By means of Whipple's quadratic transformations, two classes of hypergeometric $ _3F_2 $-series are expressed in terms of the Lerch transcendent function. Several difficult series with a free variable are explicitly evaluated in closed form, including Yabu's three remarkable identities.
Citation: Marta Na Chen, Wenchang Chu. Yabu's formulae for hypergeometric $ _3F_2 $-series through Whipple's quadratic transformations[J]. AIMS Mathematics, 2024, 9(8): 21799-21815. doi: 10.3934/math.20241060
By means of Whipple's quadratic transformations, two classes of hypergeometric $ _3F_2 $-series are expressed in terms of the Lerch transcendent function. Several difficult series with a free variable are explicitly evaluated in closed form, including Yabu's three remarkable identities.
[1] | M. Asakura, T. Yabu, Explicit logarithmic formulas of special values of hypergeometric functions $_3F_2$, Commun. Contemp. Math., 22 (2020), 1950040. https://doi.org/10.1142/S0219199719500408 doi: 10.1142/S0219199719500408 |
[2] | M. Asakura, N. Otsubo, T. Terasoma, An algebro-geometric study of special values of hypergeometric functions $_3F_2$, Nagoya Math. J., 236 (2019), 47–62. https://doi.org/10.1017/nmj.2018.36 doi: 10.1017/nmj.2018.36 |
[3] | W. N. Bailey, Generalized hypergeometric series, Cambridge University Press, Cambridge, 1935. |
[4] | Y. A. Brychkov, Handbook of special functions: derivatives, integrals, series and other formulas, 1 Ed., New York: Chapman and Hall/CRC, 2008. https://doi.org/10.1201/9781584889571 |
[5] | M. N. Chen, W. Chu, Evaluation of certain exotic $_3F_2(1)$-series, Nagoya Math. J., 249 (2023), 107–118. https://doi.org/10.1017/nmj.2022.23 doi: 10.1017/nmj.2022.23 |
[6] | W. Chu, Analytical formulae for extended $_3F_2$-series of Watson–Whipple–Dixon with two extra integer parameters, Math. Comp., 81 (2012), 467–479. |
[7] | I. M. Gessel, D. Stanton, Strange evaluations of hypergeometric series, SIAM J. Math. Anal., 13 (1982), 295–308. https://doi.org/10.1137/0513021 doi: 10.1137/0513021 |
[8] | F. J. W. Whipple, Some transformations of generalized hypergeometric series, Proc. London Math. Soc., 26 (1927), 257–272. https://doi.org/10.1112/plms/s2-26.1.257 doi: 10.1112/plms/s2-26.1.257 |
[9] | T. Yabu, Explicit logarithmic formulas for hypergeometric function $_3F_2$, P.h.D. Thesiss, Hokkaido University, 2022. |