Research article Special Issues

Sharp bounds for the general Randić index of graphs with fixed number of vertices and cyclomatic number

  • Received: 28 August 2023 Revised: 06 October 2023 Accepted: 11 October 2023 Published: 30 October 2023
  • MSC : 05C92, 05C76, 05C35

  • The cyclomatic number, denoted by $ \gamma $, of a graph $ G $ is the minimum number of edges of $ G $ whose removal makes $ G $ acyclic. Let $ \mathscr{G}_{n}^{\gamma} $ be the class of all connected graphs with order $ n $ and cyclomatic number $ \gamma $. In this paper, we characterized the graphs in $ \mathscr{G}_{n}^{\gamma} $ with minimum general Randić index for $ \gamma\geq 3 $ and $ 1\leq\alpha\leq \frac{39}{25} $. These extend the main result proved by A. Ali, K. C. Das and S. Akhter in 2022. The elements of $ \mathscr{G}_{n}^{\gamma} $ with maximum general Randić index were also completely determined for $ \gamma\geq 3 $ and $ \alpha\geq 1 $.

    Citation: Guifu Su, Yue Wu, Xiaowen Qin, Junfeng Du, Weili Guo, Zhenghang Zhang, Lifei Song. Sharp bounds for the general Randić index of graphs with fixed number of vertices and cyclomatic number[J]. AIMS Mathematics, 2023, 8(12): 29352-29367. doi: 10.3934/math.20231502

    Related Papers:

  • The cyclomatic number, denoted by $ \gamma $, of a graph $ G $ is the minimum number of edges of $ G $ whose removal makes $ G $ acyclic. Let $ \mathscr{G}_{n}^{\gamma} $ be the class of all connected graphs with order $ n $ and cyclomatic number $ \gamma $. In this paper, we characterized the graphs in $ \mathscr{G}_{n}^{\gamma} $ with minimum general Randić index for $ \gamma\geq 3 $ and $ 1\leq\alpha\leq \frac{39}{25} $. These extend the main result proved by A. Ali, K. C. Das and S. Akhter in 2022. The elements of $ \mathscr{G}_{n}^{\gamma} $ with maximum general Randić index were also completely determined for $ \gamma\geq 3 $ and $ \alpha\geq 1 $.



    加载中


    [1] D. Amic, D. Lucic, S. Nikolic, N. Trinajstić, The vertex-connectivity index revisited, J. Chem. Inf. Comput. Sci., 38 (1998), 819–822. https://doi.org/10.1021/ci980039b doi: 10.1021/ci980039b
    [2] A. Ali, K. C. Das, S. Akhter, On the extremal graphs for second Zagreb index with fixed number of vertices and cyclomatic number, Miskolc Math. Notes, 23 (2022), 41–50. http://doi.org/10.18514/MMN.2022.2382 doi: 10.18514/MMN.2022.2382
    [3] M. R. Alfuraidan, K. C. Das, T. Vetrík, S. Balachandran, General Randić index of unicyclic graphs with given diameter, Discrete Appl. Math., 306 (2022), 7–16. https://doi.org/10.1016/j.dam.2021.09.016 doi: 10.1016/j.dam.2021.09.016
    [4] J. A. Bondy, U. S. R. Murty, Graph Theory, Berlin: Springer, 2008.
    [5] B. Bollobás, P. Erdös, Graphs of extremal weights, Ars Combin., 50 (1998), 225–233.
    [6] D. Chen, Study of unicyclic graph with maximal general Randić index for $\alpha<0$, Commun. Comput. Inf. Sci., 134 (2011), 136–141. https://doi.org/10.1007/978-3-642-18129-022 doi: 10.1007/978-3-642-18129-022
    [7] Q. Cui, L. Zhong, The general Randić index of trees with given number of pendent vertices, Appl. Math. Comput., 302 (2017), 111–121. https://doi.org/10.1016/j.amc.2017.01.021 doi: 10.1016/j.amc.2017.01.021
    [8] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Ⅲ. Total $\pi$-electron energy of alternant hydrocarbons, Chem. Phys., 17 (1972), 535–538. https://doi.org/10.1016/0009-2614(72)85099-1 doi: 10.1016/0009-2614(72)85099-1
    [9] L. Buyantogtokh, B. Horoldgva, K. Das, On general reduced second Zagreb index of graphs, Mathematics, 10 (2022), 3553. https://doi.org/10.3390/math10193553 doi: 10.3390/math10193553
    [10] X. Li, Y. Shi, T. Xu, Unicyclic graphs with maximum general Randić index for $\alpha>0$, MATCH Commun. Math. Comput. Chem., 56 (2006), 557–570.
    [11] X. Li, L. Wang, Y. Zhang, Complete solution for unicyclic graphs with minimum general Randić index, MATCH Commun. Math. Comput. Chem., 55 (2006), 391–408.
    [12] K. Xu, K. C. Das, S. Balachandran, Maximizing the Zagreb indices of $(n, m)$-graphs, MATCH Commun. Math. Comput. Chem., 72 (2014), 641–654.
    [13] B. Wu, L. Zhang, Unicyclic graphs with minimum general Randić index, MATCH Commun. Math. Comput. Chem., 54 (2005), 455–464.
    [14] M. K. Jamil, I. Tomescu, Zeroth-order general Randić index of $k$-generalized quasi trees, preprint paper, 2018. https://doi.org/10.48550/arXiv.1801.03885
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1206) PDF downloads(70) Cited by(0)

Article outline

Figures and Tables

Figures(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog