Citation: Sarra Toualbia, Abderrahmane Zaraï, Salah Boulaaras. Decay estimate and non-extinction of solutions of p-Laplacian nonlocal heat equations[J]. AIMS Mathematics, 2020, 5(3): 1663-1679. doi: 10.3934/math.2020112
[1] | X. Xu, Z. B. Fang, Extinction and decay estimates of solutions for a p-Laplacian evolution equation with nonlinear gradient source and absorption, Bound. Value. Probl., 39 (2014), Available from: https://doi.org/10.1186/1687-2770-2014-39. |
[2] | Y. Bouizem, S. Boulaaras, B. Djebbar, Some existence results for an elliptic equation of Kirchhofftype with changing sign data and a logarithmic nonlinearity, Math. Methods Appl. Sci., 42 (2019), 2465-2474. doi: 10.1002/mma.5523 |
[3] | S. Boulaaras, Existence of positive solutions for a new class of Kirchhoff parabolic systems, To appear in Rocky Mountain J., Pre-press (2019), Available from: https://projecteuclid.org/euclid.rmjm/1572836541. |
[4] | Z. B. Fang, X. Xu, Extinction behavior of solutions for the p-Laplacian equations with nonlocal sources, Nonlinear Anal. Real. World Appl., 13 (2012), 1780-1789. doi: 10.1016/j.nonrwa.2011.12.008 |
[5] | S. Boulaaras, A. Zarai, A. Draifia, Galerkin method for nonlocal mixed boundary value problem for the Moore-Gibson-Thompson equation with integral condition, Math. Methods Appl. Sci., 42 (2019), 664-2679. |
[6] | X. Zhang, L. Liu, B. Wiwatanapataphee, et al., The eigenvalue for a class of singular p-Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary condition, Appl. Math. Comput., 235 (2014), 412-422. |
[7] | A. lannizzotto, S. Liu, K. Perera, et al., Existence result s for fractional p-Laplacian problems via Morse theory, Adv. Calc. Var., 9 (2016), 101-125. |
[8] | S. Boulaaras, R.Guefaifia, Existence of positive weak solutions for a class of Kirrchoff elliptic systems with multiple parameters, Math. Methods Appl. Sci., 41 (2018), 5203-5210. doi: 10.1002/mma.5071 |
[9] | S. Boulaaras, Some existence results for elliptic Kirchhoff equation with changing sign data and a logarithmic nonlinearity, J. Intell. Fuzzy Syst., 37 (2019), 8335-8344. doi: 10.3233/JIFS-190885 |
[10] | M. Wang, Y. Wang, Properties of positive solutions for non-local reaction-diffusion problems, Math. Methods Appl. Sci., 19 (1996), 1141-1156. |
[11] | B. Hu, H. Ming, Semilinear parabolic equations with prescribed energy. Rend. Circ. Mat. Palermo, 44 (1995), 479-505. |
[12] | C. Qu, X. Bai, S. Zheng, Blow-up versus extinction in a nonlocal p-Laplace equation with Neumann boundary conditions, J. Math. Anal. Appl., 412 (2014), 326-333. doi: 10.1016/j.jmaa.2013.10.040 |
[13] | L. Yan, Z. Yong, Blow-up and non-extinction for a nonlocal parabolic equation with logarithmic nonlinearity, Springer open journal, 2018. |
[14] | N. Mezouar, S. Boulaaras, Global existence and decay of solutions for a class of viscoelastic Kirchhoff equation, Bull. Malays. Math. Sci. Soc., 43 (2020), 725-755. doi: 10.1007/s40840-018-00708-2 |
[15] | S. Boulaaras, A well-posedness and exponential decay of solutions for a coupled Lamé system with viscoelastic term and logarithmic source terms, Applicable Analysis, Pre-press (2019), Available from: https://doi.org/10.1080/00036811.2019.1648793. |
[16] | S. Boulaaras, A. Zarai, A. Draifia, Galerkin method for nonlocal mixed boundary value problem for the Moore-Gibson-Thompson equation with integral condition, Math. Methods Appl. Sci., 42 (2019), 664-2679. |
[17] | N. Mezouar, S. Boulaaras, Global existence of solutions to a viscoelastic nondegenerate Kirchhoff equation, Applicable Analysis, Pre-press (2018), Available from: https://doi.org/10.1080/00036811.2018.1544621. |
[18] | A. Zarai, A. Draifia, S. Boulaaras, Blow up of solutions for a system of nonlocal singular viscoelatic equations, Applicable Analysis, 97 (2018), 2231-2245. doi: 10.1080/00036811.2017.1359564 |
[19] | B. Hu, H. M. Yin, Semilinear parabolic equations with prescribed energy, Rend. Circ. Mat. Palermo, 44 (1995), 479-505. doi: 10.1007/BF02844682 |
[20] | C. Qu, X. Bai, S. Zheng, Blow-up versus extinction in a nonlocal p-Laplace equation with Neumann boundary conditions, J. Math. Anal. Appl., 412 (2014), 326-333. doi: 10.1016/j.jmaa.2013.10.040 |
[21] | L. Yan, Z. Yong, Blow-up and non-extinction for a nonlocal parabolic equation with logarithmic nonlinearity, Springer open journal, 2018. |
[22] | K. Enqvist, J. McDonald, Q-balls and baryogenesis in the MSSM, Phys. Lett. B., 425 (1998), 309-321. doi: 10.1016/S0370-2693(98)00271-8 |
[23] | N. Ioku, The Cauchy problem for heat equations with exponential nonlinearity, J. Differential Equations, 251 (2011), 1172-1194. doi: 10.1016/j.jde.2011.02.015 |
[24] | I. Bialynicki-Birula, J. Mycielski, Wave equations with logarithmic nonlinearities, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 23 (1975), 461-466. |
[25] | I. Bialynicki-Birula, J. Mycielski, Nonlinear wave mechanics, Ann. Phys., 100 (1976), 62-93. doi: 10.1016/0003-4916(76)90057-9 |
[26] | P. Gorka, H. Prado, EG. Reyes, Nonlinear equations with infinitely many derivatives, Complex. Anal. Oper. Theory, 5 (2011), 313-323. doi: 10.1007/s11785-009-0043-z |
[27] | T. Cazenave, A. Haraux, Equations d'evolution avec non-linearite logarithmique, Ann. Fac. Sci. Toulouse. Math., 2 (1980), 21-51. doi: 10.5802/afst.543 |
[28] | P. Gorka, Logarithmic Klein-Gordon equation, Acta. Phys. Polon. B., 40 (2009), 59-66. |
[29] | K. Bartkowski, P. Gorka, One-dimensional Klein-Gordon equation with logarithmic nonlinearities, J. Phys. A., 41 (2008), 355201. |
[30] | T. Hiramatsu, M. Kawasaki, F. Takahashi, Numerical study of Q-ball formation in gravity mediation, J. Cosmol. Astropart. Phys., (2010), Available from: https://iopscience.iop.org/article/10.1088/1475-7516/2010/06/008 |
[31] | X. Han, Global existence of weak solutions for a logarithmic wave equation arising from Q-ball dynamics, Bull. Korean Math. Soc., 50 (2013), 275-283. |
[32] | M. Kbiri, S. Messaoudi, H. Khenous, A blow up for nonlinear generalized heat equation, Comp. Math. App., 68 (2014), 1723-1732. doi: 10.1016/j.camwa.2014.10.018 |
[33] | C. N. Le, X. Truong, Global solution and blow-up for a class of p-Laplacian evolution equations with logarithmic nonlinearity, Acta. Appl. Math., 195 (2017), 149-169. |
[34] | H. Chen, P. Luo, G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84-98. doi: 10.1016/j.jmaa.2014.08.030 |
[35] | J. He, C. A. Sun, Variational principle for a thin film equation, J. Math. Chem., 57 (2019), 2075-2081. doi: 10.1007/s10910-019-01063-8 |
[36] | M. M. Meerschaert, E. Nane, P. Vellaisamy, Fractional Cauchy problems on bounded domains, Ann. Probab., 37 (2009), 979-1007. doi: 10.1214/08-AOP426 |
[37] | H. A. Levine., L. E. Payne, Nonexistence of global weak solutions of classes of nonlinear wave and parabolic equations, J. Math. Anal. Appl., 55 (1976), 413-416. |
[38] | H. Buljan, A. Šiber, M. Soljaĉić, et al., Christodoulides, incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media, Phys. Rev. E., 68 (2003), 102-113. |
[39] | I. Bialynicki-Birula, J. Mycielski, Nonlinear wave mechanics, Ann. Phys. 100 (1976), 62-93. doi: 10.1016/0003-4916(76)90057-9 |
[40] | I. Peral, J. L. Vazquez, On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term, Arch. Ration. Mech. Anal., 129 (1995), 201-224. doi: 10.1007/BF00383673 |
[41] | J. Kemppainen, J. Siljander, R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations, J. Differential Equ., 263 (2017), 149-201. doi: 10.1016/j.jde.2017.02.030 |
[42] | S. Boulaaras, R. Guefaifia, T. Bouali, Existence of positive solutions for a new class of quasilinear singular elliptic systems involving Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions, Indian J. Pure Appl. Math., 49 (2018), 705-715. doi: 10.1007/s13226-018-0296-1 |
[43] | A. Córdoba, D. Córdoba, A pointwise estimate for fractionary derivatives with applications to partial differential equations, Proc. Natl. Acad. Sci., 100 (2003), 15316-15317. doi: 10.1073/pnas.2036515100 |