Research article Special Issues

Asynchronously switching control of discrete-time switched systems with a $ \Phi $-dependent integrated dwell time approach

  • Received: 12 September 2023 Revised: 12 October 2023 Accepted: 15 October 2023 Published: 30 October 2023
  • MSC : 34D20, 93D15

  • In this paper, the asynchronous control problem is investigated and a multiple convex Lyapunov functions (MCLF) approach is introduced for a class of discrete-time switched linear systems under the $ \Phi $-dependent integrated dwell time ($ \Phi $DIDT) switching strategy. For the problem of asynchronous switching, this paper considers that Lyapunov functions may jump when the subsystem switches or the controller changes. Thus, the constructed MCLF is dependent on both the asynchronous interval and the synchronous interval, and the synchronous interval is divided into the convex interval and non-convex interval parts. Some sufficient conditions of stability with Linear matrix inequality (LMI) forms are obtained, and the asynchronous controller is designed to guarantee the globally uniform exponential stability of the system under study. In addition, the proposed method can degenerate to the existing methods to deal with the asynchronous control problem. Finally, a numerical example illustrates the superiority of the proposed method.

    Citation: Qiang Yu, Na Xue. Asynchronously switching control of discrete-time switched systems with a $ \Phi $-dependent integrated dwell time approach[J]. AIMS Mathematics, 2023, 8(12): 29332-29351. doi: 10.3934/math.20231501

    Related Papers:

  • In this paper, the asynchronous control problem is investigated and a multiple convex Lyapunov functions (MCLF) approach is introduced for a class of discrete-time switched linear systems under the $ \Phi $-dependent integrated dwell time ($ \Phi $DIDT) switching strategy. For the problem of asynchronous switching, this paper considers that Lyapunov functions may jump when the subsystem switches or the controller changes. Thus, the constructed MCLF is dependent on both the asynchronous interval and the synchronous interval, and the synchronous interval is divided into the convex interval and non-convex interval parts. Some sufficient conditions of stability with Linear matrix inequality (LMI) forms are obtained, and the asynchronous controller is designed to guarantee the globally uniform exponential stability of the system under study. In addition, the proposed method can degenerate to the existing methods to deal with the asynchronous control problem. Finally, a numerical example illustrates the superiority of the proposed method.



    加载中


    [1] D. Liberzon, Switching in systems and control, MA: Birkhäuser Boston, 2003. https://doi.org/10.1007/978-1-4612-0017-8
    [2] J. P. Hespanha, Uniform stability of switched linear systems extension of Lasalle's invariance principle, IEEE T. Automat. Contr., 49 (2004), 470–482. https://doi.org/10.1109/TAC.2004.825641 doi: 10.1109/TAC.2004.825641
    [3] H. Lin, P. J. Antsaklis, Stability and stabilizability of switched linear systems: a survey of recent results, IEEE T. Automat. Contr., 54 (2009), 308–322. https://doi.org/10.1109/TAC.2008.2012009 doi: 10.1109/TAC.2008.2012009
    [4] X. Liu, Y. Yu, H. Chen, Stability of perturbed switched nonlinear systems with delays, Nonlinear Anal. Hybri., 25 (2017), 114–125. https://doi.org/10.1016/j.nahs.2017.03.003 doi: 10.1016/j.nahs.2017.03.003
    [5] H. Ren, G. Zong, T. Li, Event-triggered finite-time control for networked switched linear systems with asynchronous switching, IEEE T. Syst. Man Cy. S., 48 (2018), 1874–1884. https://doi.org/10.1109/TSMC.2017.2789186 doi: 10.1109/TSMC.2017.2789186
    [6] G. Zheng, T. Wang, The moment exponential stability of infinite-dimensional linear stochastic switched systems, AIMS Mathematics, 8 (2023), 24663–24680. https://doi.org/10.3934/math.20231257 doi: 10.3934/math.20231257
    [7] J. P. Hespanha, A. S. Morse, Stability of switched systems with average dwell-time, Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, USA, 1999, 2655–2660. https://doi.org/10.1109/CDC.1999.831330
    [8] L. Liu, H. Zhou, H. Liang, L. Wang, Stability and stabilization of nonlinear switched systems under average dwell time, Appl. Math. Comput., 298 (2017), 77–94. https://doi.org/10.1016/j.amc.2016.11.006 doi: 10.1016/j.amc.2016.11.006
    [9] Y. Yin, G. Zong, X. Zhao, Improved stability criteria for switched positive linear systems with average dwell time, J. Franklin I., 354 (2017), 3472–3484. https://doi.org/10.1016/j.jfranklin.2017.02.005 doi: 10.1016/j.jfranklin.2017.02.005
    [10] X. Zhao, P. Zhang, P. Shi, M. Liu, Stability and stabilization of switched linear systems with mode-dependent average dwell time, IEEE T. Automat. Contr., 57 (2012), 1809–1815. https://doi.org/10.1109/TAC.2011.2178629 doi: 10.1109/TAC.2011.2178629
    [11] Y. Yin, X. Zhao, X. Zheng, New stability and stabilization conditions of switched systems with mode-dependent average dwell time, Circuits Syst. Signal Process., 36 (2017), 82–98. https://doi.org/10.1007/s00034-016-0306-7 doi: 10.1007/s00034-016-0306-7
    [12] Q. Yu, G. S. Zhai, Stability analysis of switched systems under $\Phi$-dependent average dwell time, IEEE Access, 8 (2020), 30655–30663. https://doi.org/10.1109/ACCESS.2020.2971267 doi: 10.1109/ACCESS.2020.2971267
    [13] Q. Yu, H. Lv, The new stability criteria of discrete-time switched systems with an improved mode dependent average dwell time approach, Appl. Math. Comput., 366 (2020), 124730. https://doi.org/10.1016/j.amc.2019.124730 doi: 10.1016/j.amc.2019.124730
    [14] Q. Yu, J. L. Yan, A novel average dwell time strategy for stability analysis of discrete-time switched systems by T-S fuzzy modeling, J. Comput. Appl. Math., 391 (2021), 113306. https://doi.org/10.1016/j.cam.2020.113306 doi: 10.1016/j.cam.2020.113306
    [15] Q. Yu, X. Yuan, Stability analysis for positive switched systems having stable and unstable subsystems based on a weighted average dwell time scheme, ISA Tran., 136 (2023), 275–283. https://doi.org/10.1016/j.isatra.2022.10.019 doi: 10.1016/j.isatra.2022.10.019
    [16] I. Asier, M. Sen, Exponential stability of simultaneously triangularizable switched systems with explicit calculation of common Lyapunov function, Appl. Math. Lett., 22 (2009), 1549–1555. https://doi.org/10.1016/j.aml.2009.03.023 doi: 10.1016/j.aml.2009.03.023
    [17] M. Contzen, Stability of switched linear systems with possible zone behavior: a polytopic approach, Eur. J. Control, 40 (2018), 40–47. https://doi.org/10.1016/j.ejcon.2017.11.001 doi: 10.1016/j.ejcon.2017.11.001
    [18] Y. Chang, G. Zhai, B. Fu, L. Xiong, Quadratic stabilization of switched uncertain linear systems: a convex combination approach, IEEE-CAA J. Automatic., 6 (2019), 1116–1126. https://doi.org/10.1109/JAS.2019.1911681 doi: 10.1109/JAS.2019.1911681
    [19] M. S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE T. Automat. Contr., 43 (1998), 475–482. https://doi.org/0018-9286(98)02663-4
    [20] S. N. Vassilyev, A. A. Kosov, Common and multiple Lyapunov functions in stability analysis of nonlinear switched systems, AIP Conf. Proc., 1493 (2012), 1066–1073. https://doi.org/10.1063/1.4765620 doi: 10.1063/1.4765620
    [21] L. Zhou, D. W. C. Ho, G. Zhai, Stability analysis of switched linear singular systems, Automatica, 49 (2013), 1481–1487. https://doi.org/10.1016/j.automatica.2013.02.002 doi: 10.1016/j.automatica.2013.02.002
    [22] S. Yuan, L. Zhang, B. De Schutter, S. Baldi, A novel Lyapunov function for a non-weight $l_{2}$ gain of asynchronously switched linear systems, Automatica, 87 (2018), 310–317. https://doi.org/10.1016/j.automatica.2017.10.018 doi: 10.1016/j.automatica.2017.10.018
    [23] X. D. Zhao, P. Shi, Y. F. Yin, S. K. Nguang, New results on stability of slowly switched system: a multiple discontinuous Lyapunov function approach, IEEE T. Automat. Contr., 57 (2017), 1809–1815. https://doi.org/10.1109/TAC.2016.2614911 doi: 10.1109/TAC.2016.2614911
    [24] R. Wang, L. Hou, G. Zong, S. Fei, D. Yang, Stability and stabilization of continuous-time switched systems: a multiple discontinuous convex Lyapunov function approach, Int. J. Robust Nonlin., 29 (2019), 1499–1514. https://doi.org/10.1002/rnc.4449 doi: 10.1002/rnc.4449
    [25] S. Reich, A. J. Zaslavski, Asymptotic behavior of dynamical systems with a convex Lyapunov function, J. Nonlinear Convex A., 1 (2000), 107–113.
    [26] R. Wang, T. Jiao, T. Zhang, Improved stability results for discrete-time switched systems: A multiple piecewise convex Lyapunov function approach, Appl. Math. Comput., 353 (2019), 54–65. https://doi.org/10.1016/j.amc.2019.01.065 doi: 10.1016/j.amc.2019.01.065
    [27] L. Zhang, H. Gao, Asynchronously switched control of switched linear systems with average dwell time, Automatica, 46 (2010), 953–958. https://doi.org/10.1016/j.automatica.2010.02.021 doi: 10.1016/j.automatica.2010.02.021
    [28] J. J. Huang, X. Z. Hao, X. Z. Pan, Asynchronous switching control of discrete-time linear system based on mode-dependent average dwell time, Int. J. Control Autom. Syst., 18 (2020), 1705–1714. https://doi.org/10.1007/s12555-019-0495-5 doi: 10.1007/s12555-019-0495-5
    [29] J. H. Cui, R. H. Wang, S. M. Fei, A multiple convex Lyapunov function for asynchronous control of discrete-time switched systems, T. I. Meas. Control, 44 (2021), 162–171. https://doi.org/10.1177/01423312211026547 doi: 10.1177/01423312211026547
    [30] L. Vu, D. Liberzon, Supervisory control of uncertain linear time-varying systems, IEEE T. Automat. Contr., 56 (2011), 27–42. https://doi.org/10.1109/TAC.2010.2060244 doi: 10.1109/TAC.2010.2060244
    [31] S. Shi, Z. Fei, P. Shi, C. K. Ahn, Asynchronous filtering for discrete-time switched T-S fuzzy systems, IEEE T. Fuzzy Syst., 28 (2020), 1531–1541. https://doi.org/10.1109/TFUZZ.2019.2917667 doi: 10.1109/TFUZZ.2019.2917667
    [32] D. W. Ding, G. H. Yang, $H_{\infty}$ static output feedback control for discrete-time switched linear systems with average dwell time, IET Control Theory A., 4 (2010), 381–390. https://doi.org/10.1049/iet-cta.2008.0481 doi: 10.1049/iet-cta.2008.0481
    [33] S. Shi, Z. P. Shi, Z. Y. Fei, Asynchronous control for switched systems by using persistent dwell time modeling, Syst. Control Lett., 133 (2019), 104523. https://doi.org/10.1016/j.sysconle.2019.104523 doi: 10.1016/j.sysconle.2019.104523
    [34] Q. Yu, N. Wei, Stability criteria of switched systems with a binary F-dependent average dwell time approach, Journal of Control and Decision, 2023 (2023), 2191609. https://doi.org/10.1080/23307706.2023.2191609 doi: 10.1080/23307706.2023.2191609
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(761) PDF downloads(54) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog