We were interested in Bernstein and Lévy measures having certain convexity-type properties. The convexity-type properties were an extension of the harmonic convexity property considered in [
Citation: Wissem Jedidi, Hristo S. Sendov, Shen Shan. Classes of completely monotone and Bernstein functions defined by convexity properties of their spectral measures[J]. AIMS Mathematics, 2024, 9(5): 11372-11395. doi: 10.3934/math.2024558
We were interested in Bernstein and Lévy measures having certain convexity-type properties. The convexity-type properties were an extension of the harmonic convexity property considered in [
[1] | W. Arendt, C. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, Basel: Birkhäuser, 2011. http://dx.doi.org/10.1007/978-3-0348-0087-7 |
[2] | S. Bridaa, W. Jedidi, H. Sendov, Generalized unimodality and subordinators, with applications to stable laws and to the Mittag-Leffler function, J. Theor. Probab., 37 (2024), 1–42. http://dx.doi.org/10.1007/s10959-023-01242-z doi: 10.1007/s10959-023-01242-z |
[3] | M. Carter, B. Brunt, The Lebesgue-Stieltjes integral: a practical introduction, New York: Springer-Verlag, 2000. http://dx.doi.org/10.1007/978-1-4612-1174-7 |
[4] | R. Durrett, Probability: theory and examples, 4 Eds., Cambridge: Cambridge University Press, 2010. |
[5] | M. Merkle, Reciprocally convex functions, J. Math. Anal. Appl., 293 (2004), 210–218. http://dx.doi.org/10.1016/j.jmaa.2003.12.021 doi: 10.1016/j.jmaa.2003.12.021 |
[6] | R. Rockafellar, Convex analysis, Princeton: Princeton University Press, 1970. |
[7] | R. Schilling, R. Song, Z. Vondracek, Bernstein functions theory and applications, 2 Eds., Berlin: De Gruyter, 2012. |
[8] | H. Sendov, S. Shan, New representation theorems for completely monotone and Bernstein functions with convexity properties on their measures, J. Theor. Probab., 28 (2015), 1689–1725. http://dx.doi.org/10.1007/s10959-014-0557-9 doi: 10.1007/s10959-014-0557-9 |
[9] | H. Sendov, S. Shan, Properties of completely monotone and Bernstein functions related to the shape of their measures, J. Convex Anal., 23 (2016), 981–1015. |
[10] | T. Simon, On the unimodality of power transformations of positive stable densities, Math. Nachr., 285 (2012), 497–506. http://dx.doi.org/10.1002/mana.201000062 doi: 10.1002/mana.201000062 |
[11] | D. Widder, The Laplace transform, Princeton: Princeton University Press, 1941. |