∈ (0, c1], we have that

f (c2, r2) ≥ 0 if r2 ∈ [
c2

c1
r1, r1].

Proof. It is shown that c 7→ f (·, r) is a non-increasing function, and then we have

f (c2, r1) ≥ f (c1, r1) ≥ 0. (4.5)

By some basic calculations, β1 + β2 = q > 0, and taking into account we have

f (c2,
c2

c1
r1) ≥ f (c1, r1) ≥ 0. (4.6)

Moreover, we observe that if gc2(r
′

) ≥ 0 and gc2(r
′′

) ≥ 0 then

f (c2, r) = gc2(r) ≥ 0 for any r ∈ [r
′

, r
′′

]. (4.7)

Indeed, there exists a local minimum point on (r
′

, r
′′

) when gc2(r) < 0 for r ∈ [r
′

, r
′′

], and which
contradicts to the fact that gc2(r) has unique critical point with global maximum (see Lemma 4.1). By
(4.5) and (4.6), we can choose r

′

= c2
c1

r1 and r
′′

= r1, and hence the lemma follows. �

By the Lemmas 4.1 and 4.2, we can obtain that f (c0, r0) = 0 and f (c, r0) ≥ 0 for all c ∈ (0, c0) and
r0 := rc0 > 0. According to the above results, we have the following lemma.

Lemma 4.3. The map c ∈ (0, c0) 7→ m(c) is continuous.

Proof. Firstly, we know that the sequence {cn} ⊂ (0, c0) satisfies cn → c. By the definition of m(cn), we
can obtain that there exists un ∈ V(cn) such that E(un) < 0 and

E(un) ≤ m(cn) + ε for all ε > 0 small enough. (4.8)
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Next, we denote zn :=
√

c
cn

un ∈ V(c) ⊂ S (c), then

‖∇zn‖
2
L2 ≤ ‖∇un‖

2
L2 < r0 for cn ≥ c.

Instead, by Lemma 4.2, then we have f (cn, r) ≥ 0 for r ∈ [ cn
c r0, r0] and cn < c. Therefore, in view of

(4.1) and (4.8), we have f (cn, ‖∇un‖
2
L2) < 0 and

‖∇zn‖
2
L2 <

c
cn

cn

c
r0 = r0 with ‖∇un‖

2
L2 <

cn

c
r0.

As mentioned above, by the definition of zn, we can obtain that

E(zn) − E(un) =
1
2

(
c
cn
− 1)‖∇un‖

2
L2 −

λ

q + 2

[
(

c
cn

)
q+2

2 − 1
]
‖un‖

q+2
Lq+2

−
1

2p

[
(

c
cn

)p − 1
] ∫
RN

∫
RN

|u|p|u|p

|x|α|x − y|µ|y|α
dxdy,

and then, we can write it as
m(c) ≤ E(un) + [E(zn) − E(un)] .

At this point, by the definition of V(c), we can obtain that ‖∇un‖
2
L2 < r0 for u ∈ V(c). Moreover, we

also know that ‖un‖
q+2
Lq+2 and

∫
RN

∫
RN

|u|p |u|p

|x|α |x−y|µ |y|α dxdy are uniformly bounded, then

m(c) ≤ E(un) + on(1) as n→ ∞. (4.9)

In view of (4.8) and (4.9), we have m(c) ≤ m(cn) + ε + on(1), then there exists u ∈ V(c) such that
E(u) < 0 and

E(u) ≤ m(c) + ε for all ε > 0 small enough.

Similar to the argument above, we denote un :=
√

cn
c u ∈ V(cn) ⊆ S (cn), by the fact that cn → c and

E(un)→ E(u) for un ∈ V(cn), then

m(cn) ≤ E(u) + [E(un) − E(u)] ≤ m(c) + ε + on(1). (4.10)

Therefore, we conclude that m(cn) → m(c) for all ε > 0 small enough, and hence the lemma follows.
�

Lemma 4.4. Let {vn}
∞
n=1 ⊂ Br0 be such that ‖vn‖Lq+2 → 0. Then, there exist a constant γ0 > 0 such that

E(vn) ≥ γ0‖∇vn‖
2
L2 + on(1).

Proof. As a matter of fact, by the Theorem 2.6 we obtain that

E(vn) ≥
1
2
‖∇vn‖

2
L2 −

C2

2p
‖∇v‖N p−2N+2α+µ

L2 ‖v‖2p−N p+2N−2α−µ
L2 + on(1)

≥ ‖∇vn‖
2
L2

(
1
2
−

C2

2p
r0

β3
2 c

β4
2

0

)
+ on(1).

Hence, by the fact that f (c0, r0) = 0, we have that

γ0 :=
(
1
2
−

C2

2p
r0

β3
2 c

β4
2

0

)
=

λC1

q + 2
r
β1
2

0 c
β2
2

0 > 0.

�
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5. Proof of Theorem 1.5

In this section, we prove the Theorem 1.5 in seven steps.

Step 1. We prove that the minimization problem (1.7) is well-defined. First of all, we have ‖∇u‖2L2 =

r0 for all u ∈ ∂V(c). Then, in view of (4.1), we can get

E(u) ≥ ‖∇u‖2L2 f (‖u‖2L2 , ‖∇u‖2L2) = r0 f (c, r0) ≥ r0 f (c0, r0) = 0,

Similarly, in view of (1.6), we can get

φu(s) := E(us) < 0 for all s > 0 small enough.

As mentioned above, we obtain that

−∞ < m(c) := inf
u∈V(c)

E(u) < 0 ≤ inf
u∈∂V(c)

E(u). (5.1)

Therefore, E(u) has a lower bound and the variational problem (1.7) is well-defined.

Step 2. We prove that the ground state is local minimizer of E(u) contained in V(c) when m(c) is
reached. Firstly, we assume that u is a critical point of E(u), its restriction u ∈ S (c) belong to the set

Qc := {u ∈ S (c) : Q(u) = 0},

where

Q(u) = ‖∇u‖2L2 −
λNq

2(q + 2)
‖u‖q+2

Lq+2 −
N p − 2N + 2α + µ

2p

∫
RN

∫
RN

|u|p|u|p

|x|α|x − y|µ|y|α
dxdy.

Moreover, by some basic calculations we have the derivative of φv, namely

φ′v(s) =
d
ds

E(vs) =
1
s

Q(vs). (5.2)

Similarly, we observe the fact that if ‖∇v‖L2 = 1 with v ∈ S (c) so that u = vs with u ∈ S (c) for
s ∈ (0,∞).

As a matter of fact, the ground states is contained in the set Qc. In view of (5.2), if w ∈ Qc and
v ∈ S (c) satisfies ‖∇v‖L2 = 1, so that w = vs0 , E(w) = E(vs0) and d

ds E(vs)(s0) = 0 for s0 ∈ (0,∞). Just
by the properties of derivatives, s0 ∈ (0,∞) is a zero of the function φ′v(s).

By the definition of ∂V(c), however, when vs ∈ ∂V(c) we can easily acquire that φv(s) = E(vs) ≥ 0
and

φv(s)→ 0−, ‖∇vs‖L2 → 0 as s→ 0.

Hence, s1 > 0 is the first zero of d
ds E(vs), and it is the local minima satisfying E(vs1) < 0 for vs1 ∈ V(c).

On the other hand, when vs ∈ ∂V(c) we also have E(vs1) < 0, E(vs) ≥ 0 and

E(vs1)→ −∞ as s→ +∞

Hence, s2 > s1 is the second zero of E(vs), and it is the local maxima satisfying E(vs2) ≥ 0 and
m(c) ≤ E(vs1) < E(vs2). In particular, vs2 cannot be a ground state if m(c) is reached.
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To sum up, φ′v has at most two zeros, that is equal to the function s 7→ φ′u(s)
s has at most two zeros,

which yields that s0 = s1 and ω = vs0 = vs1 ∈ V(c). According to the basic calculations, we obtain that

h(s) :=
φ′u(s)

s
= ‖∇u‖2L2 −

λNq
2(q + 2)

sβ1‖u‖q+2
Lq+2 −

N p − 2N + 2α + µ

2p
sβ3

∫
RN

∫
RN

|u|p|u|p

|x|α|x − y|µ|y|α
dxdy,

h′(s) = −β1
λNq

2(q + 2)
sβ1−1‖u‖q+2

Lq+2 − β3
N p − 2N + 2α + µ

2p
sβ3−1

∫
RN

∫
RN

|u|p|u|p

|x|α|x − y|µ|y|α
dxdy.

From what has been discussed above, we know that β1 < 0 and β3 > 0, then h′(s) = 0 has a unique
solution, and h(s) = 0 has indeed at most two zeros. Moreover, the solutions were local minimizer
contained in V(c).

Step 3. We prove that the vanishing case does not occur. If not, we assume that∫
BR(yn)

|un|
2dx ≥ γ1 > 0 for R > 0. (5.3)

First of all, let {un}
∞
n=1 ⊂ Br0 is bounded in H1(RN) be such that ‖un‖

2
L2 → c and E(un) → m(c) for all

c ∈ (0, c0). By Lions’ lemma, we deduce that ‖un‖Lq+2 → 0 as n→ ∞. At this point, by the Lemma 4.4,
we have that E(un) ≥ on(1), which is a contradiction with m(c) < 0.

Step 4. We prove that the dichotomy case does not occur. Indeed, similar to (3.2), we have

m(c) =
c − η

c
m(c) +

η

c
m(c)

=
c − η

c
m

(
c

c − η
(c − η)

)
+
η

c
m

(
c
η
η

)
≤ m(c − η) + m(η), (5.4)

with a strict inequality when m(η) is reached. But in the mass supercritical case, in view of (5.1), we
can obtain that there exists u ∈ V(η) satisfies

E(u) < 0 and E(u) ≤ m(η) + ε for all ε > 0. (5.5)

By the Lemma 4.2, we have f (η, r) ≥ 0 for r ∈
[
η

c r0, r0

]
. Therefore, in view of (4.1) and (5.5), we have

‖∇u‖2L2 <
η

c
r0. (5.6)

Similar to (3.3), we denote v =
√
θu such that ‖v‖2L2 = θ‖u‖2L2 = θη and ‖∇v‖2L2 = θ‖∇u‖2L2 < r0. Thus,

for v ∈ V(θη), we can obtain that m(θη) ≤ θ (m(η) + ε), i.e., m(θη) ≤ θm(η). In particular, if m(η) is
reached, then the strict inequality follows.

Step 5. We prove that the compactness case will occur. By a similar argument above, using the
Lemma 2.3 and Step 5 of the proof of Theorem 1.4, we know that the sequence {yn} ⊂ R

N is bounded,
and up to a sequence, we assume that yn → y0 as n→ ∞. We consequently deduce that

un(x − yn) ⇀ uc , 0 in H1(RN).
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First of all, we denote wn(x) := un(x − yn) − uc(x), we need to prove that the compactness holds, i.e.,

wn(x)→ 0 in H1(RN).

Again, by the definition of un and the analysis of wn, we can obtain that

‖wn‖
2
L2 = ‖un‖

2
L2 − ‖uc‖

2
L2 + on(1) = c − ‖uc‖

2
L2 + on(1). (5.7)

As mentioned, we can obtain that

‖∇wn‖
2
L2 = ‖∇un‖

2
L2 − ‖∇uc‖

2
L2 + on(1). (5.8)

For this reason, in view of (5.7) and (5.8), we notice that any term in E fulfills the splitting properties
of Brézis-Lieb [1]. Consequently,

E(wn) = E(un(x − yn)) − E(uc) + on(1),

By using the fact that {yn} is bounded and the translation invariance holds, we have

E(un) = E(wn) + E(uc) + on(1). (5.9)

On the one hand, in order to prove the compactness holds, we firstly prove that ‖wn‖
2
L2 → 0. In view

of (5.7), if we note c1 := ‖uc‖
2
L2 > 0 so that the conclusion arrived when c1 = c. Instead, if we argue by

contradiction with c1 < c, by the analysis of (5.7) and (5.8), we have

‖wn‖
2
L2 = c − c1 + on(1) ≤ c, ‖∇wn‖

2
L2 ≤ ‖∇un‖

2
L2 < r0.

While in the mass supercritical case, by the definition of wn, we have

wn ∈ V(‖wn‖
2
L2), E(wn) ≥ m(‖wn‖

2
L2).

Recalling E(un)→ m(c) and in view of (5.9), then

m(c) = E(wn) + E(uc) + on(1) ≥ m(‖wn‖
2
L2) + E(uc) + on(1).

In context, by Lemma 4.3 we know that the map c ∈ (0, c0) 7→ m(c) is continuous. Thus, in view of
(5.7), we can deduce that uc ∈ V(c1) and

m(c) ≥ m(c − c1) + E(uc), (5.10)

which implies E(uc) ≥ m(c1). For one thing, in view of (5.4) and (5.10), if E(uc) > m(c1) then

m(c) > m(c − c1) + m(c1) ≥ m(c − c1 + c1) = m(c).

It is impossible to m(c) > m(c). By a process of elimination, we only have another thing that E(uc) =

m(c1), namely uc is a local minimizer on V(c1). Similar to the argument above, if (5.4) with the strict
inequality, then

m(c) ≥ m(c − c1) + m(c1) > m(c − c1 + c1) = m(c).
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It is impossible to m(c) > m(c). Consequently, we conclude that ‖uc‖
2
L2 = c and ‖wn‖

2
L2 → 0.

On the other hand, we next prove that ‖∇wn‖
2
L2 → 0. With all that said, in view of (5.8), we can

deduce that {wn}
∞
n=1 ⊂ Br0 is bounded in H1(RN). By the Gagliardo-Nirenberg inequality of Lemma 2.2

and Theorem 2.6, we can obtain that ‖wn‖
q+2
Lq+2 → 0 and

∫
RN

∫
RN

|wn |
p |wn |

p

|x|α |x−y|µ |y|α dxdy → 0. Consequently, by
the Lemma 4.4, we have

E(wn) ≥ γ0‖∇wn‖
2
L2 + on(1) where γ0 > 0. (5.11)

At the end of the part, due to un ⇀ uc in H1(RN) with uc ∈ V(c), in view of (5.9), we consequently
deduce that E(uc) ≥ m(c) and E(wn) ≤ on(1), namely ‖∇wn‖

2
L2 → 0.

Above all, wn → 0 in H1(RN) and we come to the conclusion.

Step 6. We prove that the Cauchy problem (1.1) admits a global solution ψ(t) with ψ(0, x) = ψ0 if
2+2N−2α−µ

N < p < 2N−2α−µ
N−2 and ψ0 ∈ H1(RN). Firstly, we denote the right hand of (5.1) by A. Since the

energy E(u) is the continuous function with respect to u ∈ H1(RN), we deduce from E(u) = m(c) < A
that there is a δ > 0 such that ‖ψ0 − u‖H1 < δ for ψ0 ∈ H1(RN), and we have E(ψ0) < A.

Next, we prove this by contradiction. If not, there is a ψ0 ∈ H1(RN) such that ‖ψ0 − u‖H1 < δ and
the corresponding solution ψ(t) blows up in finite time. By continuity, there is a T1 > 0 such that
‖∇ψ(T1)‖2L2 > r0. We now consider the initial data ψ̃0 =

√
c·ψ0
‖ψ0‖L2

. When δ > 0 sufficiently small, we have

ψ̃0 ∈ S (c) and E(ψ̃0) < A.

When c ≤ ‖ψ0‖
2
L2 , we have ‖∇ψ̃0‖

2
L2 ≤ ‖∇ψ0‖

2
L2 < r0. When c > ‖ψ0‖

2
L2 , due to 0 < c < c0, we have

‖∇ψ̃0‖
2
L2 < r0. This implies that ψ̃0 ∈ V(c). Since the solution of (1.1) depends continuously on the

initial data and ‖∇ψ(T1)‖2L2 > r0, there is a T2 > 0 such that ‖∇ψ̃(T2)‖2L2 > r0, where ψ̃(t) is the solution
of (1.1) with initial data ψ̃0. Consequently, we deduce from the continuity that there is a T3 > 0 such
that ‖∇ψ̃(T3)‖2L2 = r0. This implies that ψ̃(T3) ∈ ∂V(c). It follows that

A > E(ψ̃0) = E(ψ̃(T3)) ≥ inf
u∈∂V(c)

E(u) = A,

which is a contradiction.

Step 7. We prove that the setMc is orbitally stable. We argue by contradiction, i.e., we assume that
there is ε0 > 0, a sequence of initial data {ψ0,n} ⊂ H1(RN) and a sequence {tn} ⊂ R satisfy the maximal
solution ψn(t) with ψn(0) = ψ0,n such that

lim
n→∞

inf
u∈Mc
‖ψ0,n − u‖H1 = 0, inf

u∈Mc
‖ψn(tn) − u‖H1 ≥ ε0. (5.12)

Similar to the argument of (3.10), there is a v ∈ Mc such that lim
n→∞
‖ψ0,n − v‖H1 = 0. Next, due to

v ∈ V(c), we have ψ̃n =
√

c·ψn(tn)
‖ψn(tn)‖L2

∈ V(c) and

lim
n→∞

E(ψ̃n) = lim
n→∞

E(ψn(tn)) = lim
n→∞

E(ψ0,n) = E(v) = m(c),

which implies that {ψ̃n} is a minimizing sequence for (1.7). Thanks to the compactness of all
minimizing sequence of (1.7), there is a ũ ∈ Mc satisfies ψ̃n → ũ in H1(RN). Moreover, by the
definition of ψ̃n, it follows that ψ̃n → ψn(tn) in H1(RN). Consequently, we have ψn(tn) → ũ in H1(RN),
which contradicts to (5.12). This completes the proof.
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6. Conclusions

In this work, we study the stability of set of energy minimizers in the mass subcritical, mass
critical and mass supercritical cases. Due to appearance of the inhomogeneous nonlinearity

1
|x|α

(∫
RN

|u|p

|x−y|µ |y|α dy
)
|u|p−2u, the non-vanishing of any minimizing sequence is hard to exclude. By a

rather delicate analysis, we can overcome this difficulty by proving the boundedness of any translation
sequence. To the best of our knowledge, there are no any results about instability or strong instability.
However, for its mathematical interest, these problems will be the object of a future investigation.
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approximate analytical solutions for the nonlinear fractional Schrödinger equation with second-
order spatio-temporal dispersion via double Laplace transform method, Math. Methods Appl. Sci.,
44 (2021), 11138–11156. doi: 10.1002/mma.7476.

22. E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation,
Stud. Appl. Math., 57 (1977), 93–105. doi: 10.1002/sapm197757293.

23. E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math.,
118 (1983), 349–374. doi: 10.2307/2007032.

24. J. Liu, Z. He, B. Feng, Existence and stability of standing waves for the inhomogeneous Gross-
Pitaevskii equation with a partial confinement, J. Math. Anal. Appl., 506 (2022), 125604. doi:
10.1016/j.jmaa.2021.125604.

AIMS Mathematics Volume 7, Issue 3, 3802–3825.

https://arxiv.org/abs/2008.12084


3824

25. M. Lewin, S. Rota Nodari, The double-power nonlinear Schrödinger equation and its
generalizations: Uniqueness, non-degeneracy and applications, Calc. Var., 59 (2020), 197. doi:
10.1007/s00526-020-01863-w.

26. P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally
compact case, part 1., Ann. I. H. Poincare C, 1 (1984), 109–145. doi: 10.1016/S0294-
1449(16)30428-0.

27. P. L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063–1072.
doi: 10.1016/0362-546X(80)90016-4.

28. X. Luo, T. Yang, Ground states for 3D dipolar Bose-Einstein condenstes involving quantum
fluctuations and Three-Body losses, arXiv. Available from:
https://arxiv.org/abs/2011.00804.

29. X. Li, J. Zhao, Orbital stability of standing waves for Schrödinger type equations
with slowly decaying linear potential, Comput. Math. Appl., 79 (2020), 303–316. doi:
10.1016/j.camwa.2019.06.030.

30. B. Noris, H. Tavares, G. Verzini, Normalized solutions for nonlinear Schrödinger systems on
bounded domains, Nonlinearity, 32 (2019), 1044–1072.

31. R. Penrose, Quantum computation, entanglement and state reduction, Philos. Trans. R. Soc., 356
(1998), 1927–1939. doi: 10.1098/rsta.1998.0256.

32. R. Penrose, On gravity role in quantum state reduction, Gen. Relat. Gravit., 28 (1996), 581–600.

33. S. I. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Berlin: Akademie Verlag, 1954.

34. A. Stefanov, On the normalized ground states of second order PDE’s with mixed power non-
linearities, Commun. Math. Phys., 369 (2019), 929–971. doi: 10.1007/s00220-019-03484-7.

35. N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differ.
Equations, 269 (2020), 6941–6987. doi: 10.1016/j.jde.2020.05.016.

36. N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: The
Sobolev critical case, J. Funct. Anal., 279 (2020), 108610. doi: 10.1016/j.jfa.2020.108610.

37. M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun.
Math. Phys., 87 (1983), 567–576.

38. Y. Wang, Existence of stable standing waves for the nonlinear Schrödinger equation with inverse-
power potential and combined power-type and Choquard-type nonlinearities, AIMS Math., 6
(2021), 5837–5850. doi: 10.3934/math.2021345.

39. Y. Wang, B. Feng, Sharp thresholds of blow-up and global existence for the Schrödinger equation
with combined power-type and Choquard-type nonlinearities, Bound. Value Probl., 2019 (2019),
195. doi: 10.1186/s13661-019-01310-6.

40. X. Wang, X. Sun, W. Lv, Orbital stability of generalized Choquard equation, Bound. Value Probl.,
2016 (2016), 190. doi: 10.1186/s13661-016-0697-1.

41. M. Yang, Semiclassical ground state solutions for a Choquard type equation in R2 with
critical exponential growth, ESAIM Control Optim. Calc. Var., 24 (2018), 177–209. doi:
10.1051/cocv/2017007.

AIMS Mathematics Volume 7, Issue 3, 3802–3825.

https://arxiv.org/abs/2011.00804


3825

42. M. Yang, J. C. de Albuquerque, E. D. Silva, M. L. Silva, On the critical cases of linearly coupled
Choquard systems, Appl. Math. Lett., 91 (2019), 1–8. doi: 10.1016/j.aml.2018.11.005.

43. M. Yang, Existence of semiclassical solutions for some critical Schrödinger-Poisson equations with
potentials, Nonlinear Anal., 198 (2020), 111874. doi: 10.1016/j.na.2020.111874.

44. S. Zhu, Existence of stable standing waves for the fractional Schrödinger equations with combined
nonlinearities, J. Evol. Equ., 17 (2017), 1003–1021. doi: 10.1007/s00028-016-0363-1.

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 3, 3802–3825.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Proof of Theorem 1.4
	The supercritical case
	Proof of Theorem 1.5
	Conclusions

