Citation: Chenghua Gao, Maojun Ran. Spectral properties of a fourth-order eigenvalue problem with quadratic spectral parameters in a boundary condition[J]. AIMS Mathematics, 2020, 5(2): 904-922. doi: 10.3934/math.2020062
[1] | Z. S. Aliyev, A. A. Dunyamaliyeva, Y. T. Mehraliyev, Basis properties in Lp of root functions of Sturm-Liouville problem with spectral parameter-dependent boundary conditions, Mediterr. J. Math., 14 (2017), 131. |
[2] | Z. S. Aliyev, On basis properties of root functions of a boundary value problem containing a spectral parameter in the boundary conditions, Dokl. Math., 87 (2013), 137-139. |
[3] | Z. S. Aliyev, Basis properties in Lp of systems of root functions of a spectral problem with spectral parameter in a boundary condition, Differ. Equ., 47 (2011), 766-777. |
[4] | N. B. Kerimov, Z. S. Aliyev, On oscillation properties of the eigenfunctions of a fourth order differential operator, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 25 (2005), 63-76. |
[5] | N. B. Kerimov, Z. S. Aliyev, On the basis property of the system of eigenfunctions of a spectral problem with spectral parameter in a boundary condition, Differ. Equ., 43 (2007), 886-895. |
[6] | N. B. Kerimov, R. G. Poladov, On basisicity in Lp(0 < p < ∞) of the system of eigenfunctions of one boundary value problem, I, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 22 (2005), 53-64. |
[7] | N. B. Kerimov, R. G. Poladov, On basisicity in Lp(0 < p < ∞) of the system of eigenfunctions of one boundary value problem, II, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 23 (2005), 65-76. |
[8] | N. B. Kerimov, E. A. Maris, On the uniform convergence of Fourier series expansions for SturmLiouville problems with a spectral parameter in the boundary conditions, Results Math., 73 (2018), 102. |
[9] | Z. S. Aliyev, A. A. Dunyamalieva, Defect basis property of a system of root functions of a SturmLiouville problem with spectral parameter in the boundary conditions, Differ. Equ., 51 (2015), 1259-1276. |
[10] | N. Yu. Kapustin, E. I. Moiseev, On the basis property in the space Lp of systems of eigenfunctions corresponding to two problems with the spectral parameter in the boundary condition, Differ. Uravn., 36 (2000), 1357-1360. |
[11] | P. Binding, Patrick J. Browne, Application of two parameter eigencurves to Sturm-Liouville problems with eigenparameter-dependent boundary conditions, Proc. Edinburgh Math. Soc., 125 (1995), 1205-1218. |
[12] | N. Yu. Kapustin, On the basis property of the system of eigenfunctions of a problem with squared spectral parameter in a boundary condition, Differ. Equ., 51 (2015), 1274-1279. |
[13] | J. Behrndt, Boundary value problems with eigenvalue depending boundary conditions, Math. Nachr., 282 (2009), 659-689. |
[14] | B. Curgus, The linearization of boundary eigenvalue problems and reproducing kernel Hilbert spaces, Linear Algebra Appl., 329 (2001), 97-136. |
[15] | A. Dijksma, H. Langer, H. de Snoo, Symmetric Sturm-Liouville operators with eigenvalue depending boundary conditions, CMS Conf. Proc., (1987), 87-116. |
[16] | A. Dijksma, H. Langer, H. de Snoo, Eigenvalues and pole functions of Hamiltonian systems with eigenvalue depending boundary conditions, Math. Nachr., 161 (1993), 107-154. |
[17] | A. Dijksma, H. Langer, Operator theory and ordinary differential operators. Lectures on operator theory and its applications, Fields Inst. Monogr., (1996), 73-139. |
[18] | C. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary condition, Proc. Ednib. Math. Soc., 77 (1977), 293-308. |
[19] | C. Fulton, S. Pruess, Numerical methods for a singular eigenvalue problem with eigenparameter in the boundary conditions, J. Math. Anal. Appl., 71 (1979), 431-462. |
[20] | C. Gao, X. Li, F. Zhang, Eigenvalues of discrete Sturm-Liouville problems with nonlinear eigenparameter dependent boundary conditions, Quaest. Math., 41 (2018), 773-797. |
[21] | C. Gao, L. Lv, Y. Wang, Spectra of a discrete Sturm-Liouville problem with eigenparameterdependent boundary conditions in pontryagin space, Quaest. Math., (2019), 1-26. |
[22] | C. Gao, R. Ma, F. Zhang, Spectrum of discrete left definite Sturm-Liouville problems with eigenparameter-dependent boundary conditions, Linear Multilinear A., 65 (2017), 1905-1923. |
[23] | R. Ma, C. Gao, Y. Lu, Spectrum theory of second-order difference equations with indefinite weight, J. Spectr. Theory, 8 (2018), 971-985. |
[24] | R. Ma, C. Gao, Eigenvalues of discrete linear second-order periodic and antiperiodic eigenvalue problems with sign-changing weight, Linear Algebra Appl., 467 (2015), 40-56. |
[25] | B. J. Harmsen, A. Li, Discrete Sturm-Liouville problems with nonlinear parameter in the boundary conditions, J. Differ. Equ. Appl., 13 (2007), 639-653. |
[26] | B. Han, Z. Wang, Z. Du, Traveling waves for nonlocal Lotka-Volterra competition systems, Discrete Contin. Dyn. syst. Ser. B., (2020), DOI:10.3934/dcdsb.2020011. |
[27] | P. Liu, J. Shi, Bifurcation of positive solutions to scalar reaction-diffusion equations with nonlinear boundary condition, J. Differential Equations, 264 (2018), 425-454. |
[28] | C. Gao, X. Li, R. Ma, Eigenvalues of a linear fourth-order differential operator with squared spectral parameter in a boundary condition, Mediterr. J. Math., 15 (2018), 107. |
[29] | Z. S. Aliyev, S. B. Guliyeva, Propreties of natural frequencies and harmonic bending vibrations of a rod at one end of which is concentrated inertial load, J. Differential Equations, 263 (2017), 5830-5845. |
[30] | O. O. Ibrogimov, C. Tretter, On the spectrum of an operator in truncated Fock space, Oper. Theory Adv. Appl., 263 (2018), 321-334. doi: 10.1007/978-3-319-68849-7_12 |
[31] | C. Tretter, Boundary eigenvalue problems for differential equations Nη = λPη and λ-polynomial boundary conditions, J. Differential Equations, 170 (2001), 408-471. |
[32] | N. D. Kopachevsky, R. Mennicken, Ju. S. Pashkova, et al. Complete second order linear differential operator equations in Hilbert space and applications in hydrodynamics, Trans. Amer. Math. Soc., 356 (2004), 4737-4766. |
[33] | Z. S. Aliyev, Basis properties of a fourth order differential operator with spectral parameter in the boundary condition, Cent. Eur. J. Math., 8 (2010), 378-388. |
[34] | T. Bhattacharyya, P. Binding, K. Seddighi, Two-parameter right definite Sturm-Liouville problems with eigenparameter-dependent boundary conditions, Proc. Edinburgh Math. Soc., 131 (2001), 45-58. |
[35] | P. Binding, P. J. Browne, K. Seddighi, Sturm-Liouville problems with eigenparameter dependent boundary conditions, Proc. Edinburgh Math. Soc., 37 (1993), 57-72. |
[36] | P. Binding, A hierarchy of Sturm-Liouville problems, Math. Meth. Appl. Sci., 26 (2003), 349-357. |
[37] | A. A. Shaklikov, Basis properties of root functions of differential operators with spectral parameter in the boundary conditions, Differ. Equ., 55 (2019), 647-659. |
[38] | N. N. Konechnaya, K. A. Mirzoev, A. A. Shkalikov, On the asymptotic behavior of solutions to two-term differential equations with singular coefficients, Math. Notes, 104 (2018), 244-252. |
[39] | J. B. Amara, Sturm theory for the equation of vibrating beam, J. Math. Anal. Appl., 349 (2009), 1-9. doi: 10.1016/j.jmaa.2008.07.055 |
[40] | J. B. Amara, Oscillation properties for the equation of vibrating beam with irregular boundary conditions, J. Math. Anal. Appl., 360 (2009), 7-13. |
[41] | B. Belinskiy, J. P. Dauer, Y. Xu, Inverse scattering of acoustic waves in an ocean with ice cover, Appl. Anal., 61 (1996), 255-283. |
[42] | M. A. Naimark, Linear Differential Operators, Moscow: Nauka, 1969. |
[43] | D. O. Banks, G. J. Kurowski, A Pröfer transformation for the equation of a vibrating beam subject to axial forces, J. Differential Equations, 24 (1977), 57-74. |
[44] | O. Christensen, An introduction to frames and Riesz bases, Boston: Birkhauser, 2003. |
[45] | B. S. Kashin, A. A. Saakyan, Orthogonal Series, Moscow: Nauka, 1984. |
[46] | I. Ts. Goghberg, A. S. Markus, Stability of bases of Banach and Hilbert space, Izv. Akad. Nauk. Mold. SSR, 5 (1962), 17-35. |