Citation: Ghulam Mustafa, Syeda Tehmina Ejaz, Dumitru Baleanu, Yu-Ming Chu. The inequalities for the analysis of a class of ternary refinement schemes[J]. AIMS Mathematics, 2020, 5(6): 7582-7604. doi: 10.3934/math.2020485
[1] | G. M. Chaikin, An algorithm for high speed curve generation, Comput. Graphics Image Process., 3 (1974), 346-349. |
[2] | G. Deslauriers, S. Dubuc, Symmetric iterative interpolation processes, Constr. Approx., Springer, Boston, MA, 5 (1989), 49-68. |
[3] | G. de Rham, Sur une courbe plane, J. Math. Pures Appl., 35 (1956), 25-42. |
[4] | N. Dyn, J. A. Gregory, D. Levin, 4-point interpolatory subdivision scheme for curve design, Comput. Aided Geom. Des., 4 (1987), 257-268. |
[5] | N. Dyn, J. A. Gregory, D. Levin, Analysis of uniform binary subdivision scheme for curve design, Constr. Approx., 7 (1991), 127-147. |
[6] | N. Dyn, Analysis of convergence and smoothness by formalism of Laurent polynomials, A. Iske, E. Quak, M. S. Floater, Tutorials on Multiresolution in Geometric Modelling, Eds., Springer, (2002), 51-68 (chapter 3). |
[7] | G. Farin, Curves and surfaces for CAGD: A practical guide, Academic Press, 2002. |
[8] | M. F. Hassan, N. A. Dodgson, Ternary and three-point univariate subdivision schemes, Tec. Rep. No. 520, University of Cambridge Computer Laboratory, 2001. Available from: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-520.pdf. |
[9] | M. F. Hassan, I. P. Ivrissimitzis, N. A. Dodgson, et al. An interpolating 4-point C2 ternary stationary subdivision scheme, Comput. Aided Geom. Des., 19 (2002), 1-18. |
[10] | F. Khan, G. Mustafa, Ternary six-point interpolating subdivision scheme, Lobachevskii J. Math., 29 (2008), 153-163. |
[11] | C. A. Micchelli, H. Prautzch, Uniform refinement of curves, Linear Algebra Appl., 114 (1989), 841-870. |
[12] | G. Mustafa, M. Zahid, Numerical algorithm for analysis of n-ary subdivision schemes, Appl. Appl. Math., 8 (2013), 614-630. |
[13] | G. Mustafa, R. Hameed, D. Baleanu, et al. A class of refinement schemes with two shape control parameters, IEEE ACCESS, 8 (2020), 98316-98329. |
[14] | R. Qu, Recursive subdivision algorithms for curve and surface design, Ph.D Thesis, Department of Mathematics and Statistics, Brunei University, Uxbridge, Middlesex, Britain, 1990. |
[15] | M. Sabin, Analysis and design of univariate subdivision schemes, Geometry and Computing, Springer, ISBN 978-3-642-13647-4, 6 (2010). |
[16] | S. S. Siddiqi, K. Rehan, Modified form of binary and ternary 3-point subdivission schemes, Appl. Math. Comput., 216 (2010), 970-982. |
[17] | H. Zheng, M. Hu, G. Peng, Ternary even symmetric 2n-point subdivision, Int. Conf. Comput. Intell. Software Eng., IEEE, 978 (2009), 4244-4507. |