Research article Special Issues

The research of $({\rm{G}}, {\rm{w}})$-Chaos and G-Lipschitz shadowing property

  • Received: 20 December 2021 Revised: 26 February 2022 Accepted: 06 March 2022 Published: 22 March 2022
  • MSC : 37B99

  • In this paper, we introduce the concepts of $ (G, w) - $ Chaos and $ G - $ Lipschitz shadowing property. We study the dynamical properties of $ (G, w) - $ Chaos in the inverse limit space under group action. In addition, we study the dynamical properties of $ G - $ Lipschitz shadowing property respectively under topological $ G - $ conjugate and iterative systems. The following conclusions are obtained. (1) Let $ ({X_f}, \bar G, {\text{ }}\bar d, \sigma) $ be the inverse limit space of $ (X, G, d, f) $ under group action. If the self-map $ f $ is $ (G, w) - $ chaotic, the shift map $ \sigma $ is $ (G, w) - $ chaotic; (2) Let $ (X, d) $ be a metric $ G - $ space and $ f $ be topologically $ G - $ conjugate to $ g $. Then the map $ f $ has $ G - $ Lipschitz shadowing property if and only if the map $ g $ has $ G - $ Lipschitz shadowing property. (3) Let $ (X, d) $ be a metric $ G - $ space and $ f $ be an equivariant Lipschitz map from $ X $ to $ X $. Then for any positive integer $ k \geqslant 2 $, the map $ f $ has the $ G - $ Lipschitz shadowing property if and only if the iterative map $ {f^k} $ has the $ G - $ Lipschitz shadowing property. These results enrich the theory of topological $ G - $ conjugate, iterative system and the inverse limit space under group action.

    Citation: Zhanjiang Ji. The research of $({\rm{G}}, {\rm{w}})$-Chaos and G-Lipschitz shadowing property[J]. AIMS Mathematics, 2022, 7(6): 10180-10194. doi: 10.3934/math.2022566

    Related Papers:

  • In this paper, we introduce the concepts of $ (G, w) - $ Chaos and $ G - $ Lipschitz shadowing property. We study the dynamical properties of $ (G, w) - $ Chaos in the inverse limit space under group action. In addition, we study the dynamical properties of $ G - $ Lipschitz shadowing property respectively under topological $ G - $ conjugate and iterative systems. The following conclusions are obtained. (1) Let $ ({X_f}, \bar G, {\text{ }}\bar d, \sigma) $ be the inverse limit space of $ (X, G, d, f) $ under group action. If the self-map $ f $ is $ (G, w) - $ chaotic, the shift map $ \sigma $ is $ (G, w) - $ chaotic; (2) Let $ (X, d) $ be a metric $ G - $ space and $ f $ be topologically $ G - $ conjugate to $ g $. Then the map $ f $ has $ G - $ Lipschitz shadowing property if and only if the map $ g $ has $ G - $ Lipschitz shadowing property. (3) Let $ (X, d) $ be a metric $ G - $ space and $ f $ be an equivariant Lipschitz map from $ X $ to $ X $. Then for any positive integer $ k \geqslant 2 $, the map $ f $ has the $ G - $ Lipschitz shadowing property if and only if the iterative map $ {f^k} $ has the $ G - $ Lipschitz shadowing property. These results enrich the theory of topological $ G - $ conjugate, iterative system and the inverse limit space under group action.



    加载中


    [1] S. H. Li, Dynamical properties of the shift maps on the inverse limit spaces, Ergod. Theor. Dyn. Syst., 12 (1992), 95–108. https://doi.org/10.1017/S0143385700006611 doi: 10.1017/S0143385700006611
    [2] S. Shah, T. Das, R. Das, Distributional chaos on uniform spaces, Qual. Theory Dyn. Syst., 19 (2020), 4. https://doi.org/10.1007/s12346-020-00344-x doi: 10.1007/s12346-020-00344-x
    [3] M. Kostic, Disjoint distributional chaos in Frechet spaces, Results Math., 75 (2020), 83. https://doi.org/10.1007/s00025-020-01210-7 doi: 10.1007/s00025-020-01210-7
    [4] H. Y. Wang, Q. Liu, Ergodic shadowing properties of iterated function systems, Bull. Malays. Math. Sci. Soc., 44 (2021), 767–783. https://doi.org/10.1007/s40840-020-00976-x doi: 10.1007/s40840-020-00976-x
    [5] H. Y. Wang, P. Zeng, Partial shadowing of average-pseudo-orbits, Sci. Sin. Math., 46 (2016), 781–792. https://doi.org/10.1360/N012014-00256 doi: 10.1360/N012014-00256
    [6] R. S. Li, A note on chaos and the shadowing property, Int. J. Gen. Syst., 45 (2016), 675–688. https://doi.org/10.1080/03081079.2015.1076404 doi: 10.1080/03081079.2015.1076404
    [7] R. S. Li, A note on decay of correlation implies chaos in the sense of Devaney, Appl. Math. Model., 39 (2015), 6705–6710. https://doi.org/10.1016/j.apm.2015.02.019 doi: 10.1016/j.apm.2015.02.019
    [8] R. S. Li, X. L. Zhou, A Note on ergodicity of systems with the asymptotic average shadowing property, Discrete Dyn. Nat. Soc., 2011 (2011), 1–6. https://doi.org/10.1155/2011/360583 doi: 10.1155/2011/360583
    [9] R. S. Li, X. L. Zhou, A note on chaos in product maps, Turk. J. Math., 37 (2013), 665–675. https://doi.org/10.3906/mat-1101-71 doi: 10.3906/mat-1101-71
    [10] S. H. Li, w− chaos and topological entropy, T. Am. Math. Soc., 339 (1993), 243–249. https://doi.org/10.2307/2154217 doi: 10.2307/2154217
    [11] H. Shao, G. R. Chen, Y. M. Shi, Some criteria of chaos in non-autonomous discrete dynamical systems, J. Differ. Equ. Appl., 26 (2020), 295–308. https://doi.org/10.1080/10236198.2020.1725496 doi: 10.1080/10236198.2020.1725496
    [12] G. F. Liao, L. D. Wang, X. D. Duan, A chaotic function with a distributively scrambled set of full Lebesgue measure, Nonlinear Anal.-Theor., 66 (2007), 2274–2280. https://doi.org/10.1016/j.na.2006.03.018 doi: 10.1016/j.na.2006.03.018
    [13] E. D'Aniello, U. B. Darji, M. Maiuriello, Generalized hyperbolicity and shadowing in Lp spaces, J. Differ. Equ., 298 (2021), 68–94. https://doi.org/10.1016/j.jde.2021.06.038 doi: 10.1016/j.jde.2021.06.038
    [14] L. Wang, J. L. Zhang, Lipschitz shadowing property for 1-dimensional subsystems of Zk-actions, J. Math. Res. Appl., 41 (2021), 615–628. https://doi.org/10.3770/j.issn:2095-2651.2021.06.006 doi: 10.3770/j.issn:2095-2651.2021.06.006
    [15] P. A. Guihéneuf, T. Lefeuvre, On the genericity of the shadowing property for conservative homeomorphisms, Proc. Amer. Math. Soc., 146 (2018), 4225–4237. https://doi.org/10.1090/proc/13526 doi: 10.1090/proc/13526
    [16] K. Sakai, Various shadowing properties for positively expansive maps, Topol. Appl., 131 (2003), 15–31. https://doi.org/10.1016/s0166-8641(02)00260-2 doi: 10.1016/s0166-8641(02)00260-2
    [17] Z. J. Ji, G. R. Zhang, J. X. Tu, Asymptotic average and Lipschitz shadowing property of the product map under group action, J. Hebei Normal Univ. (Nat. Sci.), 43 (2019), 471–478. https://doi.org/10.13763/j.cnki.jhebnu.nse.2019.06.004. doi: 10.13763/j.cnki.jhebnu.nse.2019.06.004
    [18] S. A. Ahmadi, Invariants of topological G-conjugacy on G-Spaces, Math. Morav., 18-1 (2014), 67–75.
    [19] Z. J. Ji, Dynamical property of product space and the inverse limit space of a topological group action, Master' thesis, Guangxi University, 2014.
    [20] S. Ekta, D. Tas, Consequences of shadowing property of G-spaces, Int. J. Math. Anal., 7 (2013), 579–588. https://doi.org/10.12988/ijma.2013.13056 doi: 10.12988/ijma.2013.13056
    [21] Z. J. Ji, G. J. Qin, G. R. Zhang, Dynamical properties of the shift map in the inverse limit space of a topological group action, J. Anhui Univ. (Nat. Sci.), 44 (2020), 41–45. https://doi.org/10.3969/j.issn.1000-2162.2020.05.005 doi: 10.3969/j.issn.1000-2162.2020.05.005
    [22] L. S. Block, W. A. Coppel, Dynamics in one dimension, Berlin: Springer-Verlag, 1992. https://doi.org/10.1007/BFb0084762
    [23] T. Choi, J. Kim, Decomposition theorem on G-spaces, Osaka J. Math., 46 (2009), 87–104.
    [24] Z. Balogh, V. Laver, Unitary subgroups of commutative group algebras of the characteristic two, Ukr. Math. J., 72 (2020), 871–879. https://doi.org/10.1007/s11253-020-01829-3 doi: 10.1007/s11253-020-01829-3
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1304) PDF downloads(59) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog