Research article
On a problem concerning the ring of Nash germs and the Borel mapping
-
Department of Mathematics, University Ibn Tofail, Faculty of Sciences, Kenitra, Morocco
-
Received:
28 October 2019
Accepted:
02 January 2020
Published:
08 January 2020
-
-
MSC :
51M99, 14P20, 32C07
-
-
We denote by $\mathbb{R}$[[t]] the ring of formal power series with real coefficients. Let $\widehat{\mathcal{C}_{1}}\subset\mathbb{R}[[t]]$ be a subring. We say that $\widehat{\mathcal{C}_{1}}$ has the splitting property if for each $f\in\widehat{\mathcal{C}_{1}}$ and $A \cup B = \mathbb{N}$ such that $A\cap B = \emptyset$, if $f = G+H$ where $G = \displaystyle\sum_{w\in A}a_{w}t^{w}$ and $H = \displaystyle\sum_{w\in B}a_{w}t^{w}$ are formal power series, then $G\in\widehat{\mathcal{C}_{1}}$ and $H\in\widehat{\mathcal{C}_{1}}$. It is well known that the ring of convergent power series $\mathbb{R}${t} satisfies the splitting property. In this paper, we will examine this property for a subring of $\mathbb{R}${t} and for some local rings containing strictly $\mathbb{R}${t}.
Citation: Mourad Berraho. On a problem concerning the ring of Nash germs and the Borel mapping[J]. AIMS Mathematics, 2020, 5(2): 923-929. doi: 10.3934/math.2020063
-
Abstract
We denote by $\mathbb{R}$[[t]] the ring of formal power series with real coefficients. Let $\widehat{\mathcal{C}_{1}}\subset\mathbb{R}[[t]]$ be a subring. We say that $\widehat{\mathcal{C}_{1}}$ has the splitting property if for each $f\in\widehat{\mathcal{C}_{1}}$ and $A \cup B = \mathbb{N}$ such that $A\cap B = \emptyset$, if $f = G+H$ where $G = \displaystyle\sum_{w\in A}a_{w}t^{w}$ and $H = \displaystyle\sum_{w\in B}a_{w}t^{w}$ are formal power series, then $G\in\widehat{\mathcal{C}_{1}}$ and $H\in\widehat{\mathcal{C}_{1}}$. It is well known that the ring of convergent power series $\mathbb{R}${t} satisfies the splitting property. In this paper, we will examine this property for a subring of $\mathbb{R}${t} and for some local rings containing strictly $\mathbb{R}${t}.
References
[1]
|
T. Carleman, Sur le calcul effectif d'une fonction quasi-analytique dont on donne les dérivées en un point, C. R. Acad. Sci. Paris, 176 (1923), 64-65.
|
[2]
|
T. Carleman, Les fonctions quasi-analytiques, Gauthiers Villars Paris, 1926.
|
[3]
|
O. Zariski, P. Samuel, Commutative Algebra, Graduate Texts in Mathematics, Volume II, Springer, 1975.
|
[4]
|
P. Erdos, Note on the Converse of Fabry's Gap Theorem, Trans. Amer. Math. Soc., 57 (1945), 102-104.
|
[5]
|
P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), 335-400. doi: 10.1007/BF02418579
|
[6]
|
J. P. Allouche, Note sur un article de Sharif et Woodcock, journal de Théorie des Nombres de Bordeaux, Tome1, no1 (1989), 163-187.
|
[7]
|
V. Thilliez, On quasianalytic local rings, Expo. Math., 26 (2008), 1-23. doi: 10.1016/j.exmath.2007.04.001
|
[8]
|
T. Bang, The theory of metric spaces applied to infinitely differentiable functions, Math. Scand., 1 (1953), 137-152. doi: 10.7146/math.scand.a-10374
|
-
-
-
-