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1. Introduction

The study of differential equations and variational problems with nonstandard p(x)—growth
conditions is a new and interesting topic. It arises from nonlinear elasticity theory, electrorheological
fluids, etc. (see [1-9]).

In this paper, we consider the Neumann problem to the following initial parabolic equation with
logarithmic source:
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Uy — div(qul”_z Vu) = [ul”* uloglul — §, ul”> ulogluldx, xe€Q,1>0,

Qund) _, xedr> 0, (1.1
on
u(x,0) = u, xeQ >0,

where Q is a bounded domain in RY with smooth boundary dQ, p € (2, +), 9% Updx = |15| fQ updx =0
with uy # 0.
Problem (1.1) has been studied by many other authors in a more general form

u — Au = f(u)— ¢, fwdx, xeQ,1>0,

unn _ et >0, (12)
on
u(x,0) = ug, xeQ,t>0,

where Q is a bounded domain in RV (N > 1) with |Q| denoting its Lebesgue measure, N is the outer
normal vector of d€, and the function f(u) is usually taken to be a power of u.

Wang. M, Wang,.Y in [10], studied the properties of positive solutions when f(u) = |u|’. The
authors showed global existence and exponential decay in the case where |Q)| < k and they obtained a
blow-up result under the assumption that the initial data is bigger than some “Gaussian function” in
the case where |Q| > k.. When f(u) = u|ul’ and fg udx > 0, non-global existence result is discussed
by [11].

C. Qu, X. Bai, S. Zheng [12] considered the nonlocal p-Laplace equation

u, — div (qul"’_2 Vu) =ud - fb uldx, x€Q,t>0,
HxD = 0, X €0Q,t>0, (1.3)
u(x,0) = up, xeQ,t>0,

where a critical blow-up solution is determined by g and the sign of the initial energy.

More recently, L. Yan, Z. Yong [13] established a blow-up and non-extinction of solutions under
appropriate conditions for (1.1) in the case p = 2.

Apart the aforesaid attention given to polynomial nonlinear terms, logarithmic nonlinearity has also
received a great deal of interest from both physicists and mathematicians (see for example [14-18]).
This type of nonlinearity was introduced in the nonrelativistic wave equations describing spinning
particles moving in an external electromagnetic field and also in the relativistic wave equation for
spinless particles [19]. Moreover, the logarithmic nonlinearity appears in several branches of physics
such as inflationary cosmology [20], nuclear physics [21], optics [22] and geophysics [23]. With
all those specific underlying meaning in physics, the global-in-time well-posedness of solution to the
problem of evolution equation with such logarithmic type nonlinearity captures lots of attention. Birula
and Mycielski ( [24,25]) studied the following problem:

Uy — Uy +u—eulnful® =0in [a,b] X (0,T),
u(a,n) =u(b,i)=0,0,T), (1.4)
u(x,0) =ug(x), u; (x,0) = u; (x) in [a, b],
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which is a relativistic version of logarithmic quantum mechanics and can also be obtained by taking
the limit p goes to 1 for the p-adic string equation ( [26]). In [27], Cazenave and Haraux considered

Uy — Au = ulnuf* in R? (1.5)

and established the existence and uniqueness of the solution for the Cauchy problem. Gorka [28] used
some compactness arguments and obtained the global existence of weak solutions, for all

(o, u1) € Hy (Q) x L? ([a, b])

to the initial-boundary value problem (1.4) in the one-dimensional case. Bartkowski and Gorka, [29]
proved the existence of classical solutions and investigated the weak solutions for the corresponding
one-dimensional Cauchy problem for Equation (1.5). Hiramatsu et al. [30] introduced the following
equation

Uy — A+ u+ u; + [uf u=ulnyl (1.6)

to study the dynamics of Q-ball in theoretical physics and presented a numerical study. However, there
was no theoretical analysis for the problem. In [31], Han proved the global existence of weak solutions,
for all

(uo, uy) € Hy (Q) x L* (Q), (1.7)

to the initial boundary value problem (1.6) in R>.

Motivated by the above studies, in this paper we investigate a blow up, non existence and decay of
solutions of problem (1.1).

It is necessary to note that the presence of the logarithmic nonlinearity causes some difficulties in
deploying the potential well method. In order to handle this situation we need the following logarithmic
Sobolev inequality which was introduced in [10].

Lemma 1. Let p > 1,u > 0, and u € W' (R") \ {0} . Then we have

p [ ol 1og(M)dx + 2log (2) [ ()l dox

||'4(X)”L[7(R")

< Jop VUL dx,

where

e

£p: E(p_l)rl—lﬂ_g{ F(%-f-l)
n r

2. Preliminaries

2.1. Notations and some inequalities

We begin this section by introducing some notations that will be used throughout the paper
llull, = Nullery s Nelg = llellyrr = 11Vull, ,
for 1 < p < +00.We also we define X, = Wé’p(Q)\ {0}.
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Lemma 2. Let o be a positive number. Then the following inequality holds

-1
log s < e—sg, forall s €[1,+00].
Y

Lemma 3. (a) For any function u € W(;’p (Q), we have the inequality

llull, < Bqp IVull, ,

for all g € [1,0)ifn < p,and 1 < g < % if n > p. Then the best constant depends B, , only on

Q,n,pand q.
We will denote the constant B, , by B,
(b) Let2 < p<q < p*. Foranyu € W(;’p(Q) we have

a 1-a
llull, < ClIVull, llall,™

where C is a positive constant and

Remark 1. It follows from Lemma 2 that

-1
sPlog s < e—s’”Q, forallp >0 and s € [1,+).
o

Now we considering the functional J and I defined on X, as follows

1 1 1
Jw = IVl - = f jl? 1n ful dx + = Ilull?.
P P Ja V4

I(u) IVull? - f lul” In |u| dx.
Q

2.1

(2.2)

The functions / and J are continuous (they are defined as in [32] with some modifications).

Moreover, we have
1 1
Ju) = —1(u) + — llull} .
p p

Then it is obvious that
¢={ueXo: I(u)=0, |lull? #0}.

d = 1infJ(u).
UcP
M=%

5.
Fromp[33], we know d > M.
N(s:{MEXOII(s(M):O}.

(2.3)

Theorem 1. (Local existence) Let uy € X,. Then there exists a positive constant T, such that the
problem (1.1) has a weak solution u(x,t) on Qx (0,Ty). Furthermore, u(x,t) satisfies the energy

inequality

f lus(s)I3 ds + J(u(®)) < J(uo), Vte[t,Ty).
0

(2.4)
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Lemma 4. Suppose that 6 > 0, « > 0, B > 0 and h(t) is a nonnegative and absolutely continuous
function satisfying h'(t) + ah®(t) > B, then for 0 < t < oo, it holds

h(r) = min {h(O), (g)} .

b 2
Lemma S. If0 < J(uy) < E, = #eﬁ, where b = nlog (—’f;), , then there exists a positive constant
P

ay > aq such that
llell, > . (2.5)

Proof. Using the logarithmic Sobolev inequality in Lemma 1 and ¢ = p, we have

1 1 1
Jw) = Lvap -1 f b log lul dx + — [l
p P Jo p

2
n pe 1 1
> |—log|—— |- —logllull, + — |llul?, 2.6
[p3 g(nLP) logllull, + |l (2.6)
Denote @ = ||ull, , b = nlog (%) , we have
b 1 1
h(a) = [—3 ——Ina+ —2] a’. 2.7
p p p

b

Leth'(a)) =0, E; = h(a)) = [%epz

, b 1 1
h(a) = Oﬁ[;af——afloga+af?] =0

b b
= ?—loga1:0=>oz1:eﬂ2.

Furthermore,we get h(«) is increasing in (0, @) and decreasing in (ay, 00). Since J(uy) < E}, there
exists a positive constant @, > «; such that J(uy) = h(a,). Let @y = |lupll,, from (2.6) and (2.7), we

have
hap) < J(up).

Since oy, a; > a;, we get @y > @3, so (2.5) holds for r = 0.

To prove (2.5) for t+ > 0, we assume the contrary that |[u(.,?)|l, < a, for some #, > 0. By the
continuity of |lu(.,?)|l, and @; < a,, we may choose 7, such that ||u(., #)|l, > @, then it follows from
(2.6)

J(up) = h(aa) < h(llu(., 0)ll,) < J(w) (1),

which contradicts the fact that J(u) is nonincreasing in ¢ by (2.4), so (2.5) is true. O
Lemma 6. Let H(u) = E| — J(u), J(uy) < Ey, then H(u) satisfies the following estimates
0 < H(ug) < H(u).
Proof. It is obvious that H(u)is nondecreasing in ¢, by (2.4), then it follows from J(u,) < E;that
Hu) > H(up) = E1 — J(up) > 0.

O
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2.2. Potential well

Let u € Xy and consider the real function j: A — J(Au) for A > 0,
The following Lemma shows that j(1) has a unique positive critical point 1* = A*(u) see [3] .

Lemma 7. Let u € Xy.Then it holds
(1) lim j(A) = 0 and lim j(2) = —

A1-0* A—>+00
(2) there is a unique X* = 2*(u) > 0 such that j (1*) = 0
(3) j(Q) is increasing on (0, A*), decreasing on (1%, +00) and attains the maximum at A*,
(4) I(Au) > 0 for 0 < A < A", I(Au) < O for A* < A < +oo and I[(A1*'u) =0

Proof. For u € Xy, by the definition of j, It is clear that (1) holds due to ||u||, # 0, and by derivation of

J, we have
d

—j) =" f [IVul? — u|” log |u] dx — |u|” log 2] dx
dA Q
d . .,
d_/lj(/l )=0
which implies that
o, OVul? dx — [ul” log |ul] dx

fQ |lu|P dx

the statements of (2) and (3) can be shown easily. The last property, (4), is only a simple corollary of
the fact that

A" =exp

) = A [/f"‘l f (IVul? = |ul? log |u| dx — |ul log A*) dx
Q
= A j@)
= 0.
The proof of lemma is complete. m|

Next we denote

Lemma 8. (1) if I(u) > 0 then 0 < ||ul|, <R,
(2) if I(u) < O then |ul|, > R,
(3) if I(u) = O then ||ull, > R

Proof. By the definition of I(u), we have

I(u)

v

IIVMIIZ—flul”lOgluldx

( —)IIVMII" = IVull; - flul”log( )dX]—flul”logllullpdx,
Q
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Choosing 1 = p, and we apply the logarithmic Sobolev inequality (Lemma 1), we obtain

2
n p-e
I(u) > | —log —— -1 b
(u) (p2 og nZ, Ogllull,,)llull

if I(u) > 0, then
that’s mean

and if I(u) < 0, we obtain

property (3) we can argue similarly the proof of (2).
The proof of lemma is complete. O

3. Global existence and decay estimates

Lemma 9. (see [34]) Let f : R* — R* be a nonincreasing function and o is a nonnegative constant
such that

f oof]J“r(S)ds < if"(O)f(t). VYt > 0.
Then we have
(a) f(t) < f(0)e'~, for all t > 0, whenever o = 0,
(b) f(t) < f(O)( Lt ); ,forall t > 0, whenever o > 0.

1+wot

Remark 2. As in [33], we introduce the following set:

Wi = {ue X, I(u)>0}.
W = {ueXoIu) <0).

Theorem 2. if uy € Wi,0 < J(uy) < M = 1%, Then the solution u(x,t) of problem (1.1) admits a
global weak solution such that L
u(t) e Wi, for0 <t < oo,

satisfying the energy estimate

f Nus (N3 ds + J(u(®)) < J(up), Vte[t,To).
0

Moreover, the solution decays polynomially, namely

1
p p-2
, 120,,1>0,
20+4(p—-2)0)

where C; and {, are positives constants .

lull, < Cs(
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Proof. Existence of global weak solutions
It suffices to show that [|Vu||) and |||} are bounded independent of 7.

In the space Wé P(Q), we take a basis {w j}jjl and define the finite dimensional space

Vin = span{w, wa, ..Wp, } .
Let ug,, be an element of V,, such that

Uom = Z @ jW;j — ug strongly in Wé’p(Q). (3.1)
=1

as m — +oo, We find the approximate solution u,,(x, t) of the problem (1.1) in the form

(6, 1) = D (W ().

j=1

where the coefficients a,,;(1 < j < m) where (@,,;(0) = a,, ), satisfy the system of ordinary differential
equations

(1t wi)s + (V2|2 Vit ), V7).

= (lumlp Un log |um| s Wi)2 - (§ |um|p U 108 |um| s Wi) . (32)

2

We multiply both sides of (3.2) by a;m.(t),and we take the sum, we get

f @, (Ot (OWy(X)dx + f a, () Vit (O V() Vw,(x)dx
Q

Q
= f Wpn () [t (1t (£) 10 [t ()] W, (),
Q
that’s mean

f i (D dx + f Vit (O™ Vit (1) Vit (1)d x = f Jtml” ™% (Ot (D1t (1) 10 |11 ()|
Q Q Q

this implies that

d|1 1 1
e OI + 7 [— Vi + — Nlum I = _f|um|p (1) log |un(D)] dx| = 0,
Lp p P Ja

we deduce J
e (DI + Zj(um(t)) =0, (3.3)

by integrating (3.3) with respect to 7 on [0, ¢], we obtain the following equality
f
f (I ds + Tt (D) = J(un(0)), 0 <t<Tp, (3.4)
0
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where T, is the maximal existence time of solution u,,(x, ).
It follows from (3.1), (3.4), and the continuity of J that

J(u,(0)) — J(uo), oit m — +oo,

with J(up) < d and
!
f Nt (I ds + J(uu(®)) <d, 0<t < T,, (3.5
0

for m large sufficiently large m, We will show that
u,(t) € Wi, V¥t > 0, (*)

and for sufficiently large m, and assume that (*) does not hold and let ¢z, be the smallest time for which
u,(t.) € Wi Then, by the continuity of u,,(z.) € 0W, we have

J(wu,(t)) =d, and I(u,(t,) =0, (3.6)

Nevertheless, it is clear that (3.6); could not occur by (3.5) while if (3.6), holds then, by the
definition of d, we have
J(uy (1)) 2 in; J(w) =d, (**)
ueNgs

which also contradicts with (3.5). Thus, (*) is true.
On the other hand, since u,,(f) € W, and

1 1
J(Wn(0) = —1un(®) + — @Il , Y1 €[0,T),
p p

we deduces from (3.5) that

!
lum()Il < p*d, and f ltm (I3 ds < d, (3.7
0
for sufficiently large m and t € [0, T,,). Further, by the logarithmic inequality, we have

VDI = pIua() + f, il () 0g it (O dx = L e, (O
< pInO) + f ltal? () (S22 + Tog Jun(0]], )

< I (0) + 2 IV DI — 2 log (2) I, (O,
+ lln (I 1og (D)

This implies that

(%) IVitn (DI, < pI(Un(0)) + Nt (DI T0g [l (D), — ;%log (%) (O

Taking u < p, we deduce that
IVun @Il < Ca, Y1 €[0,T,).
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Decay estimates
We define

1
M@) = 5 ||u||2

M) = fQ uudx

= ((|IL(¢|P)—2 ulogul,u), - (&, lul”> ulog ul dx,u) +|Vull))
=-I(u

for u(z) € W; by using (2.3) and the energy inequality that, we know
lull? < p*J(u) < p*J(uo).

By using the logarithmic Sobolev inequality in Lemma 1 and we put 4 = p, we have

2
I(u) > 12 log (p_
p

e
nlm)-—lognunp)nung

\%

P’ ” 2
log (E) —logp J(uo)] (Juell?

(,,_2),—2
= |lo (luell

p*J(uo)

PAY
L log (2 )
by p*J(uo)

& lully
where [, , is a constant in the embedding L7(Q) — LX(Q),p>2and( =

From (3.8), we have
T T
f I(u(s))ds —f fus(s)u(s)dxds
t t Q

1 1
—ywn@+;wm%

luall;

log J(Mo)

1
< 5 Ml

Combining (3.10) and (3.11), it follows that

f llully < 2— llull5, Yt €[0,T].

Let T — +o00 and apply Lemma 9, such that f(z) = ||u(t)||§ ,O0 = pT_z,f(O) =1l,w= ;—g
we obtain the following decay estimate

» 3
wnsq( >0,
2 2(1+4,(p—-2)1)

where C; is positive constant and ; = i
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4. Blow up of weak solutions

4.1. Blow up at +o
Definition 1. (Blow-up at +c0) Let u(x,t) be a weak solution of (1.1). We call u(x, t) blow-up at +o if
the maximal existence time T = +oco and

lim {lu(., )l = +o0
t—+00

Theorem 3. Assume J(uy) < 0, then the solution u(x,t) of problem (1.1) is blow-up at +co. Moreover,

. - P .
if lluoll, < (%:O)) , the lower bound for blow-up rate can be estimated by

lull3 > luoll3 4.1
which is independent of t.

Proof. By the definition of J(u) and (2.4), M(t) satisfies

M (t) = L u;, udx
= —[IVull} + [, (lul” log |ul - § |ul” ulog |ul)dx

= —IVullb + [ ul” log |ul dx (*)
= —pJ(u) + 5 llull}
> —pJ(uw),

by using (2.4) defined in theorem 1 and the condition J(u,) < 0, we have

—PJ(u)pr0 ()5 ds, (%)

so by (*) and (¥*), we get
!
M@®=p f lluy ()15 ds, (4.2)
0

And by the definition of weak solution, we know that u € W'?(€) For any #, > 0, we claim that

0}
f llusll5 ds > 0, (4.3)
0

Otherwise, there exists fo > 0 such that folo ||u5||% ds = 0, and hence u, = O for a.e., (x,1) € QX(0,¢y) .
Then it follows from (4.2) that
—[Vul” + |ul” log Ju| = 0,

for a.e., t € (0, 1)), and then we get from (2.1)

1
J(u) = —2f|u|”dx.
P~ Ja

Combining it with J(u) < J(up) < 0, we obtainl| u|, = O for all 7 € [0, 1y], which contradicts the
definition of u. Then (4.3) follows.

AIMS Mathematics Volume 5, Issue 3, 1663-1679.
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Fix ty > Oand let 6 = fot I ull% ds, then we know that ¢ is a positive constant. Integrating (4.2) over
(to, t), we obtain

! ! !
M(t) = M(t) + pf f [| M(S)||§ dsdt > M(ty) + pf odr>0(t—1ty). “4.4)
1) 0 )
We have
H@® = -J@
= lulb,

where H(t) defined in lemma 6
Hence
limH (t) = imM(7) = . (4.5)
t—o00 t—o00
And from (4.2), we know

’ 1
M@® = —pJw+~ llul’
14
1
> —pJ(uo) + — |lull?, (4.6)
p
we have
’ )4 1 )4
M@+ bL,M2() > —; lulll) = pJ(uo) + L, M= (1)
L p P
> Y lleelly = pJ (o) + Lo, [lully
lz, P — lz,
2 % llully — pJ (uo)
> —pJ(up), 4.7)

where [, , is a constant in the embedding L? (Q2) — L*(Q), p>2.
2

By using Lemma 2.1, J(uy) < 0, and ||u0||% < (%("0));, we have
P

2
. —pJ(u0)\?
mln{”uo”%,(pl—) }
2p

2
lluoll; »

M(t)

\%

\%

which means (4.1) is true. O

4.2. Non-extinct in finite time

Definition 2. (Finite time blow-up) Let u(x,t) be a weak solution of (1.1).We call u(x,t) blow-up in
finite time if the maximal existence time T is finite and

lim |u(., DI, = +o0.
t—T~
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Lemma 10. Let ¢ be a positive, twice differentiable function satisfying the following conditions

(@) >0, and ¢ () > 0,
for some t € [0,T), and the inequality

¢ (1) - a(¢ 1)’ 20, Vi€ |iT],

where @ > 1. Then we have

1 _
1> — — |, te|t,T").
0 (¢1—a(,) —o(t- t)) [ )
with o is a positive constant, and
T :Z+—¢(t) —.
(=1 (1)
This implies
111'71:1(]5(1’) = 00,
t—T*

(4.8)

Theorem 4. Assume 0 < J(up) < M and u € Wy, then the solution u(x,t) of problem (1.1) is non-

extinct in finite time, defined by

IR ds
=t+—

T > —,
() u@lf

€ [E, T*).

Proof. we define the functional
!
o = [ o) ds.
0

Then one has
'@ = llu@l,

2 f uudx
Q

= —2||Vu(t)||§+2f|u|1’10g|u|dx
Q

and

0

2
= 2pJu) + = llu@®Il},
p
by using (2.4) in theorem 1, we have

t
—2pJ(u) > =2pJ(ug) + 2pf llus()II3 ds,
0

by lemma 8 for /(x) < 0, which implies
@I’ > R,

AIMS Mathematics
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by (4.13) and (4.14), we get

r @)

\%

t
2
—2pJ(up) + 2pf llug()I[3 ds + » lu@II}
0

1 :
2p (? lu@Il, — J(Mo)) + 2pf(; s ()13 ds

A%

2p@4—ﬂw»+2ijwxnﬁd&
0

where M = 1%'
In other hand we have

T'(=C®+ f T (s)ds > 2p (M — J(up))t = 0, t€0,1],
0

t 2
(f fus(s)u(s)dxds)
0 Ja
fIIM(S)H%deIIM.V(S)Ilids,
0 0

2p (M = J(up)) I'(1) + 2pf lles()I3 dsT(0)
0

also, we have

IA

o)

SN

IA

Now, multiplying (4.15) by I'(¢), we get

\%

T (0(t)

by using (4.17) in (4.18), we obtain

I (OT() > 2p (M — J(up)) T(0) + g (r' (t))2, forallt € [0, T].

This follows

' (OI() g(r' (t))2 > 2p (M - J(uo)) T(¢). forallt e [0,T).

By virtue of lemma 10, where a = % > 1, and ¢(r) = I'(¢), we get
there exists 7. > 0 such that
ImI'(f) = +oo0,

t—>T;
which implies
!
lim f lu(s)|5 ds = +oo,
t—>T; 0

therefore, we get
lim [Ju(o)||; = +co.
t—>T;

This ends the proof.

2MM—mmwm+wjﬁ%w@wjﬂwww&
0 0

(4.14)

(4.15)

(4.16)

4.17)

(4.18)

(4.19)

O
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5. Conclusions

In this work, by using the logarithmic Sobolev inequality and potential wells method, we study the
initial boundary value problem of a nonlocal heat equations with logarithmic nonlinearity in a bounded
domain, where we obtain the decay, blow-up and non-extinction of solutions under some conditions,
and the results extend the results of a recent paper Lijun Yan and Zuodong Yang [13]. In our next study,
we will try to apply an alternative approach using the variational principle that has been presented in
previous studies [35].
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