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1. Introduction and preliminaries

Let A be an algebra and (γ, δ, τ) be a triple of linear maps of A. Recall that (γ, δ, τ) is a ternary
derivation ofA if

γ(ab) = δ(a)b + aτ(b)

for all a, b ∈ A. Clearly, if γ = δ = τ, then γ is a derivation of A; if γ = δ and τ is a derivation
of A, then γ is a generalized derivation of A; if γ = δ and τ = 0, then γ is a left centralizer of A.
In 2003, Jiménez-Gestal and Pérez-Izquierdo [9] introduced the terminology of ternary derivation and
described ternary derivations of the generalized Cayley-Dickson algebras over a field of characteristic
not 2 and 3. In [18, 19], Shestakov studied ternary derivations of separable associative and Jordan
algebras and Jordan superalgebras, respectively. Recently, ternary derivations of triangular algebras
have been precisely described in [2]. We refer the reader to [10, 17] for background information about
the definition of ternary derivations.

Let (γ, δ, τ) be a ternary derivation ofA. It is easy to verify that δ and τ satisfy

ab = 0⇒ δ(a)b + aτ(b) = 0 (1.1)

for all a, b ∈ A. However, the converse of this observation is not necessarily true (see [5, Example 1.1]).
It is natural to ask how to characterize linear maps δ and τ satisfying (1.1). Benkovič and Grašič [3]
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considered linear maps δ and τ satisfying (1.1) on algebras generated by idempotents. In [1], the
authors showed that ifA is a unital standard operator algebra on a Banach space X, and δ, τ: A → B(X)
are linear maps satisfying (1.1), then there exist R, S ,T ∈ B(X) such that

δ(A) = AS − RA and τ(A) = AT − S A

for all A ∈ A, where B(X) denotes the algebra of all bounded linear operators on X. Recently, Fošner
and Ghahramani [5] proved that if linear maps δ, τ: AlgN → AlgN satisfy (1.1), then exists a unique
linear map γ: AlgN → AlgN defined by

γ(A) = RA + AT

for some R,T ∈ AlgN such that (γ, δ, τ) is a ternary derivation of AlgN , where AlgN is a nest algebra
on a real or complex Banach space with N ∈ N complemented whenever N− = N.

In this paper, we will consider linear maps δ and τ satisfying (1.1) on another important kind of
reflexive algebra, that is, strongly double triangle subspace lattice algebra. Note that both standard
operator algebras on Banach spaces and nest algebras are rich in rank-one operators. This makes it
possible to identify certain behavior of the linear maps on some special set of rank-one operators.
Actually, the proofs in [1,5] depend heavily on the existence of rank-one operators. However, strongly
double triangle subspace lattice algebras contain no rank-one operators [13]. So, the problem is more
complicated than the previous one, and we will study this problem by means of operators of even rank.

This paper is organized as follows. In Section 2, all the results of the paper are presented. Section 3
is devoted to the proof of our central result (see Theorem 2.1).

Let us introduce some notations used in this paper. Throughout, X will be a nonzero reflexive
complex Banach space with topological dual X∗. For A ∈ B(X), by ker(A), ran(A) and rank(A), we
denote the kernel, the range and the rank of A, respectively. For nonzero vectors e∗ ∈ X∗ and f ∈ X,
we define the rank-one operator e∗ ⊗ f by x 7→ e∗(x) f for x ∈ X. For any nonempty subset L ⊆ X, by
L⊥ we denote the annihilator of L, that is,

L⊥ = { f ∗ ∈ X∗ : f ∗(x) = 0 for all x ∈ L}.

Dually, for any nonempty subset M ⊆ X∗, ⊥M denotes its pre-annihilator, that is,

⊥M = {x ∈ X : f ∗(x) = 0 for all f ∗ ∈ M}.

A family L of closed subspaces of X is called a subspace lattice on X if it contains (0) and X, and
is closed under the operations closed linear span ∨ and intersection ∩ in the sense that ∨γ∈ΓLγ ∈ L
and ∩γ∈ΓLγ ∈ L for every family {Lγ: γ ∈ Γ} of elements in L. Given a subspace lattice L on X,
the associated subspace lattice algebra AlgL is the set of operators on X leaving every subspace in L
invariant, that is,

AlgL = {A ∈ B(X) : Ax ∈ L for every x ∈ L and for every L ∈ L}.

A double triangle subspace lattice on X is a set

D = {(0),K, L,M, X}
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of subspaces of X satisfying
K ∩ L = L ∩ M = M ∩ K = (0)

and
K ∨ L = L ∨ M = M ∨ K = X.

We say thatD is a strongly double triangle subspace lattice if one of the three sums K + L, L + M and
M + K is closed. Observe that

D⊥ = {(0),K⊥, L⊥,M⊥, X∗}

is a double triangle subspace lattice on the reflexive Banach space X∗. Put

K0 = K ∩ (L + M), L0 = L ∩ (M + K), M0 = M ∩ (K + L)

and
Kp = K⊥ ∩ (L⊥ + M⊥), Lp = L⊥ ∩ (M⊥ + K⊥), Mp = M⊥ ∩ (K⊥ + L⊥).

It follows from [11, Lemma 2.2] that

dimK0 = dimL0 = dimM0

and
dimKp = dimLp = dimMp.

We close this section by summarizing some lemmas on strongly double triangle subspace lattice
algebras, which will be used to prove our main results.

Lemma 1.1. ([11]) Let
D = {(0),K, L,M, X}

be a double triangle subspace lattice on a nonzero complex reflexive Banach space X. Then the
following statements hold.

(1) K0 ⊆ K ⊆ ⊥Kp, L0 ⊆ L ⊆ ⊥Lp and M0 ⊆ M ⊆ ⊥Mp.

(2) K0 ∩ L0 = L0 ∩ M0 = M0 ∩ K0 = (0).
(3) Kp ∩ Lp = Lp ∩ Mp = Mp ∩ Kp = (0).
(4) K0 + L0 = L0 + M0 = M0 + K0 = K0 + L0 + M0.

(5) Kp + Lp = Lp + Mp = Mp + Kp = Kp + Lp + Mp.

Lemma 1.2. ([11]) Let
D = {(0),K, L,M, X}

be a double triangle subspace lattice on a nonzero complex reflexive Banach space X. Then the
following statements hold.

(1) Every finite-rank operator of AlgD has even rank (possibly zero).
(2) If e, f ∈ X and e∗, f ∗ ∈ X∗ are nonzero vectors satisfying e ∈ K0, f ∈ L0, e + f ∈ M0 and e∗ ∈ Kp,

f ∗ ∈ Lp, e∗ + f ∗ ∈ Mp, then R = e∗ ⊗ f − f ∗ ⊗ e is a rank-two operator in AlgD. Moreover, every
rank-two operator in AlgD has this form for such vectors e, f ∈ X and e∗, f ∗ ∈ X∗.

(3) AlgD contains a nonzero finite-rank operator if and only if dimK0 , 0 and dimKp , 0.
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Lemma 1.3. ([11]) Let
D = {(0),K, L,M, X}

be a strongly double triangle subspace lattice on a nonzero complex reflexive Banach space X. If K+L
is closed, then the following statements hold.

(1) K0 is dense in K, L0 is dense in L.
(2) K0 + L0 + M0 is dense in X.
(3) Kp + Lp + Mp is dense in X∗.

Lemma 1.4. ([11]) Let
D = {(0),K, L,M, X}

be a strongly double triangle subspace lattice on a complex reflexive Banach space X. If AlgD contains
a rank-two operator, then the following statements hold.

(1) span{ran(R) : R ∈ AlgD, rank(R) = 2} = K0 + L0 + M0.

(2) ∩{ker(R) : R ∈ AlgD, rank(R) = 2} = ⊥(Kp + Lp + Mp).

The above two lemmas show that strongly double triangle subspace lattice algebras are rich in rank-
two operators. We refer readers [11, 13, 15] to more properties of strongly double triangle subspace
lattice algebras.

2. The main results

In this section, we present the results of this paper. The central result is as follows.

Theorem 2.1. Let
D = {(0),K, L,M, X}

be a strongly double triangle subspace lattice on a nonzero complex reflexive Banach space X. Suppose
δ, τ: AlgD → AlgD are linear maps satisfying the relation (1.1). Then exists a linear map γ: AlgD →
AlgD such that (γ, δ, τ) is a ternary derivation. Moreover, there exist densely defined, closed linear
operators R,T, S :M→ X such that

τ(A)x = (T A + AS )x,

δ(A)x = (RA − AT )x

and
γ(A)x = (RA + AS )x,

for all A ∈ AlgD and all x ∈ M. HereM is invariant under every element of AlgD.

The proof of Theorem 2.1 will be given in Section 3. We now give some applications. In the
following corollaries, D will always denote a strongly double triangle subspace lattice on a nonzero
complex reflexive Banach space.

First of all, as an immediate consequence, we get the following corollary.

Corollary 2.2. Let (γ, δ, τ) be a ternary derivation of AlgD. Then (γ, δ, τ) is of the form in Theorem 2.1.
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Recall that a linear map δ: AlgD → AlgD is derivable at zero point if

δ(A)B + Aδ(B) = 0

for any A, B ∈ AlgD with AB = 0. In [7,8,15,21], the authors studied the linear maps derivable at zero
point for some algebras. Recently, Fallahi and Ghahramani [4] considered another type of derivable
maps at zero point, and they showed that ifA is a standard operator algebra on a Banach space X, and
δ is a linear map fromA into itself, then δ satisfies

bδ(a) + δ(b)a = 0

for any a, b ∈ A with ab = 0 if and only if δ = 0. Here, applying Theorem 2.1, we can get the main
result in [15].

Corollary 2.3. ([15, Theorem 2.3]) Suppose δ: AlgD → AlgD is a linear map derivable at zero point.
Then there exist a complex scalar λ and a derivation d such that

δ(A) = d(A) + λA

for all A ∈ AlgD.

Proof. By Theorem 2.1, there exists a linear map γ: AlgD → AlgD such that (γ, δ, δ) is a ternary
derivation. That is,

γ(AB) = δ(A)B + Aδ(B)

for every A, B ∈ AlgD. Let P be any idempotent in AlgD. Then,

P(I − P) = (I − P)P = 0.

Since δ is derivable at zero point, we can get

0 = δ(P)(I − P) + Pδ(I − P) = δ(I − P)P + (I − P)δ(P),

which further implies that δ(I)P = Pδ(I) for every idempotent P ∈ AlgD. Then by the proof of [15,
Theorem 2.3], there exists a constant λ such that δ(I) = λI. Define a linear map d: AlgD → AlgD by

d(A) = γ(A) − 2λA

for every A ∈ AlgD. By the definition of γ, we have

γ(A) − 2λA = δ(A) − λA.

Then

d(AB) = γ(AB) − 2λAB

= δ(A)B + Aδ(B) − 2λAB

= (δ(A) − λA)B + A(δ(B) − λB)
= (γ(A) − 2λA)B + A(γ(B) − 2λB)
= d(A)B + Ad(B).

The proof is complete. □
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Recall that a linear map ϕ: AlgD → AlgD is a left (right) centralizer if

ϕ(AB) = ϕ(A)B(ϕ(AB) = Aϕ(B))

for all A, B ∈ AlgD and ϕ is a centralizer if it is both left and right centralizer. There have been a
number of papers on the study of conditions under which centralizers on algebras can be determined
by the action on some sets of operators (see [6, 12, 16] and the references therein). Among others,
in [6], the authors studied the structure of linear maps ϕ on certain operator algebrasA satisfying

ϕ(ab − ba) = ϕ(a)b − bϕ(a)

or
ϕ(ab − ba) = aϕ(b) − ϕ(b)a

for any a, b ∈ A with ab = 0. A linear map ϕ: AlgD → AlgD is said to be left (right) centralized at
zero point if

ϕ(A)B = 0(Aϕ(B) = 0)

for any A, B ∈ AlgDwith AB = 0 and ϕ is said to be centralized at zero point if it is both left centralized
and right centralized at zero point. The following corollary characterizes linear maps on AlgD which
are centralized at zero point.

Corollary 2.4. Suppose δ, τ, ϕ: AlgD → AlgD are linear maps. The following statements hold.

(1) If δ is left centralized at zero point, then there exists T ∈ AlgD such that δ(A) = T A for all
A ∈ AlgD.

(2) If τ is right centralized at zero point, then there exists T ∈ AlgD such that τ(A) = AT for all
A ∈ AlgD.

(3) Suppose ϕ is centralized at zero point, then there exists λ ∈ C such that ϕ(A) = λA for all
A ∈ AlgD.

Proof. (1) By Theorem 2.1, there exists a linear map γ: AlgD → AlgD such that

γ(AB) = δ(A)B

for every A, B ∈ AlgD. By the definition of γ, we have γ(A) = δ(A) for every A ∈ AlgD. So,
δ(BA) = δ(B)A for all A, B ∈ AlgD. Taking B = I in the above equation, we arrive at δ(A) = T A for
all A ∈ AlgD, where T = δ(I).

(2) The proof is similar to the proof of (1).
(3) By (1) and (2), there exists T ∈ AlgD such that

δ(A) = T A = AT

for all A ∈ AlgD. By the proof of Corollary 2.3, there exists λ ∈ C such that δ(A) = λA for all
A ∈ AlgD. □

The other direction of the study of centralizers by the local actions is the well-known local maps
problem. See, for example [12, 20]. Recently, in [14], Molnár introduced a new type of local maps,
and calculated the operational reflexive closures of some important classes of transformations. We say
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that a linear map ϕ: AlgD → AlgD is a local left (right) centralizer of AlgD, if for every A ∈ AlgD,
there exists a left (right) centralizer ϕA, depending on A, such that ϕ(A) = ϕA(A). Similarly, we can
define a local centralizer. Now, we study the local centralizers on strongly double triangle subspace
lattice algebras.

Corollary 2.5. The following statements hold.

(1) Every local left centralizer on AlgD is a left centralizer.
(2) Every local right centralizer on AlgD is a right centralizer.
(3) Every local centralizer on AlgD is a centralizer.

Proof. We only show (1). By a similar argument, we can get (2) and (3). Take A, B ∈ AlgD such that
AB = 0. Now we show that ϕ(A)B = 0. For A ∈ AlgD, there exists a left centralizer ϕA, depending on
A, such that ϕ(A) = ϕA(A). From this, we get

ϕ(A)B = ϕA(A)B = ϕA(I)AB = 0.

Applying Corollary 2.4, we see that ϕ is a left centralizer. □

3. Proof of Theorem 2.1

Let
D = {(0),K, L,M, X}

be a strongly double triangle subspace lattice on a nonzero complex reflexive Banach space X. Note
that

dimK0 = dimL0 = dimM0

and
dimKp = dimLp = dimMp.

It is easy to prove that dimK0 , 0 and dimKp , 0. It follows from Lemma 1.2 (3) that AlgD contains
nonzero finite-rank operators. In this section, we will complete the proof of Theorem 2.1.

First, we need the following lemma, which comes from [1].

Lemma 3.1. Let A be an algebra with unit I and A ∈ A. Suppose δ, τ: A → A are linear maps
satisfying the relation (1.1). Then the following statements hold.

(1) δ(AP) + APτ(I) = δ(A)P + Aτ(P) for every idempotent P ∈ A.

(2) δ(P)A + Pτ(A) = δ(I)PA + τ(PA) for every idempotent P ∈ A.

Now we are at a position to give the proof of our main result.

Proof of Theorem 2.1. Without loss of generality, we may assume that K + L is closed. We will prove
the theorem by checking several claims.

Claim 1. Let A ∈ AlgD. Then the following statements hold.

(1) δ(AR) + ARτ(I) = δ(A)R + Aτ(R) for every rank-two operator R ∈ AlgD.
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(2) δ(R)A + Rτ(A) = δ(I)RA + τ(RA) for every rank-two operator R ∈ AlgD.

We only show (1). With the same argument, one can get (2). By Lemma 1.2, we can write

R = e∗ ⊗ f − f ∗ ⊗ e

for some nonzero vectors e ∈ L0, f ∈ M0, e + f ∈ K0 and e∗ ∈ Lp, f ∗ ∈ Mp, e∗ + f ∗ ∈ Kp. Now we
consider two cases:
Case 1. e∗( f ) , 0. Since L0 ⊆

⊥Lp, M0 ⊆
⊥Mp, K0 ⊆

⊥Kp by Lemma 1.1, we have

e∗(e) = f ∗( f ) = 0

and
e∗( f ) + f ∗(e) = (e∗ + f ∗)(e + f ) = 0.

It follows that
R2 = e∗( f )e∗ ⊗ f + f ∗(e) f ∗ ⊗ e = e∗( f )R.

So, (
1

e∗( f )
R
)2

=
1

e∗( f )
R.

Hence, by the linearity of δ and Lemma 3.1, we obtain (1).
Case 2. e∗( f ) = 0. Note that K + L = X. Then,

M0 = M ∩ (K + L) = M.

Take f1 ∈ M0 such that e∗( f1) , 0. Actually, if e∗( f1) = 0 for all f1 ∈ M0, we have

e∗ ∈ M⊥0 = M⊥.

Applying the fact that
e∗ ∈ Lp = L⊥ ∩ (M⊥ + K⊥),

since
L⊥ ∩ M⊥ = (0),

it follows that
e∗ ∈ L⊥ ∩ M⊥ = (0),

a contradiction. By Lemma 1.1, there exist unique elements e1 ∈ L0 and g1 ∈ K0 such that e1 + f1 = g1.
Denote

R1 = e∗ ⊗ f1 − f ∗ ⊗ e1

and
R2 = e∗ ⊗ ( f1 + f ) − f ∗ ⊗ (e1 + e).

Then R1,R2 ∈ AlgD are of rank two by Lemma 1.2. Since

e∗( f + f1) = e∗( f1) , 0,
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it follows from Case 1 that

δ(AR) + ARτ(I) = δ(A(R2 − R1)) + A(R2 − R1)τ(I)
= δ(AR2) + AR2τ(I) − δ(AR1) − AR1τ(I)
= δ(A)R2 + Aτ(R2) − δ(A)R1 − Aτ(R1)
= δ(A)R + Aτ(R).

Claim 2. Let A, B ∈ AlgD. Then,

δ(AB) = Aδ(B) + δ(A)B − Aδ(I)B.

Let R ∈ AlgD be any rank-two operator. By Lemma 1.2, we can write

R = e∗ ⊗ f − f ∗ ⊗ e

for some nonzero vectors e ∈ L0, f ∈ M0, e + f ∈ K0 and e∗ ∈ Lp, f ∗ ∈ Mp, e∗ + f ∗ ∈ Kp. Since
Ae ∈ L0, A f ∈ M0 and

Ae + A f = A(e + f ) ∈ K0,

we have
AR = e∗ ⊗ A f − f ∗ ⊗ Ae ∈ AlgD

by Lemma 1.2. Take A = I in Claim 1 (1), then,

δ(R) + Rτ(I) = δ(I)R + τ(R) (3.1)

for every rank-two operator R ∈ AlgD. Since AR ∈ AlgD has rank at most two, and AlgD contains no
rank-one operators, we have either AR = 0 or rank(AR) = 2. By Eq (3.1), we can obtain that

δ(AR) + ARτ(I) = δ(I)AR + τ(AR).

This together with Claim 1 (1) leads to

δ(I)AR + τ(AR) = δ(A)R + Aτ(R) (3.2)

for all A ∈ AlgD. Replace A by AB in Eq (3.2), we have

δ(I)ABR + τ(ABR) = δ(AB)R + ABτ(R) (3.3)

for all A, B ∈ AlgD. On the other hand, it follows from Eq (3.2) that

δ(I)ABR + τ(ABR) = δ(A)BR + Aτ(BR)
= δ(A)BR + A(δ(B)R + Bτ(R) − δ(I)BR)
= δ(A)BR + Aδ(B)R + ABτ(R) − Aδ(I)BR

for all A, B ∈ AlgD. This together with Eq (3.3) implies that

δ(AB)R = Aδ(B)R + δ(A)BR − Aδ(I)BR
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for all A, B ∈ AlgD and all rank-two operators R ∈ AlgD. By Lemma 1.4 (1),

δ(AB)x = Aδ(B)x + δ(A)Bx − Aδ(I)Bx

for all A, B ∈ AlgD and all x ∈ K0 + L0 + M0. Since K0 + L0 + M0 is dense in X by Lemma 1.3 (2), we
have

δ(AB) = Aδ(B) + δ(A)B − Aδ(I)B

for all A, B ∈ AlgD.

Claim 3. Let A, B ∈ AlgD. Then,

τ(AB) = Aτ(B) + τ(A)B − Aτ(I)B.

With the similar argument as in the proof of Claim 2, one can get that

Rτ(AB) = RAτ(B) + Rτ(A)B − RAτ(I)B

for all A, B ∈ AlgD and all rank-two operators R ∈ AlgD. It follows that

(τ(AB) − Aτ(B) − τ(A)B + Aτ(I)B)x ∈ ker(R)

for all x ∈ X. Note that

∩{ker(R) : R ∈ AlgD, rank(R) = 2} = ⊥(Kp + Lp + Mp)

by Lemma 1.4. Since R is arbitrary, by Lemma 1.3, we have

(τ(AB) − Aτ(B) − τ(A)B + Aτ(I)B)x ∈ ⊥X∗ = (0)

for all x ∈ X. This implies that

τ(AB) = Aτ(B) + τ(A)B − Aτ(I)B

for all A, B ∈ AlgD.

Claim 4. Let A ∈ AlgD. Then,
δ(A) − δ(I)A = τ(A) − Aτ(I).

By Eq (3.1) and Claim 3, we have

δ(AR) = δ(I)AR + τ(AR) − ARτ(I)
= δ(I)AR + Aτ(R) + τ(A)R − Aτ(I)R − ARτ(I)
= δ(I)AR + A(τ(R) − Rτ(I)) + τ(A)R − Aτ(I)R
= δ(I)AR + A(δ(R) − δ(I)R) + τ(A)R − Aτ(I)R
= δ(I)AR + Aδ(R) − Aδ(I)R + τ(A)R − Aτ(I)R.

This together with Claim 2 gives us

(δ(A) − δ(I)A)R = (τ(A) − Aτ(I))R

for all rank-two operators R ∈ AlgD. By a similar argument as in Claim 2, we get

δ(A) − δ(I)A = τ(A) − Aτ(I).
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Claim 5. There exists a linear map γ on AlgD such that (γ, δ, τ) is a ternary derivation.

Define a map γ: AlgD → AlgD by

γ(A) = δ(A) + Aτ(I) = τ(A) + δ(I)A

for every A ∈ AlgD. Clearly, γ is linear. Let A, B ∈ AlgD. It follows from Claims 3 and 4 that

γ(AB) = τ(AB) + δ(I)AB

= Aτ(B) + τ(A)B − Aτ(I)B + δ(I)AB

= Aτ(B) + (τ(A) − Aτ(I))B + δ(I)AB

= Aτ(B) + (δ(A) − δ(I)A)B + δ(I)AB

= δ(A)B + Aτ(B).

Claim 6. There exist densely defined, closed linear operators R,T, S :M→ X such that

τ(A)x = (T A + AS )x,

δ(A)x = (RA − AT )x

and
γ(A)x = (RA + AS )x

for all A ∈ AlgD and all x ∈ M. HereM is invariant under every element of AlgD.

Define ∆: AlgD → AlgD by
∆(A) = τ(A) − Aτ(I)

for every A ∈ AlgD. Obviously, ∆ is a linear map. Let A, B ∈ AlgD. Then by Claim 3, we have

∆(AB) = τ(AB) − ABτ(I)
= Aτ(B) + τ(A)B − Aτ(I)B − ABτ(I)
= A(τ(B) − Bτ(I)) + (τ(A) − Aτ(I))B
= A∆(B) + ∆(A)B.

So, ∆ is a derivation. By [15, Theorem 2.1], we know that every derivation of AlgD is quasi-spatial,
that is, there exists a densely defined, closed linear operator T : M ⊆ X → X withM invariant under
every element of AlgD such that

∆(A)x = (T A − AT )x (3.4)

for all A ∈ AlgD and all x ∈ M. Set
R = T + δ(I)|M

and
S = τ(I)|M − T.

It follows from Eq (3.4) that

τ(A)x =(∆(A) + Aτ(I))x
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=(T A − AT + Aτ(I))x

=(T A + A(τ(I) − T ))x

=(T A + AS )x

for all A ∈ AlgD and all x ∈ M. Similarly, by Claim 4 and Eq (3.4), we can obtain that

δ(A)x = (RA − AT )x

for all A ∈ AlgD and all x ∈ M. Hence, by the definition of γ, we can get

γ(A)x = (τ(A) + δ(I)A)x

= (T A + AS + δ(I)A)x

= ((T + δ(I))A + AS )x

= (RA + AS )x

for all A ∈ AlgD and all x ∈ M. □

4. Conclusions

In this paper, we described the structure of linear maps δ and τ satisfying (1.1) on strongly double
triangle subspace lattice algebras AlgD. We proved that if linear maps δ, τ: AlgD → AlgD
satisfy (1.1), then exists a linear map γ: AlgD → AlgD such that (γ, δ, τ) is a ternary derivation of
AlgD. Using the result obtained, we characterized linear maps on AlgD derivable (centralized) at
zero point. Moreover, we showed that every local centralizer of AlgD is a centralizer.
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