In this present investigation, the authors obtain Fekete-Szegö inequality for certain normalized analytic function $ f(\zeta) $ defined on the open unit disk for which
$ (f'(\zeta)^{\vartheta}\left( \frac{\zeta f'(\zeta )}{f(\zeta )}\right)^{1-\vartheta} \prec 1+\sin \zeta ; \qquad (0\leq \vartheta \leq 1) $
lies in a region starlike with respect to $ 1 $ and symmetric with respect to the real axis. As a special case of this result, the Fekete-Szegö inequality for a class of functions defined through Poisson distribution series is obtained. Further, we discuss the second Hankel inequality for functions in this new class.
Citation: Huo Tang, Gangadharan Murugusundaramoorthy, Shu-Hai Li, Li-Na Ma. Fekete-Szegö and Hankel inequalities for certain class of analytic functions related to the sine function[J]. AIMS Mathematics, 2022, 7(4): 6365-6380. doi: 10.3934/math.2022354
In this present investigation, the authors obtain Fekete-Szegö inequality for certain normalized analytic function $ f(\zeta) $ defined on the open unit disk for which
$ (f'(\zeta)^{\vartheta}\left( \frac{\zeta f'(\zeta )}{f(\zeta )}\right)^{1-\vartheta} \prec 1+\sin \zeta ; \qquad (0\leq \vartheta \leq 1) $
lies in a region starlike with respect to $ 1 $ and symmetric with respect to the real axis. As a special case of this result, the Fekete-Szegö inequality for a class of functions defined through Poisson distribution series is obtained. Further, we discuss the second Hankel inequality for functions in this new class.
[1] | S. S. Miller, P. T. Mocanu, Differential subordinations: Theory and applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, No. 225, CRC Press, 2000. |
[2] | L. De Branges, A proof of the Bieberbach conjecture, Acta Math., 154 (1985), 137–152. http://dx.doi.org/10.1007/BF02392821 doi: 10.1007/BF02392821 |
[3] | W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceeding of the International Conference on Complex Analysis at the Nankai Institute of Mathematics, International Press, 1992,157–169. |
[4] | W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Annales Polonici Mathematici, Institute of Mathematics Polish Academy of Sciences, 23 (1970), 159–177. |
[5] | M. S. Robertson, Certain classes of starlike functions, Mich. Math. J., 32 (1985), 135–140. |
[6] | F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Am. Math. Soc., 118 (1993), 189–196. |
[7] | J. Sokół, Radius problem in the class $\mathcal{SL} ^{\ast }$, Appl. Math. Comput., 214 (2009), 569–573. http://dx.doi.org/10.1016/j.amc.2009.04.031 doi: 10.1016/j.amc.2009.04.031 |
[8] | M. Mohsin, S. N. Malik, Upper bound of third hankel determinant for class of analytic functions related with lemniscate of bernoulli, J. Inequal. Appl., 2013 (2013), 412. http://dx.doi.org/10.1186/1029-242X-2013-412 doi: 10.1186/1029-242X-2013-412 |
[9] | R. K. Raina, J. Sokół, On coefficient estimates for a certain class of starlike functions, Hacet. J. Math. Stat., 44 (2015), 1427–1433. |
[10] | K. Sharma, N. K. Jain, V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat., 27 (2016), 923–939. https://doi.org/10.1007/s13370-015-0387-7 doi: 10.1007/s13370-015-0387-7 |
[11] | L. Shi, I. Ali, M. Arif, N. E. Cho, S. Hussain, H. Khan, A study of third hankel determinant problem for certain subfamilies of analytic functions involving cardioid domain, Mathematics, 7 (2019), 418. https://doi.org/10.3390/math7050418 doi: 10.3390/math7050418 |
[12] | R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38 (2015), 365–386. https://doi.org/10.1007/s40840-014-0026-8 doi: 10.1007/s40840-014-0026-8 |
[13] | L. Shi, H. M. Srivastava, M. Arif, S. Hussain, H. Khan, An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function, Symmetry, 11 (2019), 598. https://doi.org/10.3390/sym11050598 doi: 10.3390/sym11050598 |
[14] | A. Alotaibi, M. Arif, M. A. Alghamdi, S. Hussain, Starlikeness associated with cosine hyperbolic function, Mathematics, 8 (2020), 1118. https://doi.org/10.3390/math8071118 doi: 10.3390/math8071118 |
[15] | N. E. Cho, V. Kumar, S. S. Kumar, V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc., 45 (2019), 213–232. https://doi.org/10.1007/s41980-018-0127-5 doi: 10.1007/s41980-018-0127-5 |
[16] | M. Arif, M. Raza, H. Tang, S. Hussain, H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open Math., 17 (2019), 1615–1630. https://doi.org/10.1515/math-2019-0132 doi: 10.1515/math-2019-0132 |
[17] | K. Bano, M. Raza, Starlike functions associated with cosine functions, Bull. Iran. Math. Soc., 47 (2021), 1513–1532. https://doi.org/10.1007/s41980-020-00456-9 doi: 10.1007/s41980-020-00456-9 |
[18] | N. E. Cho, S. Kumar, V. Kumar, V. Ravichandran, H. M. Srivasatava, Starlike functions related to the Bell numbers, Symmetry, 11 (2019), 219. https://doi.org/10.3390/sym11020219 doi: 10.3390/sym11020219 |
[19] | L. Shi, I. Ali, M. Arif, N. E. Cho, S. Hussain, H. Khan, A study of third Hankel determinant problem for certain subfamilies of analytic functions involving cardioid domain, Mathematics, 7 (2019), 418. https://doi.org/10.3390/math7050418 doi: 10.3390/math7050418 |
[20] | J. Dzoik, R. K. Raina, J. Sokół, On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers, Math. Comput. Model., 57 (2013), 1203–1211. https://doi.org/10.1016/j.mcm.2012.10.023 doi: 10.1016/j.mcm.2012.10.023 |
[21] | S. Kanas, D. Răducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. https://doi.org/10.2478/s12175-014-0268-9 doi: 10.2478/s12175-014-0268-9 |
[22] | S. Kumar, V. Ravichandran, A subclass starlike functions associated with a rational function, South East Asian Bull. Math., 40 (2016), 199–212. |
[23] | J. W. Noonan, D. K. Thomas, On the second Hankel determinant of areally mean $p$-valent functions, Trans. Amer. Math. Soc., 223 (1976), 337–346. https://doi.org/10.1090/S0002-9947-1976-0422607-9 doi: 10.1090/S0002-9947-1976-0422607-9 |
[24] | M. Fekete, G. Szegö, Eine benberkung uber ungerada schlichte funktionen, J. London Math. Soc., s1-8 (1933), 85–89. https://doi.org/10.1112/jlms/s1-8.2.85 doi: 10.1112/jlms/s1-8.2.85 |
[25] | W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc., 101 (1987), 89–95. https://doi.org/10.2307/2046556 doi: 10.2307/2046556 |
[26] | W. Koepf, On the Fekete-Szegö problem for close-to-convex functions Ⅱ, Arch. Math., 49 (1987), 420–433. https://doi.org/10.1007/BF01194100 doi: 10.1007/BF01194100 |
[27] | D. Bansal, Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett., 26 (2013), 103–107. https://doi.org/10.1016/j.aml.2012.04.002 doi: 10.1016/j.aml.2012.04.002 |
[28] | A. Janteng, S. A. Halim, M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math., 7(2006), 50. |
[29] | A. Janteng, S. A. Halim, M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal., 1 (2007), 619–625. |
[30] | S. K. Lee, V. Ravichandran, S. Subramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., 2013 (2013), 281. https://doi.org/10.1186/1029-242X-2013-281 doi: 10.1186/1029-242X-2013-281 |
[31] | G. Murugusundaramoorthy, T. Bulboac$\breve{a}$, Hankel determinants for new subclasses of analytic functions related to a Shell shaped region, Mathematics, 8 (2020), 1041. https://doi.org/10.3390/math8061041 doi: 10.3390/math8061041 |
[32] | S. K. Lee, K. Kanika, V. Ravichandran, Radius of starlikeness for classes of analytic functions, Bull. Malays. Math. Sci. Soc., 43 (2020), 4469–4493. https://doi.org/10.1007/s40840-020-01028-0 doi: 10.1007/s40840-020-01028-0 |
[33] | M. G. Khan, B. Ahmad, J. Sokol, Z. Muhammad, W. K. Mashwani, R. Chinram, et al., Coefficient problems in a class of functions with bounded turning associated with sine function, Eur. J. Pure Appl. Math., 14 (2021), 53–64. https://doi.org/10.29020/nybg.ejpam.v14i1.3902 doi: 10.29020/nybg.ejpam.v14i1.3902 |
[34] | H. Y. Zhang, H. Tang, L. N. Ma, Upper bound of third Hankel determinant for a class of analytic functions, Pure Appl. Math., 33 (2017), 211–220. |
[35] | H. Y. Zhang, H. Tang, A study of fourth-order Hankel determinants for starlike functions connected with the sine function, J. Funct. Spaces, 2021 (2021), 9991460. https://doi.org/10.1155/2021/9991460 doi: 10.1155/2021/9991460 |
[36] | H. Y. Zhang, R. Srivastava, H. Tang, Third-order Hankel and Toeplitz determinants for starlike functions connected with the sine function, Mathematics, 7 (2019), 404. https://doi.org/10.3390/math7050404 doi: 10.3390/math7050404 |
[37] | Z. Paweł, O. Milutin, T. Nikola, Third Hankel determinant for univalent starlike functions, RACSAM, 115 (2021), 1–6. https://doi.org/10.1007/s13398-020-00977-2 doi: 10.1007/s13398-020-00977-2 |
[38] | H. Tang, S. Khan, S. Hussain, N. Khan, Hankel and Toeplitz determinant for a subclass of multivalent $q$-starlike functions of order $\alpha$, AIMS Math., 6 (2021), 5421–5439. https://doi.org/10.3934/math.2021320 doi: 10.3934/math.2021320 |
[39] | U. Grenander, G. Szegö, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley, 1958. |
[40] | R. J. Libera, E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in $P$, Proc. Amer. Math. Soc., 87 (1983), 251–257. https://doi.org/10.1090/S0002-9939-1983-0681830-8 doi: 10.1090/S0002-9939-1983-0681830-8 |
[41] | W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the Conference on Complex Analysis, International Press, 1992. |
[42] | S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal., 2014 (2014), 984135. https://doi.org/10.1155/2014/984135 doi: 10.1155/2014/984135 |
[43] | G. Murugusundaramoorthy, Subclasses of starlike and convex functions involving Poisson distribution series, Afr. Mat., 28 (2017), 1357–1366. https://doi.org/10.1007/s13370-017-0520-x doi: 10.1007/s13370-017-0520-x |
[44] | G. Murugusundaramoorthy, K. Vijaya, S. Porwal, Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series, Hacet. J. Math. Stat., 45 (2016), 1101–1107. |
[45] | S. Porwal, M. Kumar, A unified study on starlike and convex functions associated with Poisson distribution series, Afr. Mat., 27 (2016), 1021–1027. https://doi.org/10.1007/s13370-016-0398-z doi: 10.1007/s13370-016-0398-z |
[46] | H. M. Srivastava, G. Kaur, G. Singh, Estimates of the fourth Hankel determinant for a class of analytic functions with bounded turnings involving cardioid domains, J. Nonlinear Convex Anal., 22 (2021), 511–526. |
[47] | H. M. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad, N. Khan, Upper bound of the third Hankel determinant for a subclass of $q-$ starlike functions associated with the $q-$ exponential function, Bull. Sci. Math., 167 (2021), 102942. https://doi.org/10.1016/j.bulsci.2020.102942 doi: 10.1016/j.bulsci.2020.102942 |
[48] | Q. X. Hu, H. M. Srivastava, B. Ahmad, N. Khan, M. G. Khan, W. K. Mashwani, et al., A subclass of multivalent Janowski type $q-$ starlike functions and its consequences, Symmetry, 13 (2021), 1275. https://doi.org/10.3390/sym13071275 doi: 10.3390/sym13071275 |
[49] | H. M. Srivastava, A. K. Wanas, R. Srivastava, Applications of the $q-$ Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials, Symmetry, 13 (2021), 1230. https://doi.org/10.3390/sym13071230 doi: 10.3390/sym13071230 |
[50] | H. M. Srivastava, N. Khan, M. Darus, S. Khan, Q. Z. Ahmad, S. Hussain, Fekete-Szegö type problems and their applications for a subclass of $q-$ starlike functions with respect to symmetrical points, Mathematics, 8 (2020), 842. https://doi.org/10.3390/math8050842 doi: 10.3390/math8050842 |
[51] | H. M. Srivastava, C. Kizilateş, A parametric kind of the Fubini-type polynomials, RACSAM, 113 (2019), 3253–3267. https://doi.org/10.1007/s13398-019-00687-4 doi: 10.1007/s13398-019-00687-4 |
[52] | H. M. Srivastava, Operators of basic (or $q-$) calculus and fractional $q-$ calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0 |
[53] | B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Daru, M. Tahir, A study of some families of multivalent $q-$ starlike functions involving higher-order $q-$ derivatives, Mathematics, 8 (2020), 1470. https://doi.org/10.3390/math8091470 doi: 10.3390/math8091470 |
[54] | H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex Anal., 22 (2021), 1501–1520. |