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Abstract: For an integer h ≥ 0, the hth order Randić index for a simple graph G is defined as
Rh(G) =

∑
π

1
√

v1(π)v2(π)···vh+1(π)
, where π extends over all paths of length h in G and vi(π) denotes the

degree of the i-th vertex of the path π. In this paper, we showed that the hth order Randić index Rh(T )
of a double starlike tree T (a tree with two vertices of degrees m1,m2 > 2) is completely determined
by its branches of length ≤ h. As a consequence, we proved that the double starlike trees with equal
h-Randić index are isomorphic, except for some special values for m1 and m2.
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1. Introduction

In mathematical chemistry, a topological index is a numeric quantity derived mathematically in a
direct and unambiguous manner from the structural graph of a molecule, which is used to characterize
some properties of a molecular graph. It is also a graph invariant since isomorphic graphs have the
same value for a given topological index.

Many topological indices have been developed through the years and related successfully to
physicochemical properties of organic molecules [1, 2]. In order to define the concept of branching
in molecular species [3, 4], Randić [5] introduced in 1975 a topological index–the connectivity index
(now called the Randić index), defined for a simple graph G as

R1(G) =
∑
π

1
√

v1(π)v2(π)
,

where π extends over all paths of length 1 and vi(π) denotes the degree of the i-th vertex of the path π.
Note that for a path with (n + 1) vertices and n edges, both of the vertex and edge can appear exactly
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once. It has become one of the most widely used and most successful in applications to physical and
chemical properties [6]. For a review of historical details and a further bibliography on the chemical
applications of the Randić index see [7–10].

For an integer h ≥ 0, the connectivity index of order h (also called h-Randić index) [11] is defined
as

Rh(G) =
∑
π

1
√

v1(π)v2(π) · · · vh+1(π)
,

where π extends over all paths of length h in G and vi(π) denotes the degree of the i-th vertex of the
path π.

Higher-order Randić indices are of great interest in the theory of molecular graph theory and some
of its mathematical properties have been reported in [12]. Examples of non-isomorphic trees T and T ′

such that Rh(T ) = Rh(T ′) for all h ≥ 0 exist [13]. However, it will not occur in starlike trees, i.e. trees
that have a unique vertex of a degree greater than 2. In fact, Rada and Araujo [14] proved that starlike
trees which have equal h-connectivity index for h ≥ 0 are isomorphic.

Very recently, by a relation on trees with respect to edge division vectors, Song and Huang [15]
found some sufficient conditions to determine whether some trees with the same topological index
value are isomorphic or not. Further, several classes of trees, including balanced starlike trees and
double star S p,q, are uniquely determined by edge division vectors.

This leads naturally to determine h-Randić index of a double starlike tree, i.e., a tree that has only
two vertices of a degree greater than 2. In this paper, we will show that for every integer h ≥ 0,
the higher-order Randić Rh(T ) of a double starlike tree T is completely determined by its branches
of length ≤ h. As a consequence, we show that almost all the double starlike trees that have equal
h-Randić index for all h ≥ 0 are isomorphic.

2. Some conceptions for double starlike trees

Let G be a graph. The maximum vertex degree and the number of i-vertices (an i-vertex is a vertex
of degree i) will be denoted by ∆(G) and ki(G), respectively. For an integer m ≥ 2, a starlike tree T is
a tree for which k1(T ) = ∆(T ) = m. The set of all starlike trees on n vertices with the maximal degree
m is denoted by Ωn,m.

For two integers m1,m2 ≥ 2, a double starlike tree T is a tree with an edge u0v0 such that the
components of T − {u0v0} are two starlike trees Tu0 and Tv0 with their maximal degrees m1 − 1 and
m2 − 1, respectively, where dT (u0) = m1 and dT (v0) = m2. If n1 = |V(Tu0)| and n2 = |V(Tv0)|, then
n1 + n2 = n = |V(T )|. A double starlike tree is displayed as in Figure 1. The set of all double starlike
trees on n vertices with two adjacent branching vertices of degrees m1 and m2 are denoted by Ωn,m1,m2 .
Specifically, if one of the values m1 and m2 is 2, then the double starlike tree is a starlike tree.

For any two vertices u,w in T , we use [u,w] to represent the shortest path connecting u and w,
and keep in mind that the number of edges in [u,w] is called the distance. Let T ∈ Ωn,m1,m2 . If
{u1, u2, · · · , um1−1} is the set of 1-vertices in Tu0 , an l-branch of Tu0 is a path [u0, ui] of Tu0 such that
d(u0, ui) = l. There is a similar definition for Tv0 . We denote by rl(T ) and sl(T ) the numbers of
l-branches in Tu0 and Tv0 , respectively (see Figure 1).

Based on the notations introduced above, we clearly have the following relations:

r1 + r2 + · · · + rt1 = m1 − 1, s1 + s2 + · · · + st2 = m2 − 1,
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r1 + 2r2 + · · · + t1rt1 = n1 − 1, s1 + 2s2 + · · · + t2st2 = n2 − 1, n1 + n2 = n,

where t1 and t2 represent the length of the longest branch in Tu0 and Tv0 , respectively.

Figure 1. The double starlike tree.

3. Higher-order Randić index for double starlike trees

In this section, we will determine the higher-order Randić index of double starlike trees.

Theorem 3.1. Let T ∈ Ωn,m1,m2 , where m1 , m2. Then

R0(T ) = (m1 + m2)(1 −
1
√

2
) +

1
√

m1
+

1
√

m2
+

n
√

2
− 2.

As a consequence, if T ′ ∈ Ωn,m′1,m
′
2
, then R0(T ) = R0(T ′) if and only if m1 = m′1 and m2 = m′2.

Proof. It is not difficult to obtain that k1(T ) = m1+m2−2, k2(T ) = n−m1−m2 and km1(T ) = km2(T ) = 1.
Hence,

R0(T ) = (m1 + m2 − 2) · 1 + (n − m1 − m2) ·
1
√

2
+

1
√

m1
+

1
√

m2

= (m1 + m2)(1 −
1
√

2
) +

1
√

m1
+

1
√

m2
+

n
√

2
− 2.

Let f (m1,m2) = (m1 + m2)(1 − 1
√

2
) + 1

√
m1
+ 1
√

m2
. Clearly, m1 + m2 ∈ N+, and 1

√
m1
+ 1
√

m2
< N+. If

R0(T ) = R0(T ′), then we have
m1 + m2 = m′1 + m′2. (3.1)

1
√

m1
+

1
√

m2
=

1√
m′1
+

1√
m′2

. (3.2)

In the following, we show that m1 = m′1 and m2 = m′2. Assume that m1 , m′1 and m2 , m′2, thus
m1 , m′1 , m2 , m′2. For convenience, let a =

√
m1, b =

√
m2, c =

√
m′1 and d =

√
m′2. Without loss
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of generality, assume b < d < c < a. From equations (3.1) and (3.2), it can be concluded that

ac
db
=

a − c
d − b

,
a − c
d − b

=
d + b
a + c

.

Therefore,
ac
db
=

d + b
a + c

.

On the other hand, according to b < d < c < a, we have ac > bd and a + c > b + d, i.e.,

ac
db
>

d + b
a + c

,

a contradiction. Therefore, the assumption is not valid and the proof is done. □

In the following, the set of all rational numbers is denoted by Q and the set of all irrational numbers
is R − Q.

Theorem 3.2. Let T ∈ Ωn,m1,m2 , where m1 , m2. Then

R1(T ) = (
1
√

m1
−

1
√

2m1
+

1
2
−

1
√

2
)r1 + (

1
√

m2
−

1
√

2m2
+

1
2
−

1
√

2
)s1

+
[m1 + m2 − 2

√
2

+
m1 − 1
√

2m1
+

m2 − 1
√

2m2
+

1
√

m1m2
− (m1 + m2) +

n
2
+ 1
]
.

Consequently, for T ′ ∈ Ωn,m′1,m
′
2
, where m′1 = m1 and m′2 = m2, if R1(T ) = R1(T ′), then

(i) r1 = r′1 and s1 = s′1 when m1 = 2 or m2 = 2;
(ii) r1 = r′1 and s1 = s′1, except for the case

√
m1,
√

m2 ∈ R−Q and
√

2m1,
√

2m2 ∈ Q, when m1,m2 ≥ 3.

Proof. Note that 1
2

∑m1−1
i=r1+1 d(u0, ui) + 1

2

∑m2−1
i=s1+1 d(v0, vi) = 1

2 (n − r1 − s1 − 2). Keeping the notation of
R1(T ), we have

R1(T ) =
r1∑

i=1

1
√

m1
+

m1−1∑
i=r1+1

[ 1
√

2
+

1
2

(d(u0, ui) − 2) +
1
√

2m1

]

+

s1∑
i=1

1
√

m2
+

m2−1∑
i=s1+1

[ 1
√

2
+

1
2

(d(v0, vi) − 2) +
1
√

2m2

]
+

1
√

m1m2

= (
1
√

m1
−

1
√

2m1
+

1
2
−

1
√

2
)r1 + (

1
√

m2
−

1
√

2m2
+

1
2
−

1
√

2
)s1 + λ(n,m1,m2),

where λ(n,m1,m2) =
[

m1+m2−2
√

2
+ m1−1
√

2m1
+ m2−1
√

2m2
+ 1
√

m1m2
− (m1 + m2) + n

2 + 1
]
.

For convenience, let a = ( 1
√

m1
− 1
√

2m1
+ 1

2 −
1
√

2
), and b = ( 1

√
m2
− 1
√

2m2
+ 1

2 −
1
√

2
).

(i) If one of m1 and m2 is 2, assume that m1 = 2. Then R1(T ) = ar1 + bs1 + λ(n,m1,m2). We can
immediately deduce s1 = s′1 from the condition R1(T ) = R1(T ′). In this case, we have r1 = r′1 = 1 and
a = 0.
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(ii) If m1,m2 ≥ 3, from R1(T ) = R1(T ′), we obtain that ar1 + bs1 = ar′1 + bs′1. If r1 = r′1(or s1 = s′1),
then we can obtain that s1 = s′1 (or r1 = r′1), the theorem is true. In the following, we will deduce a
contradiction under the assumption of r1 , r′1 and s1 , s′1. Denote

a
b
=

s′1 − s1

r1 − r′1
= t. (3.3)

Let’s discuss in three cases according to whether
√

m1 and
√

m2 are rational numbers.

Case 1.
√

m1 = c ∈ Q and
√

m2 = d ∈ Q.
From Equation (3.3), it can be concluded that

a
b
=

1
c −

1
c
√

2
+ 1

2 −
1
√

2
1
d −

1
d
√

2
+ 1

2 −
1
√

2

= t,

and we get t = d(c+2)
c(d+2) =

d(c+1)
c(d+1) . Furthermore, we have c = d, i.e., m1 = m2, which contradicts with

m1 , m2.

Case 2.
√

m1 = c ∈ Q and
√

m2 ∈ R − Q.
Subcase 2.1.

√
2m2 = d ∈ Q.

From Equation (3.3), it can be concluded that

a
b
=

1
c −

1
c
√

2
+ 1

2 −
1
√

2
1
√

m2
− 1

d +
1
2 −

1
√

2

= t.

Thus, we get t = d(c+2)
c(d−2) =

d(c+1)
c(d−2) , i.e., c + 1 = c + 2, a contradiction.

Subcase 2.2.
√

2m2 ∈ R − Q.
By Equation (3.3), we obtain

a
b
=

1
c −

1
c
√

2
+ 1

2 −
1
√

2
1
√

m2
− 1
√

2m2
+ 1

2 −
1
√

2

= t,

and we have t = c+2
c =

−
√

m2(c+1)
(
√

2−
√

m2−1)c
, which implies

√
2(2 + c) −

√
m2 − (2 + c) = 0, i.e., c = −2 and

m2 = 0, a contradiction.

Case 3.
√

m1 ∈ R − Q,
√

m2 ∈ R − Q.
Subcase 3.1.

√
2m1 = c ∈ Q,

√
2m2 ∈ R − Q.

By Equation (3.3), we obtain

a
b
=

1
√

m1
− 1

c +
1
2 −

1
√

2
1
√

m2
− 1
√

2m2
+ 1

2 −
1
√

2

= t.

Then we have t = c−2
c =

√
2m2(

√
2−
√

m1)
c(
√

2−
√

m2−1)
, i.e., m1 = 2, which contradicts with m1 ≥ 3.

Subcase 3.2.
√

2m1 ∈ R − Q,
√

2m2 ∈ R − Q.
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By Equation (3.3), we obtain

a
b
=

1
√

m1
− 1
√

2m1
+ 1

2 −
1
√

2
1
√

m2
− 1
√

2m2
+ 1

2 −
1
√

2

= t.

Similarly, it can be concluded that t = 1 =
1√m1
− 1√

2m1
1√m2
− 1√

2m2

, i.e., m1 = m2, which contradicts with m1 , m2.

Therefore, taking into account the above situations, we obtain that r1 = r′1 and s1 = s′1, except for
the case

√
m1,
√

m2 ∈ R − Q and
√

2m1,
√

2m2 ∈ Q. □

Next, We will extend this result to Rh(T ), where h ≥ 2.
Let u0 and v0 be the m1-vertex and m2-vertex of T (see Figure 1). Let Ph represent the set of all

paths of length h in T , N = {0, 1, 2, · · · } as the set of natural numbers and the function Ψ : Ph −→ Nh+1

by Ψ(π) = (v1(π), · · · , vh+1(π)), where vi(π) denotes the degree of the i-th vertex of the path π.
We first consider all paths in Ph that contain u0 or v0 as an end-vertex, or do not contain u0 and v0.

There are twelve possibilities for the images under Ψ of these paths:

X1 = (1, 2, · · · , 2︸   ︷︷   ︸
h−1

,m1), X′1 = (1, 2, · · · , 2︸   ︷︷   ︸
h−1

,m2),

X2 = (2, · · · , 2︸   ︷︷   ︸
h

,m1), X′2 = (2, · · · , 2︸   ︷︷   ︸
h

,m2),

X3 = (2, · · · , 2︸   ︷︷   ︸
h+1

), X′3 = (2, · · · , 2︸   ︷︷   ︸
h+1

),

X4 = (1, 2, · · · , 2︸   ︷︷   ︸
h

), X′4 = (1, 2, · · · , 2︸   ︷︷   ︸
h

),

X5 = (1, 2, · · · , 2︸   ︷︷   ︸
h−2

,m1,m2), X′5 = (1, 2, · · · , 2︸   ︷︷   ︸
h−2

,m2,m1),

X6 = (2, · · · , 2︸   ︷︷   ︸
h−1

,m1,m2), X′6 = (2, · · · , 2︸   ︷︷   ︸
h−1

,m2,m1).

We then consider all paths in Ph that contain only one of u0 and v0, but not as an end-vertex. In this
case the image of Ψ is as follows:

Y1(a) = (1, 2, · · · , 2︸   ︷︷   ︸
a

,m1, 2, · · · , 2︸   ︷︷   ︸
h−1−a

), Y ′1(a) = (1, 2, · · · , 2︸   ︷︷   ︸
a

,m2, 2, · · · , 2︸   ︷︷   ︸
h−1−a

), where 0 ≤ a ≤ h − 2.

Y2(a) = (1, 2, · · · , 2︸   ︷︷   ︸
a

,m1, 2, · · · , 2︸   ︷︷   ︸
h−2−a

, 1), Y ′2(a) = (1, 2, · · · , 2︸   ︷︷   ︸
a

,m2, 2, · · · , 2︸   ︷︷   ︸
h−2−a

, 1), where 0 ≤ a ≤ h
2 − 1.

Y3(a) = (2, · · · , 2︸   ︷︷   ︸
a

,m1, 2, · · · , 2︸   ︷︷   ︸
h−a

), Y ′3(a) = (2, · · · , 2︸   ︷︷   ︸
a

,m2, 2, · · · , 2︸   ︷︷   ︸
h−a

), where 1 ≤ a ≤ h
2 .

Finally, consider all paths in Ph that contain both v0 and u0, but not one as an end-vertex. In this
case the image of Ψ is as follows:

Z1(a) = (1, 2, · · · , 2︸   ︷︷   ︸
a

,m1,m2, 2, · · · , 2︸   ︷︷   ︸
h−2−a

), Z′1(a) = (1, 2, · · · , 2︸   ︷︷   ︸
a

,m2,m1, 2, · · · , 2︸   ︷︷   ︸
h−2−a

), where 0 ≤ a ≤ h − 3.

Z2(a) = (1, 2, · · · , 2︸   ︷︷   ︸
a

,m1,m2, 2, · · · , 2︸   ︷︷   ︸
h−3−a

, 1), where 0 ≤ a ≤ h − 3.

Z3(a) = (2, · · · , 2︸   ︷︷   ︸
a

,m1,m2, 2, · · · , 2︸   ︷︷   ︸
h−1−a

), where 1 ≤ a ≤ h − 2.
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Now, let’s prove our main result.

Theorem 3.3. Let T ∈ Ωn,m1,m2 , where m1 , m2. Then

Rh(T ) = (
1√

2h−1m1

−
1√

2hm1

+
1
√

2h+1
−

1
√

2h
)rh + (

1√
2h−1m2

−
1√

2hm2

+
1
√

2h+1
−

1
√

2h
)sh + λ(h, n,m1,m2, r1, s1, · · · , rh−1, sh−1),

where λ(h, n,m1,m2, r1, s1, · · · , rh−1, sh−1) is a real number determined by the values of h, n,m1,
m2, · · · , rh−1, sh−1.

Proof. Clearly, Rh(T ) is determined by the numbers |Ψ−1(Xi)|, |Ψ−1(X′i )|, |Ψ
−1(Yi(a))|, |Ψ−1(Y ′i (a))|,

|Ψ−1(Zi(a))| and |Ψ−1(Z′i (a))|, where |Ψ−1(W)| represents the number of elements in the inverse image
of W under Ψ, i.e.,

Rh(T ) = |Ψ−1(X1)|
1√

2h−1m1

+ |Ψ−1(X′1)|
1√

2h−1m2

+ |Ψ−1(X2)|
1√

2hm1

+ |Ψ−1(X′2)|
1√

2hm2

+ |Ψ−1(X3)|
1
√

2h+1
+ |Ψ−1(X′3)|

1
√

2h+1
+ |Ψ−1(X4)|

1
√

2h
+ |Ψ−1(X′4)|

1
√

2h

+ |Ψ−1(X5)|
1√

2h−2m1m2

+ |Ψ−1(X′5)|
1√

2h−2m1m2

+ |Ψ−1(X6)|
1√

2h−1m1m2

+ |Ψ−1(X′6)|
1√

2h−1m1m2

+

h−2∑
a=0

|Ψ−1(Y1(a))|
1√

2h−1m1

+

h−2∑
a=0

|Ψ−1(Y ′1(a))|
1√

2h−1m2

+

h
2−1∑
a=0

|Ψ−1(Y2(a))|
1√

2h−2m1

+

h
2−1∑
a=0

|Ψ−1(Y ′2(a))|
1√

2h−2m2

+

h
2∑

a=1

|Ψ−1(Y3(a))|
1√

2hm1

+

h
2∑

a=1

|Ψ−1(Y ′3(a))|
1√

2hm2

+

h−3∑
a=0

|Ψ−1(Z1(a))|
1√

2h−2m1m2

+

h−3∑
a=0

|Ψ−1(Z′1(a))|
1√

2h−2m1m2

+

h−3∑
a=0

|Ψ−1(Z2(a))|
1√

2h−3m1m2

+

h−2∑
a=1

|Ψ−1(Z3(a))|
1√

2h−1m1m2

.

We can express |Ψ−1(Xi)|, |Ψ−1(X′i )|, |Ψ
−1(Yi(a))|, |Ψ−1(Y ′i (a))|, |Ψ−1(Zi(a))| and |Ψ−1(Z′i (a))| in terms

of r1, s1, · · · , rh, sh by a counting argument together with the reduction formulas as follows:

|Ψ−1(X1)| = rh, |Ψ
−1(X′1)| = sh,

|Ψ−1(X2)| = rh+1 + · · · + rt1 = m1 − 1 −
h∑

i=1

ri, |Ψ
−1(X′2)| = m2 − 1 −

h∑
i=1

si,

|Ψ−1(X3)| = rh+1 + 2rh+2 + · · · + (t − h − 1)rt1 = −(h + 1)
t1∑

i=h+1

ri +

t1∑
i=h+1

iri,

= −(h + 1)
[
m1 − 1 −

h∑
i=1

ri

]
+
[
n1 − 1 −

h∑
i=1

iri

]
,
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|Ψ−1(X′3)| = −(h + 1)
[
m2 − 1 −

h∑
i=1

si

]
+
[
n2 − 1 −

h∑
i=1

isi

]
, where n1 + n2 = n,

|Ψ−1(X4)| = m1 − 1 −
h∑

i=1

ri, |Ψ
−1(X′4)| = m2 − 1 −

h∑
i=1

si,

|Ψ−1(X5)| = rh−1, |Ψ
−1(X′5)| = sh−1,

|Ψ−1(X6)| = rh + · · · + rt1 = m1 − 1 −
h−1∑
i=1

ri, |Ψ
−1(X′6)| = m1 − 1 −

h−1∑
i=1

si,

|Ψ−1(Y1(a))| =


ra+1(m1 − 1 −

h−1−a∑
i=1

ri), if 0 ≤ a <
h − 1

2
,

ra+1(m1 − 2 −
h−1−a∑

i=1

ri), if
h − 1

2
≤ a ≤ h − 2.

|Ψ−1(Y ′1(a))| =


sa+1(m2 − 1 −

h−1−a∑
i=1

si), if 0 ≤ a <
h − 1

2
,

sa+1(m2 − 2 −
h−1−a∑

i=1

si), if
h − 1

2
≤ a ≤ h − 2.

|Ψ−1(Y2(a))| =


ra+1rh−1−a, if 0 ≤ a <

h
2
− 1,

1
2

ra+1(ra+1 − 1), if a =
h
2
− 1.

|Ψ−1(Y ′2(a))| =


sa+1sh−1−a, if 0 ≤ a <

h
2
− 1,

1
2

sa+1(sa+1 − 1), if a =
h
2
− 1.

|Ψ−1(Y3(a))| =



[
m1 − 1 −

h−a∑
i=1

ri

][
m1 − 2 −

a∑
i=1

ri

]
, if 1 ≤ a ≤

h − 1
2
,

1
2

[
m1 − 1 −

h−a∑
i=1

ri

][
m1 − 2 −

a∑
i=1

ri

]
, if a =

h
2
.

|Ψ−1(Y ′3(a))| =



[
m2 − 1 −

h−a∑
i=1

si

][
m2 − 2 −

a∑
i=1

si

]
, if 1 ≤ a ≤

h − 1
2
,

1
2

[
m2 − 1 −

h−a∑
i=1

si

][
m2 − 2 −

a∑
i=1

si

]
, if a =

h
2
.

|Ψ−1(Z1(a))| = ra+1

(
m2 − 1 −

h−2−a∑
i=1

si

)
, if 0 ≤ a ≤ h − 3,

|Ψ−1(Z′1(a))| = sa+1

(
m1 − 1 −

h−2−a∑
i=1

ri

)
, if 0 ≤ a ≤ h − 3,
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|Ψ−1(Z2(a))| = ra+1sh−2−a, if 0 ≤ a ≤ h − 3,

|Ψ−1(Z3(a))| =
(
m1 − 1 −

a∑
i=1

ri

)(
m2 − 1 −

h−1−a∑
i=1

si

)
, if 1 ≤ a ≤ h − 2.

We can see that |Ψ−1(Xi)|, |Ψ−1(X′i )|, |Ψ
−1(Y j(a))|, |Ψ−1(Y ′j(a))|, |Ψ−1(Z j(a))| and |Ψ−1(Z′j(a))| depend

on the numbers h,m, r1, s1, · · · , rh−1, sh−1 for all a and i = 5, 6 and j = 1, 2, 3; while for i = 1, 2, 3, 4,
|Ψ−1(Xi)| and |Ψ−1(X′i )| depend on the numbers h,m, r1, s1, · · · , rh, sh. Hence, by grouping in a
convenient way we can get

Rh(T ) = λ(h, n,m1,m2, r1, s1, · · · , rh−1, sh−1) + µ(h,m1,m2, rh, sh),

where λ(h, n,m1,m2, r1, s1, · · · , rh−1, sh−1) is a real number determined by the values of h, n,m1,
m2, r1, s1, · · · , rh−1, sh−1, and

µ(h,m1,m2, rh, sh) = (
1√

2h−1m1

−
1√

2hm1

+
1
√

2h+1
−

1
√

2h
)rh

+ (
1√

2h−1m2

−
1√

2hm2

+
1
√

2h+1
−

1
√

2h
)sh.

Thus, the theorem holds. □

Example 3.4. Let T ∈ Ω18,7,4 with r1(T ) = 3, r2(T ) = 2, r3(T ) = 1, s1(T ) = 2 and s4(T ) = 1, where
m1 = 7,m2 = 4. In order to calculate R3(T ), we first determine the number of paths of each type:

|Ψ−1(X1)| = r3 = 1, |Ψ−1(X′1)| = s3 = 0,

|Ψ−1(X2)| = m1 − 1 −
3∑

i=1

ri = 0, |Ψ−1(X′2)| = 1,

|Ψ−1(X3)| = −(3 + 1)
[
m1 − 1 −

3∑
i=1

ri

]
+
[
n1 − 1 −

3∑
i=1

iri

]
= 0, |Ψ−1(X′3)| = 0,

|Ψ−1(X4)| = m1 − 1 −
3∑

i=1

ri = 0, |Ψ−1(X′4)| = 1,

|Ψ−1(X5)| = r2 = 2, |Ψ−1(X′5)| = s2 = 0,

|Ψ−1(X6)| = m1 − 1 −
2∑

i=1

ri = 1, |Ψ−1(X′6)| = 1,

|Ψ−1(Y1(0))| = r1(m1 − 1 −
2∑

i=1

ri) = 3, |Ψ−1(Y1(1))| = r2(m1 − 2 − r1) = 4,

|Ψ−1(Y ′1(0))| = s1(m2 − 1 −
2∑

i=1

si) = 2, |Ψ−1(Y ′1(1))| = s2(m2 − 2 − s1) = 0,

|Ψ−1(Y2(0))| = r1r2 = 6, |Ψ−1(Y ′2(0))| = 0,

|Ψ−1(Y3(1))| =
[
m1 − 1 −

2∑
i=1

ri

][
m1 − 2 − r1

]
= 2, |Ψ−1(Y ′3(1))| = 0,
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|Ψ−1(Z1(0))| = r1(m2 − 1 − s1) = 3, |Ψ−1(Z′1(0))| = s1(m1 − 1 − r1) = 6,
|Ψ−1(Z2(0))| = r1s1 = 6, |Ψ−1(Z3(1))| = (m1 − 1 − r1)(m2 − 1 − s1) = 3.

Hence, we obtain from Theorem 3.3

R3(T ) =
1
√

28
+ 0

1
√

16
+ 0

1
√

56
+ 1

1
√

32
+ 0

1
√

16
+ 0

1
√

16
+ 0

1
√

8
+

1
√

8
+ 2

1
√

56

+ 0
1
√

56
+

1
√

112
+

1
√

112
+ (3 + 4)

1
√

28
+ (2 + 0)

1
√

16
+ 6

1
√

14
+ 0

1
√

8

+ 2
1
√

56
+ 0

1
√

32
+ 3

1
√

56
+ 6

1
√

56
+ 6

1
√

28
+ 3

1
√

112

=
1
2
+

1

2
√

2
+

1

4
√

2
+ (7 +

5
4

)
1
√

7
+ (6 +

13
2

)
1
√

14
. □

Theorem 3.5. Let T,T ′ ∈ Ωn,m1,m2 , where m1 , m2. Then T and T ′ are isomorphic if and only if
(i) Rh(T ) = Rh(T ′) for all h ≥ 0, where min{m1,m2} = 2; or
(ii) Rh(T ) = Rh(T ′) for all h ≥ 0, where m1,m2 ≥ 3, except for the case

√
m1,
√

m2 ∈ R − Q and
√

2m1,
√

2m2 ∈ Q.

Proof. The necessity is clear, we only need to prove sufficiency. Assume that T,T ′ ∈ Ωn,m1,m2 . Since
R0(T ) = R0(T ′), by Theorem 3.1, m1 = m′1 and m2 = m′2. Now, from R1(T ) = R1(T ′) and Theorem
3.2, we have r1 = r′1 and s1 = s′1, where min{m1,m2} = 2, or where m1,m2 ≥ 3, except for the case
√

m1,
√

m2 ∈ R − Q and
√

2m1,
√

2m2 ∈ Q. Next, applying Theorem 3.3 for h = 2, we get

(
1√

21m1

−
1√

22m1

+
1
√

23
−

1
√

22
)r2 + (

1√
21m2

−
1√

22m2

+
1
√

23
−

1
√

22
)s2 + λ

= (
1√

21m1

−
1√

22m1

+
1
√

23
−

1
√

22
)r′2 + (

1√
21m2

−
1√

22m2

+
1
√

23
−

1
√

22
)s′2 + λ

i.e.,

(
1
√

m1
−

1
√

2m1
+

1
2
−

1
√

2
)r2 + (

1
√

m2
−

1
√

2m2
+

1
2
−

1
√

2
)s2

= (
1
√

m1
−

1
√

2m1
+

1
2
−

1
√

2
)r′2 + (

1
√

m2
−

1
√

2m2
+

1
2
−

1
√

2
)s′2

By a proof process similar to Theorem 3.2, we have r2 = r′2 and s2 = s′2. Continuing this process by
repeated use of Theorem 3.3 and Theorem 3.2, we can conclude that ri = r′i and si = s′i for all i ∈ N.
Therefore, T and T ′ are isomorphic. □

Finally, let T ∈ Ωn,m1,m2 . If min{m1,m2} = 2, then T is a starlike tree, i.e., T ∈ Ωn,m, where
m = max{m1,m2}. From Theorem 3.3 and Theorem 3.5, we have the following corollaries which are
given in [14].

Corollary 3.6. [14] Let T ∈ Ωn,m. Then

Rh(T ) = (
1

√
2h−1m

−
1
√

2hm
+

1
√

2h+1
−

1
√

2h
)sh + λ(h, n,m, s1, · · · , sh−1),
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where λ(h, n,m, s1, · · · , sh−1) is a real number determined by the values of h, n,m, s1, · · · , sh−1.

Corollary 3.7. [14] Let T,T ′ ∈ Ωn,m. Then T and T ′ are isomorphic if and only if Rh(T ) = Rh(T ′) for
all h ≥ 0.

4. Conclusions

In this paper, we mainly investigated the hth order Randić index Rh(T ) of the double starlike tree
T , which is a tree with two vertices of degrees m1,m2 > 2. First, the formula of the hth order Randić
index Rh(T ) has been completely determined by its branches of length ≤ h. Second, it was taken that
m1 , m2, and we have shown that almost all the double starlike trees T ∈ Ωn,m1,m2 with equal h-Randić
index for all h ≥ 0 are isomorphic. In addition, some results of starlike trees have been obtained, which
were given in [14].

These results lead to a natural question, which we pose as a problem.
Problem 3.8. Which index can determine isomorphism of double starlike trees T ∈ Ωn,m1,m2 , where
m1 = m2 ?
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