The main objective of this paper is to derive some new variants of trapezium like inequalities involving $ k $-fractional integrals with exponential kernel essentially using the definition of preinvex functions. Fractional bounds associated with some new fractional integral identities are also obtained. In order to show the significance of our main results, we also discuss applications to means and $ q $-digamma functions. We discuss special cases which show that our results are quite unifying.
Citation: Miguel Vivas-Cortez, Muhammad Uzair Awan, Sadia Talib, Guoju Ye, Muhammad Aslam Noor. Fractional identities involving exponential kernel and associated fractional trapezium like inequalities[J]. AIMS Mathematics, 2022, 7(6): 10195-10214. doi: 10.3934/math.2022567
The main objective of this paper is to derive some new variants of trapezium like inequalities involving $ k $-fractional integrals with exponential kernel essentially using the definition of preinvex functions. Fractional bounds associated with some new fractional integral identities are also obtained. In order to show the significance of our main results, we also discuss applications to means and $ q $-digamma functions. We discuss special cases which show that our results are quite unifying.
[1] | B. Ahmad, A. Alsaedi, M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals, J. Comput. Appl. Math., 353 (2019), 120–129. |
[2] | D. Baleanu, S. D. Purohit, J. C. Prajapati, Integral inequalities involving generalized Erdelyi-Kober fractional integral operators, Open Math., 14 (2016), 89–99. https://doi.org/10.1515/math-2016-0007 doi: 10.1515/math-2016-0007 |
[3] | H. Budak, M. Z. Sarikaya, F. Usta, H. Yildirim, Some Hermite-Hadamard and Ostrowski type inequalities for fractional integral operators with exponential kernel, Acta Et Comment. Uni. Tartuensis De Math., 23 (2019). |
[4] | H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446, (2017), 1274–1291. https://doi.org/10.1016/j.jmaa.2016.09.018 doi: 10.1016/j.jmaa.2016.09.018 |
[5] | G. N Watson, A treatise on theory of Bessel functions, Cambridge university press, 1995. |
[6] | G. Cristescu, M. A. Noor, M. U. Awan, Bounds of the second degree cumulative frontier gaps of functions with generalized convexity, Carpath. J. Math., 31, (2015), 173–180. |
[7] | G. Cristescu, M. A. Noor, M. U. Awan, Some inequalities for functions having an $s$-convex derivative of superior order, Math. Inequal. Appl., 19 (2016), 893–907. dx.doi.org/10.7153/mia-19-65 doi: 10.7153/mia-19-65 |
[8] | R. Diaz, E. Pariguan, On hypergeometric functions and $k$-pochhammer symbol, Divulg. Mat., 15 (2007), 179–192. |
[9] | A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier B.V., Amsterdam, Netherlands, 2006. |
[10] | A. Ben-Israel, B. Mond, What is invexity? J. Aust. Math. Soc. Ser., 28 (1986), 1–9. https://doi.org/10.1017/S0334270000005142 doi: 10.1017/S0334270000005142 |
[11] | H. Lei, G. Hu, Z. J. Cao, T. S. Du, Hadamard $k$-fractional inequalities of Fejer type for $GA$-$s$-convex mappings and applications, J. Inequal. Appl., 2019 (2019), 264. https://doi.org/10.1186/s13660-019-2216-2 doi: 10.1186/s13660-019-2216-2 |
[12] | J. Liao, S. Wu, T. Du, The Sugeno integral with respect to $\alpha$-preinvex functions, Fuzzy Sets Syst., 379 (2020), 102–114. https://doi.org/10.1016/j.fss.2018.11.008 doi: 10.1016/j.fss.2018.11.008 |
[13] | S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. |
[14] | J. Nie, J. Liu, J. F. Zhang, T. S. Du, Estimation-type results on the $k$-fractional Simpson-type integral inequalities and applications, J. Taibah Uni. Sci., 13 (2019), 932–940. https://doi.org/10.1080/16583655.2019.1663574 doi: 10.1080/16583655.2019.1663574 |
[15] | M. A. Noor, G. Cristescu, M. U. Awan, Generalized fractional Hermite-Hadamard inequalities for twice differentiable $s$-convex functions, Filomat, 29 (2015), 807–815. https://doi.org/10.2298/FIL1504807N doi: 10.2298/FIL1504807N |
[16] | M. A. Noor, K. I. Noor, M. U. Awan, S. Khan, Fractional Hermite-Hadamard inequalities for some new classes of Godunova-Levin functions, Appl. Math. Inform. Sci., 8 (2014), 2865–2872. https://doi.org/10.12785/amis/080623 doi: 10.12785/amis/080623 |
[17] | M. A. Noor, K. I. Noor, M. U. Awan, J. Li, On Hermite-Hadamard inequalities for $h$-preinvex functions, Filomat, 28 (2014), 1463–1474. https://doi.org/10.2298/FIL1407463N doi: 10.2298/FIL1407463N |
[18] | M. Z. Sarikaya, A. Karaca, On the $k$-Riemann-Liouville fractional integral and applications, Int. J. Stat. Math., 1 (2014), 033–043. |
[19] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048 |
[20] | M. Tariq, H. Ahmad, S. K. Sahoo, The Hermite-Hadamard type inequality and itsestimations via generalized convex functions of Raina type, Math. Model. Numer. Sim. App., 1 (2021), 32–43. https://doi.org/10.53391/mmnsa.2021.01.004 doi: 10.53391/mmnsa.2021.01.004 |
[21] | T. Weir, B. Mond, Preinvex functions in multiobjective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. https://doi.org/10.1016/0022-247X(88)90113-8 doi: 10.1016/0022-247X(88)90113-8 |
[22] | S. H. Wu, M. U. Awan, M. V. Mihai, M. A. Noor, S. Talib, Estimates of upper bound for a $k$th order differentiable functions involving Riemann-Liouville integrals via higher order strongly $h$-preinvex functions, J. Inequal. Appl., 2019 (2019), 227. https://doi.org/10.1186/s13660-019-2146-z doi: 10.1186/s13660-019-2146-z |
[23] | X. Wu, J. R. Wang, J. L. Zhang, Hermite-Hadamard-type inequalities for convex functions via the fractional integrals with exponential kernel, Mathematics, 7 (2019), 845. https://doi.org/10.3390/math7090845 doi: 10.3390/math7090845 |
[24] | M. Yavuz, N. Özdemir, Analysis of an epidemic spreading model with exponential decay law, Math. Sci. Appl. E-Notes, 8 (2020), 142–154. https://doi.org/10.36753/mathenot.691638 doi: 10.36753/mathenot.691638 |
[25] | M. Yavuz, N. Özdemir, Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel, Discrete Cont. Dyn-S., 13 (2020), 995–1006. doi: 10.3934/dcdss.2020058 doi: 10.3934/dcdss.2020058 |