Let $ \mathcal{D} $ be a strongly double triangle subspace lattice on a nonzero complex reflexive Banach space. In this paper, we characterize the linear maps $ \delta, \tau $: $ {\rm{Alg}}\mathcal{D}\to {\rm{Alg}}\mathcal{D} $ satisfying $ \delta(A)B+A\tau(B) = 0 $ for any $ A, B\in {\rm{Alg}}\mathcal{D} $ with $ AB = 0 $. This result can be used to characterize linear maps derivable (centralized) at zero point and local centralizers on $ {\rm{Alg}}\mathcal{D} $, respectively.
Citation: Zijie Qin, Lin Chen. Characterization of ternary derivation of strongly double triangle subspace lattice algebras[J]. AIMS Mathematics, 2023, 8(12): 29368-29381. doi: 10.3934/math.20231503
Let $ \mathcal{D} $ be a strongly double triangle subspace lattice on a nonzero complex reflexive Banach space. In this paper, we characterize the linear maps $ \delta, \tau $: $ {\rm{Alg}}\mathcal{D}\to {\rm{Alg}}\mathcal{D} $ satisfying $ \delta(A)B+A\tau(B) = 0 $ for any $ A, B\in {\rm{Alg}}\mathcal{D} $ with $ AB = 0 $. This result can be used to characterize linear maps derivable (centralized) at zero point and local centralizers on $ {\rm{Alg}}\mathcal{D} $, respectively.
[1] | A. Barari, B. Fadaee, H. Ghahramani, Linear maps on standard operator algebras characterized by action on zero products, Bull. Iran. Math. Soc., 45 (2019), 1573–1583. http://doi.org/10.1007/s41980-019-00216-4 doi: 10.1007/s41980-019-00216-4 |
[2] | D. M. Barquero, C. M. González, J. Sánchez-Ortega, M. Vandeyar, Ternary mappings of triangular algebras, Aequationes Math., 95 (2021), 841–865. http://doi.org/10.1007/s00010-021-00797-8 doi: 10.1007/s00010-021-00797-8 |
[3] | D. Benkovič, M. Grašič, Generalized derivations on unital algebras determined by action on zero products, Linear Algebra Appl., 445 (2014), 347–368. http://doi.org/10.1016/j.laa.2013.12.010 doi: 10.1016/j.laa.2013.12.010 |
[4] | K. Fallahi, H. Ghahramani, Anti-derivable linear maps at zero on standard operator algebras, Acta Math. Hung., 167 (2022), 287–294. http://doi.org/10.1007/s10474-022-01243-0 doi: 10.1007/s10474-022-01243-0 |
[5] | A. Fošner, H. Ghahramani, Ternary derivations of nest algebras, Oper. Matrices, 15 (2021), 327–339. http://doi.org/10.7153/oam-2021-15-23 doi: 10.7153/oam-2021-15-23 |
[6] | H. Ghahramani, W. Jing, Lie centralizers at zero products on a class of operator algebras, Ann. Funct. Anal., 12 (2021), 34. http://doi.org/10.1007/s43034-021-00123-y doi: 10.1007/s43034-021-00123-y |
[7] | J. Hou, X. Qi, Additive maps derivable at some points on $\mathscr{J}$-subspace lattice algebras, Linear Algebra Appl., 429 (2008), 1851–1863. http://doi.org/10.1016/j.laa.2008.05.013 doi: 10.1016/j.laa.2008.05.013 |
[8] | M. Jiao, J. Hou, Additive maps derivable or Jordan derivable at zero point on nest algebras, Linear Algebra Appl., 432 (2010), 2984–2994. http://doi.org/10.1016/j.laa.2010.01.009 doi: 10.1016/j.laa.2010.01.009 |
[9] | C. Jimenéz-Gestal, J. M. Pérez-Izquierdo, Ternary derivations of generalized Caylel-Dickson algebras, Commun. Algebra, 31 (2003), 5071–5094. http://doi.org/10.1081/AGB-120023148 doi: 10.1081/AGB-120023148 |
[10] | C. Jimenéz-Gestal, J. M. Pérez-Izquierdo, Ternary derivations of finite-dimensional real division algebras, Linear Algebra Appl., 428 (2008), 2192–2219. http://doi.org/10.1016/j.laa.2007.11.019 doi: 10.1016/j.laa.2007.11.019 |
[11] | M. Lambrou, W. E. Longstaff, Finite rank operators leaving double triangles invariant, J. London Math. Soc., 2 (1992), 153–168. http://doi.org/10.1112/jlms/s2-45.1.153 doi: 10.1112/jlms/s2-45.1.153 |
[12] | L. Liu, Characterization of centralizers on nest subalgebras of von Neumann algebras by local action, Linear Multilinear Algebra, 64 (2016), 383–392. http://doi.org/10.1080/03081087.2015.1042830 doi: 10.1080/03081087.2015.1042830 |
[13] | W. E. Longstaff, Strongly reflexive lattices, J. London Math. Soc., 2 (1975), 491–498. http://doi.org/10.1112/jlms/s2-11.4.491 doi: 10.1112/jlms/s2-11.4.491 |
[14] | L. Molnár, A new look at local maps on algebraic structures of matrices and operators, New York J. Math., 28 (2022), 557–579. |
[15] | Y. Pang, W. Yang, Derivations and local derivations on strongly double triangle subspace lattice algebras, Linear Multilinear Algebra, 58 (2010), 855–862. http://doi.org/10.1080/03081080903086427 doi: 10.1080/03081080903086427 |
[16] | X. Qi, J. Hou, Characterizing centralizers and generalized derivations on triangular algebras by acting on zero product, Acta Math. Sin., 29 (2013), 1245–1256. http://doi.org/10.1007/s10114-013-2068-5 doi: 10.1007/s10114-013-2068-5 |
[17] | J. M. Pérez-Izquierdo, Unital algebras, ternary derivations, and local triality, Contemp. Math., 483 (2009), 205–220. http://doi.org/10.1090/conm/483/09446 doi: 10.1090/conm/483/09446 |
[18] | A. I. Shestakov, Ternary derivations of separable associative and Jordan algebras, Sib. Math. J., 53 (2012), 943–956. http://doi.org/10.1134/S0037446612050199 doi: 10.1134/S0037446612050199 |
[19] | A. I. Shestakov, Ternary derivations of Jordan superalgebras, Algebra Logic, 53 (2014), 323–348. http://doi.org/10.1007/s10469-014-9293-6 doi: 10.1007/s10469-014-9293-6 |
[20] | Q. Wei, P. Li, Centralizers of $\mathscr{J}$-subspace lattice algebras, Linear Algebra Appl., 426 (2007), 228–237. http://doi.org/10.1016/j.laa.2007.04.020 doi: 10.1016/j.laa.2007.04.020 |
[21] | J. Zhu, C. Xiong, Generalized derivable mappings at zero point on some reflexive operator algebras, Linear Algebra Appl., 397 (2005), 367–379. http://doi.org/10.1016/j.laa.2004.11.012 doi: 10.1016/j.laa.2004.11.012 |