In the literature of mathematical inequalities, one can have different variants of the well-known Hadamard inequality for CFD (Caputo fractional derivatives). These variants include generalizations, extensions and refinements which have been proved by defining new classes of functions. This paper aims to formulate inequalities of the Hadamard type which will simultaneously produce refinements and generalizations of many fractional versions of such inequalities that already exist in the literature. The error bounds of some existing inequalities are also proved by applying well-known identities. The results given in this paper are improvements of several well-known Hadamard type Caputo fractional derivative inequalities.
Citation: Tao Yan, Ghulam Farid, Sidra Bibi, Kamsing Nonlaopon. On Caputo fractional derivative inequalities by using strongly $ (\alpha, h-m) $-convexity[J]. AIMS Mathematics, 2022, 7(6): 10165-10179. doi: 10.3934/math.2022565
In the literature of mathematical inequalities, one can have different variants of the well-known Hadamard inequality for CFD (Caputo fractional derivatives). These variants include generalizations, extensions and refinements which have been proved by defining new classes of functions. This paper aims to formulate inequalities of the Hadamard type which will simultaneously produce refinements and generalizations of many fractional versions of such inequalities that already exist in the literature. The error bounds of some existing inequalities are also proved by applying well-known identities. The results given in this paper are improvements of several well-known Hadamard type Caputo fractional derivative inequalities.
[1] | J. Hadamard, Etude sur les proprietes des fonctions entieres e.t en particulier dune fonction consideree par Riemann, J. Math. Pure Appl., 38 (1893), 171–215. |
[2] | C. Hermite, Sur deux limites d'une intgrale dfinie, Mathesis, 3 (1883), 1–82. |
[3] | P. Agarwal, M. Jleli, M. Tomar, Certain Hermite-Hadamard type inequalities via generalized $k$-fractional integrals, J. Inequal. Appl., 2017 (2017), 55. https://doi.org/10.1186/s13660-017-1318-y doi: 10.1186/s13660-017-1318-y |
[4] | S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Gao, Hermite-Hadamard type inequalities vi $n$-polynomial exponential-type convexity and their applications, Adv. Differ. Equ., 1 (2020), 1–25. https://doi.org/10.1186/s13662-020-02967-5 doi: 10.1186/s13662-020-02967-5 |
[5] | S. I. Butt, M. Tariq, A. Aslam, H. Ahmad, T. A. Nofal, Hermite-Hadamard type inequalities via generalized harmonic exponential convexity and applications, J. Funct. Space., 2021 (2021), 1–12. https://doi.org/10.1155/2021/5533491 doi: 10.1155/2021/5533491 |
[6] | S. I. Butt, M. K. Bakula, D. Pečarić, J. Pečarić, Jensen Grüss inequality and its applications for the Zipf-Miandelbrot law, Math. Method. Appl. Sci., 44 (2021), 1664–1673. https://doi.org/10.1002/mma.6869 doi: 10.1002/mma.6869 |
[7] | F. Chen, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Chinese J. Math., 2014 (2014), 1–8. https://doi.org/10.1155/2014/173293 doi: 10.1155/2014/173293 |
[8] | G. Farid, A. Javed, S. Naqvi, Hadamard and Fejer Hadamard inequalities and related results via Caputo fractional derivatives, Bull. Math. Anal. Appl., 9 (2017), 16–30. |
[9] | G. Farid, A. Javed, A. U. Rehman, Fractional integral inequalities of Hadamard type for $m$-convex functions via Caputo $k$-fractional derivatives, J. Fract. Calc. Appl., 10 (2019), 120–134. |
[10] | M. E. Özdemir, A. O. Akdemri, E. Set, On $(h-m)$-convexity and Hadamard-type inequalities, Transylv. J. Math. Mech., 8 (2016), 51–58. |
[11] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048 |
[12] | A. Waheed, A. U. Rehman, M. I. Qureshi, F. A. Shah, K. A. Khan, G. Farid, On Caputo $k$-fractional derivatives and associated inequalities, IEEE Access, 7 (2019), 32137–32145. https://doi.org/10.1109/ACCESS.2019.2902317 doi: 10.1109/ACCESS.2019.2902317 |
[13] | N. Mehreen, M. Anwar, Hermite Hadamard type inequalities for exponentially $p$-convex functions and exponentially $s$-convex functions in the second sense with applications, J. Inequal. Appl., 2019 (2019), 92. https://doi.org/10.1186/s13660-019-2047-1 doi: 10.1186/s13660-019-2047-1 |
[14] | X. Feng, B. Feng, G. Farid, S. Bibi, Q. Xiaoyan, Z. Wu, Caputo fractional derivative Hadamard inequalities for strongly $m$-convex functions, J. Funct. Space., 2021 (2021), 1–11. https://doi.org/10.1155/2021/6642655 doi: 10.1155/2021/6642655 |
[15] | G. Farid, A. U. Rehman, S. Bibi, Y. M. Chu, Refinements of two fractional versions of Hadamard inequalities for Caputo fractional derivatives and related results, Open J. Math. Sci., 5 (2021), 1–10. https://doi.org/10.30538/oms2021.0139 doi: 10.30538/oms2021.0139 |
[16] | G. A. Anastassiou, Generalized fractional Hermite Hadamard inequalities involving $m$-convexity and $(s, m)$-convexity, Facta Univ-Ser. Math., 28 (2013), 107–126. |
[17] | C. Wang, H. Zhang, H. Zhang, W. Zhang, Globally projective synchronization for Caputo fractional quaternion-valued neural networks with discrete and distributed delays, AIMS Math., 6 (2021), 14000–14012. https://doi.org/10.3934/math.2021809 doi: 10.3934/math.2021809 |
[18] | H. Zhang, J. Cheng, H. Zhang, W. Zhang, J. Cao, Quasi-uniform synchronization of Caputo type fractional neural networks with leakage and discrete delays, Chaos Soliton. Fract., 152 (2021), 111432. https://doi.org/10.1016/j.chaos.2021.111432 doi: 10.1016/j.chaos.2021.111432 |
[19] | A. W. Roberts, D. E. Varberg, Convex functions, Academic Press: New York, 1973. |
[20] | S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Sci. Direct Work. Pap., 1 (2003), 463–817. |
[21] | J. Rooin, A. Alikhani, M. S. Moslehian, Operator $m$-convex functions, Georgian Math. J., 25 (2018), 93–107. https://doi.org/10.1515/gmj-2017-0045 doi: 10.1515/gmj-2017-0045 |
[22] | T. Lara, N. Merentes, R. Quintero, E. Rosales, On $m$-convexity of set-valued functions, Adv. Oper. Theory, 4 (2019), 767–783. https://doi.org/10.15352/aot.1810-1429 doi: 10.15352/aot.1810-1429 |
[23] | G. Farid, A. U. Rehman, Q. U. Ain, $k$-fractional integral inequalities of Hadamard type for $(h-m)$-convex functions, Comput. Methods. Differ. Equ., 7 (2019), 1–22. |
[24] | B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Sov. Math. Dokl., 7 (1966), 72–75. |
[25] | K. Nikodem, Z. Páles, Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal., 5 (2011), 83–87. https://doi.org/10.15352/bjma/1313362982 doi: 10.15352/bjma/1313362982 |
[26] | J. Makò, A. Hézy, On strongly convex functions, Carpathian J. Math., 32 (2016), 87–95. https://doi.org/10.37193/CJM.2016.01.09 doi: 10.37193/CJM.2016.01.09 |
[27] | N. Merentes, K. Nikodem, Remarks on strongly convex functions, Aequationes Math., 80 (2010), 193–199. https://doi.org/10.1007/s00010-010-0043-0 doi: 10.1007/s00010-010-0043-0 |
[28] | K. Nikodem, On strongly convex functions and related classes of functions, Springer: New York, 2014,365–405. https://doi.org/10.1007/978-1-4939-1246-9_16 |
[29] | S. Z. Ullah, M. A. Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 291. https://doi.org/10.1186/s13660-019-2242-0 doi: 10.1186/s13660-019-2242-0 |
[30] | S. Z. Ullah, M. A. Khan, Y. M. Chu, Majorizations theorems for strongly convex functions, J. Inequal. Appl., 2019 (2019), 58. https://doi.org/10.1186/s13660-019-2007-9 doi: 10.1186/s13660-019-2007-9 |
[31] | S. Z. Ullah, M. A. Khan, Y. M. Chu, Integral majorization type inequalities for the functions in the sense of strong convexity, J. Funct. Space., 2019 (2019), 11. https://doi.org/10.1155/2019/9487823 doi: 10.1155/2019/9487823 |
[32] | J. P. Vial, Strong convexity of sets and functions, J. Math. Econ., 9 (1982), 187–205. https://doi.org/10.1016/0304-4068(82)90026-X doi: 10.1016/0304-4068(82)90026-X |
[33] | Z. Zhang, G. Farid, K. Mahreen, Inequalities for unified integral operators via strongly $(\alpha, h-m)$-convexity, J. Funct. Space., 2021 (2021), 1–11. https://doi.org/10.1155/2021/6675826 doi: 10.1155/2021/6675826 |
[34] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier: Amsterdam, 2006. |