For an integer $ h\geq 0 $, the $ h $th order Randić index for a simple graph $ G $ is defined as $ R^{h}(G) = \sum_{\pi}\frac{1}{\sqrt{v_1(\pi)v_2(\pi)\cdots v_{h+1}(\pi)}} $, where $ \pi $ extends over all paths of length $ h $ in $ G $ and $ v_i(\pi) $ denotes the degree of the $ i $-th vertex of the path $ \pi $. In this paper, we showed that the $ h $th order Randić index $ R^{h}(T) $ of a double starlike tree $ T $ (a tree with two vertices of degrees $ m_1, m_2 > 2 $) is completely determined by its branches of length $ \leq h $. As a consequence, we proved that the double starlike trees with equal $ h $-Randić index are isomorphic, except for some special values for $ m_1 $ and $ m_2 $.
Citation: Zhenhua Su, Zikai Tang, Hanyuan Deng. Higher-order Randić index and isomorphism of double starlike trees[J]. AIMS Mathematics, 2023, 8(12): 31186-31197. doi: 10.3934/math.20231596
For an integer $ h\geq 0 $, the $ h $th order Randić index for a simple graph $ G $ is defined as $ R^{h}(G) = \sum_{\pi}\frac{1}{\sqrt{v_1(\pi)v_2(\pi)\cdots v_{h+1}(\pi)}} $, where $ \pi $ extends over all paths of length $ h $ in $ G $ and $ v_i(\pi) $ denotes the degree of the $ i $-th vertex of the path $ \pi $. In this paper, we showed that the $ h $th order Randić index $ R^{h}(T) $ of a double starlike tree $ T $ (a tree with two vertices of degrees $ m_1, m_2 > 2 $) is completely determined by its branches of length $ \leq h $. As a consequence, we proved that the double starlike trees with equal $ h $-Randić index are isomorphic, except for some special values for $ m_1 $ and $ m_2 $.
[1] | D. Plavaic, S. Nikolic, N. Trinajstic, Z. Mihalic, On the Harary index for the characterization of chemical graphs, J. Math. Chem., 12 (1993), 235–250. https://doi.org/10.1007/BF01164638 doi: 10.1007/BF01164638 |
[2] | N. Ghareghani, F, Ramezani, B. Tayfeh-Rezaie, Graphs cospectral with starlike trees, Lin. Alg. Appl., 429 (2008), 2691–2701. https://doi.org/10.1016/j.laa.2008.01.001 doi: 10.1016/j.laa.2008.01.001 |
[3] | O. Araujo, J. A. de la Peña, The connectivity index of a weighted graph, Lin. Alg. Appl., 283 (1998), 171–177. https://doi.org/10.1016/S0024-3795(98)10096-4 doi: 10.1016/S0024-3795(98)10096-4 |
[4] | I. Gutman, M. Randić, Algebraic characterization of skeletal branching, Chem. Phys. Lett., 47 (1977), 15–19. https://doi.org/10.1016/0009-2614(77)85296-2 doi: 10.1016/0009-2614(77)85296-2 |
[5] | M. Randić, On the characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 6609–6615. |
[6] | L. B. Kier, L. H. Hall, Molecular connectivity in structure-activity analysis, New York: Wiley Press, 1986. |
[7] | J. Du, Y. Shao, X. Sun, The zeroth-order general Randić index of graph with a given clique number, Korean J. Math., 28 (2020), 405–419. https://doi.org/10.11568/KJM.2020.28.3.405 doi: 10.11568/KJM.2020.28.3.405 |
[8] | I. Gutman, Some less familiar properties of Randić index, Croatica Chemica Acta, 93 (2021), 273–278. https://doi.org/10.5562/cca3747 doi: 10.5562/cca3747 |
[9] | B. Furtula, A. Graovac, D, Vukicevic, Atom-bond connectivity index of trees, Discrete Appl. Math., 157 (2009), 2828–2835. https://doi.org/10.1016/j.dam.2009.03.004 doi: 10.1016/j.dam.2009.03.004 |
[10] | L. Volkmann, Sufficient conditions on the zeroth-order general Randić index for maximally edge-connected digraphs, Communications in Combinatorics and Optimization, 1 (2016), 1–13. |
[11] | I. G. Yero, J. A. Rodríguez-Velázquez, I. Guyman, Estimating the higher-order Randić index, Chem. Phys. Lett., 489 (2010), 118–120. https://doi.org/10.1016/j.cplett.2010.02.052 doi: 10.1016/j.cplett.2010.02.052 |
[12] | O. Araujo, J. Rada, Randić index and lexicographic order, J. Math. Chem., 27 (2000), 201–212. https://doi.org/10.1023/A:1026424219580 doi: 10.1023/A:1026424219580 |
[13] | M. Randić, Representation of molecular graphs by basic graphs, J. Chem. Inf. Comput. Sci., 32 (1992), 57–69. https://doi.org/10.1021/ci00005a010 doi: 10.1021/ci00005a010 |
[14] | J. Rada, O. Araujo, Higher order connectivity index of starlike trees, Discrete Appl. Math., 119 (2002), 287–295. https://doi.org/10.1016/S0166-218X(01)00232-3 doi: 10.1016/S0166-218X(01)00232-3 |
[15] | R. Song, Q. Huang, A relation on trees and the topological indices based on subgraph, MATCH Commun. Math. Comput. Chem., 89 (2023), 343–370. https://doi.org/10.46793/match.89-2.343S doi: 10.46793/match.89-2.343S |