Davie defined a Levy variant and the combination of single random variables to ensure that the diffusion matrix did not degenerate. The use of the method proposed by Davie, which is a combination of the Euler method and the exact combination, was investigated for applying the degenerate Levy diffusion approach to $ \big(B_{ik}(Y)\big) $. We use certain degenerate conditions of diffusion which contribute to order convergence. We also show MATLAB codes to apply the integrated solution to an SDE and observe a convergence behavior. We also evaluate the agreement between the theoretical values and the MATLAB numerical example.
Citation: Yousef Alnafisah. A new order from the combination of exact coupling and the Euler scheme[J]. AIMS Mathematics, 2022, 7(4): 6356-6364. doi: 10.3934/math.2022353
Davie defined a Levy variant and the combination of single random variables to ensure that the diffusion matrix did not degenerate. The use of the method proposed by Davie, which is a combination of the Euler method and the exact combination, was investigated for applying the degenerate Levy diffusion approach to $ \big(B_{ik}(Y)\big) $. We use certain degenerate conditions of diffusion which contribute to order convergence. We also show MATLAB codes to apply the integrated solution to an SDE and observe a convergence behavior. We also evaluate the agreement between the theoretical values and the MATLAB numerical example.
[1] | Y. Alnafisah, The exact coupling with trivial coupling (combined method) in two-dimensional sde with non-invertiblity matrix, Dyn. Syst. Appl., 28 (2019), 111–142. |
[2] | A. M. Davie, Pathwise approximation of stochastic differential equations using coupling, unpublished work. |
[3] | P. E. Kloeden, E. Platen, Numerical solution of stochastic differential equations, Springer-Verlag, 1992. https://doi.org/10.1007/978-3-662-12616-5 |
[4] | M. Wiktorsson, Joint characteristic function and simultaneous simulation of iterated Itô integrals for multiple independent Brownian motions, Ann. Appl. Probab., 11 (2001), 470–487. https://doi.org/10.1214/aoap/1015345301 doi: 10.1214/aoap/1015345301 |
[5] | Y. Alhojilan, Explicit order $3/2$ Runge-Kutta method for numerical solutions of stochastic differential equations by using Itô-Taylor expansion, Open Math., 17 (2019), 1515–1525. https://doi.org/10.1515/math-2019-0124 doi: 10.1515/math-2019-0124 |
[6] | T. Rydén, M. Wiktrosson, On the simulation of iteraled Itô integrals, Stoch. Proc. Appl., 91 (2001), 151–168. https://doi.org/10.1016/S0304-4149(00)00053-3 doi: 10.1016/S0304-4149(00)00053-3 |
[7] | E. Rio, Upper bounds for minimal distances in the central limit theorem, Ann. Inst. H. Poincaré Probab. Stat., 45 (2009), 802–817. https://doi.org/10.1214/08-AIHP187 doi: 10.1214/08-AIHP187 |
[8] | H. M. Ahmed, Q. Zhu, The averaging principle of Hilfer fractional stochastic delay differential equations with Poisson jumps, Appl. Math. Lett., 112 (2021), 106755. https://doi.org/10.1016/j.aml.2020.106755 doi: 10.1016/j.aml.2020.106755 |
[9] | H. M. Ahmed, Conformable fractional stochastic differential equations with control function, Syst. Control Lett., 158 (2021), 105062. https://doi.org/10.1016/j.sysconle.2021.105062 doi: 10.1016/j.sysconle.2021.105062 |
[10] | H. M. Ahmed, Noninstantaneous impulsive conformable fractional stochastic delay integro-differential system with rosenblatt process and control function, Qual. Theory Dyn. Syst, 21 (2022), 15. https://doi.org/10.1007/s12346-021-00544-z doi: 10.1007/s12346-021-00544-z |
[11] | I. Gyöngy, N. Krylov, Existence of strong solutions for Itô's stochastic equations via approximations, Probab. Theory Relat. Fields, 105 (1996), 143–158. https://doi.org/10.1007/BF01203833 doi: 10.1007/BF01203833 |
[12] | Y. Alnafisah, Two-level bound for stochastic differential equations using the exact coupling with an explicit coefficients, J. Comput. Theor. Nanosci., 15 (2018), 1954–1964. https://doi.org/10.1166/jctn.2018.7387 doi: 10.1166/jctn.2018.7387 |
[13] | Y. Alnafisah, H. M. Ahmed, An experimental implementation for stochastic differential equation using the exact coupling with non-degeneracy diffusion, Dyn. Syst. Appl., 30 (2021), 1105–1115. https://doi.org/10.46719/dsa20213073 doi: 10.46719/dsa20213073 |
[14] | H. Yang, M. Song, M. Liu, Strong convergence and exponential stability of stochastic differential equations with piecewise continuous arguments for non-globally Lipschitz continuous coefficients, Appl. Math. Comput., 341 (2019), 111–127. https://doi.org/10.1016/j.amc.2018.08.037 doi: 10.1016/j.amc.2018.08.037 |
[15] | T. Hiroshi, Y. Ken-ichi, Approximation of solutions of multi-dimensional linear stochastic differential equations defined by weakly dependent random variables, AIMS Math., 2 (2017), 377–384. http://dx.doi.org/10.3934/Math.2017.3.377 doi: 10.3934/Math.2017.3.377 |
[16] | P. Wang, Y. Xu, Averaging method for neutral stochastic delay differential equations driven by fractional Brownian motion, J. Funct. Space, 2020 (2020), 5212690. https://doi.org/10.1155/2020/5212690 doi: 10.1155/2020/5212690 |
[17] | Y. Alnafisah, The implementation of approximate coupling in two-dimensional SDEs with invertible diffusion terms, Appl. Math. J. Chin. Univ., 35 (2020), 166–183. https://doi.org/10.1007/s11766-020-3663-8 doi: 10.1007/s11766-020-3663-8 |
[18] | Y. Alnafisah, Exact coupling method for Stratonovich stochastic differential equation using non-Degeneracy for the diffusion, IEEE Access, 7 (2019), 7442–7447. https://doi.org/10.1109/ACCESS.2018.2888945 doi: 10.1109/ACCESS.2018.2888945 |
[19] | P. E. Kloeden, E. Platen, I. Wright, The approximation of multiple stochastic integrals, Stoch. Anal. Appl., 10 (1992), 431–441. https://doi.org/10.1080/07362999208809281 doi: 10.1080/07362999208809281 |