Research article Special Issues

Properties of generalized $ (p, q) $-elliptic integrals and generalized $ (p, q) $-Hersch-Pfluger distortion function

  • Received: 23 July 2023 Revised: 27 October 2023 Accepted: 14 November 2023 Published: 23 November 2023
  • MSC : 33C05, 33E05

  • In this paper, we focus on investigating various properties of generalized $ (p, q) $-elliptic integrals and the generalized $ (p, q) $-Hersch-Pfluger distortion function. We establish the complete monotonicity, logarithmic, geometric concavity, and convexity of certain functions involving these generalized integrals and arcsine functions. Additionally, we derive several precise inequalities for the generalized $ (p, q) $-Hersch-Pfluger distortion function, which enhance and extend previous results.

    Citation: Chuan-Yu Cai, Qiu-Ying Zhang, Ti-Ren Huang. Properties of generalized $ (p, q) $-elliptic integrals and generalized $ (p, q) $-Hersch-Pfluger distortion function[J]. AIMS Mathematics, 2023, 8(12): 31198-31216. doi: 10.3934/math.20231597

    Related Papers:

  • In this paper, we focus on investigating various properties of generalized $ (p, q) $-elliptic integrals and the generalized $ (p, q) $-Hersch-Pfluger distortion function. We establish the complete monotonicity, logarithmic, geometric concavity, and convexity of certain functions involving these generalized integrals and arcsine functions. Additionally, we derive several precise inequalities for the generalized $ (p, q) $-Hersch-Pfluger distortion function, which enhance and extend previous results.



    加载中


    [1] M. Abramowitz, I. A. Stegun, D. Miller, Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables, J. Appl. Mech., 32 (1965), 239.
    [2] H. Alzer, K. Richards, On the modulus of the Gr$\ddot{o}$tzsch ring, J. Math. Anal. Appl., 432 (2015), 134–141. https://doi.org/10.1016/j.jmaa.2015.06.057 doi: 10.1016/j.jmaa.2015.06.057
    [3] G. D. Anderson, S. L. Qiu, M. K. Vamanamurthy, M. Vuorinen, Generalized elliptic integrals and modular equations, Pacific J. Math., 192 (2000), 1–37. http://dx.doi.org/10.2140/pjm.2000.192.1 doi: 10.2140/pjm.2000.192.1
    [4] G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Conformal invariants, inequalities and quasiconformal maps, New York: John Wiley and Sons, 1997.
    [5] A. Baricz, Tur$\acute{a}$n type inequalities for generalized complete elliptic integrals, Math. Z., 256 (2007), 895–911.
    [6] L. Yin, B. A. Bhayo, N. G. G$\ddot{o}\breve{g}\ddot{u}$s, On generalized complete $(p, q)$-elliptic integrals, Acta Math. Sci., 41 (2021), 475–486.
    [7] Q. Bao, X. J. Ren, M. K. Wang, A monotonicity theorem for the generalized elliptic integral of the first kind, Appl. Anal. Discrete Math., 16 (2022), 365–378. https://doi.org/10.2298/AADM201005031B doi: 10.2298/AADM201005031B
    [8] B. A. Bhayo, M. Vuorinen, On generalized complete elliptic integrals and modular functions, Proc. Edinburgh Math. Soc., 55 (2012), 591–611.
    [9] Y. C. Han, C. Y. Cai, T. R. Huang, Monotonicity, convexity properties and inequalities involving Gaussian hypergeometric functions with applications, AIMS Mathematics, 7 (2021), 4974–4991. https://doi.org/10.3934/math.2022277 doi: 10.3934/math.2022277
    [10] V. Heikkala, H. Linden, M. K. Vamanamurthy, M. Vuorinen, Generalized elliptic integrals and the Legendre M-function, J. Math. Anal. Appl., 338 (2007), 223–243.
    [11] V. Heikkala, M. K. Vamanamurthy, M. Vuorinen, Generalized elliptic integrals, Comput. Methods Funct. Theory, 9 (2009), 75–109.
    [12] G. J. Hai, T. H. Zhao, Monotonicity properties and bounds involving the two-parameter generalized Gr$\ddot{o}$tzsch ring function, J. Inequal. Appl., 2000 (2020), 66. https://doi.org/10.1186/s13660-020-02327-7 doi: 10.1186/s13660-020-02327-7
    [13] X. F. Huang, M. K. Wang, H. Shao, Y. F. Zhao, Y. M. Chu, Monotonicity properties and bounds for the complete $p$-elliptic integrals, AIMS Mathematics, 5 (2020), 7071–7086. https://doi.org/10.3934/math.2020453 doi: 10.3934/math.2020453
    [14] R. B. Jiao, S. L. Qiu, G. T. Ge, Monotonicity and convexity properties of the generalized $(p, q)$-elliptic integrals, J. Zhejiang Sci.-Tech. Univ., 39 (2018), 765–769.
    [15] T. Kamiya, S. Takeuchi, Complete $(p, q)$-elliptic integrals with application to a family of means, J. Classical Anal., 10 (2017), 15–25.
    [16] J. Lin, Q. Y. Zhang, X. H. Zhang, Generalized elliptic integrals and generalized Gr$\ddot{o}$tzsch function with two parameters, J. Math. Inequal., 16 (2022), 629–647.
    [17] E. Neuman, Inequalities and bounds for generalized complete elliptic integrals, J. Math. Anal. Appl., 373 (2011), 203–213.
    [18] S. L. Qiu, Z. S. Ding, J. Wang, Some properties of the Gr$\ddot{o}$tzsch ring function and H$\ddot{u}$bner function, J. Zhejiang Sci-Tech Univ., 43 (2020), 846–851.
    [19] L. J. Slater, Generalized Hypergeometric Functions, London: Cambridge University Press, 1970.
    [20] S. Takeuchi, Legendre-type relations for generalized complete elliptic integrals, J. Classical Anal., 9 (2016), 35–42. https://doi.org/10.7153/jca-09-04 doi: 10.7153/jca-09-04
    [21] M. K. Wang, Y. M. Chu, Y. M. Li, W. Zhang, Asymptotic expansion and bounds for complete elliptic integrals, Math. Inequal. Appl., 23 (2020), 821–841. https://doi.org/10.7153/mia-2020-23-67 doi: 10.7153/mia-2020-23-67
    [22] M. K. Wang, W. Zhang, Y. M. Chu, Monotonicity, convexity and inequalities involving the generalized elliptic integrals, Acta Math. Sci., 39 (2019), 1440–1450.
    [23] M. K. Wang, T. H. Zhao, X. J. Ren, Y. M. Chu, Z. Y. He, Monotonicity and concavity properties of the Gaussian hypergeometric functions, with applications, Indian J. Pure Appl. Math., 54 (2022), 1105–1124. https://doi.org/10.1007/s13226-022-00325-7 doi: 10.1007/s13226-022-00325-7
    [24] Z. H. Yang, J. F. Tian, Convexity and monotonicity for elliptic integrals of the first kind and applications, Appl. Anal. Discrete Math., 13 (2019), 240–260. https://doi.org/10.2298/AADM171015001Y doi: 10.2298/AADM171015001Y
    [25] T. H. Zhao, M. K. Wang, Y. Q. Dai, Y. M. Chu, On the generalized power-type toader mean, J. Math. Inequal., 16 (2022), 247–264. https://doi.org/10.7153/jmi-2022-16-18 doi: 10.7153/jmi-2022-16-18
    [26] T. H. Zhao, M. K. Wang, G. J. Hai, Y. M. Chu, Landen inequalities for Gaussian hypergeometric function, RACSAM, 116 (2022), 53. https://doi.org/10.1007/s13398-021-01197-y doi: 10.1007/s13398-021-01197-y
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(772) PDF downloads(56) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog