Citation: Karmina K. Ali, Resat Yilmazer. Discrete fractional solutions to the effective mass Schrödinger equation by mean of nabla operator[J]. AIMS Mathematics, 2020, 5(2): 894-903. doi: 10.3934/math.2020061
[1] | P. K. Jha, H. Eleuch, Y. V. Rostovtsev, Analytical solution to position dependent mass Schrödinger equation, J. Mod. Optic., 58 (2011), 652-656. doi: 10.1080/09500340.2011.562617 |
[2] | H. Eleuch, P. K. Jha, Y. V. Rostovtsev, Analytical solution to position dependent mass for 3D-Schrodinger equation, Math. Sci. Lett., 1 (2012), 1-6. doi: 10.12785/msl/010101 |
[3] | N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305. doi: 10.1016/S0375-9601(00)00201-2 |
[4] | J. M. Luttinger, W. Kohn, Motion of electrons and holes in perturbed periodic fields, Phys. Rev., 97 (1955), 869. |
[5] | A. de Souza Dutra, C. A. S. Almeida, Exact solvability of potentials with spatially dependent effective masses, Phys. Lett. A, 275 (2000), 25-30. doi: 10.1016/S0375-9601(00)00533-8 |
[6] | L. Dekar, L. Chetouani, T. F. Hammann, An exactly soluble Schrödinger equation with smooth position-dependent mass, J. Math. Phys., 39 (1998), 2551-2563. doi: 10.1063/1.532407 |
[7] | L. Dekar, L. Chetouani, T. F. Hammann, Wave function for smooth potential and mass step, Phys. Rev. A, 59 (1999), 107. |
[8] | G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, John Wiley and Sons Inc., New York, 1990. |
[9] | L. Serra, E. Lipparini, Spin response of unpolarized quantum dots, EPL, 40 (1997), 667. |
[10] | P. Goetsch, R. Graham, Linear stochastic wave equations for continuously measured quantum systems, Phys. Rev. A, 50 (1994), 5242. |
[11] | R. N. Costa Filho, M. P. Almeida, G. A. Farias, et al. Displacement operator for quantum systems with position-dependent mass, Phys. Rev. A, 84 (2011), 050102. |
[12] | B. Gonrul, O. Ozer, B. Gonul, et al. Exact solutions of effective-mass Schrödinger equations, Mod. Phys. Lett. A, 17 (2002), 2453-2465. doi: 10.1142/S0217732302008514 |
[13] | A. P. Zhang, P. Shi, Y. W. Ling, et al. Solutions of one-dimensional effective mass Schrödinger equation for PT-symmetric Scarf potential, Acta Phys. Pol. A, 120 (2011), 987-991. doi: 10.12693/APhysPolA.120.987 |
[14] | T. K. Jana, P. Roy, Potential algebra approach to position-dependent mass Schrödinger equations, EPL, 87 (2009), 30003. |
[15] | M. Sebawe Abdalla, H. Eleuch, Exact solutions of the position-dependent-effective mass Schrödinger equation, AIP Adv., 6 (2016), 055011. |
[16] | G. C. Wu, Z. G. Deng, D. Baleanu, et al. New variable-order fractional chaotic systems for fast image encryption, Chaos, 29 (2019), 083103. |
[17] | I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999. |
[18] | G. C. Wu, D. Baleanu, W. H. Luo, Lyapunov functions for Riemann-Liouville-like fractional difference equations, Appl. Math. Comput., 314 (2017), 228-236. |
[19] | K. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Dover Publications Inc., Mineola, New York, 2002. |
[20] | G. C. Wu, D. Baleanu, Discrete fractional logistic map and its chaos, Nonlinear Dynam., 75 (2014), 283-287. doi: 10.1007/s11071-013-1065-7 |
[21] | R. Yilmazer, N-fractional calculus operator Nμ method to a modified hydrogen atom equation, Math. Commun., 15 (2010), 489-501. |
[22] | R. Yilmazer, M. Inc, F. Tchier, et al. Particular solutions of the confluent hypergeometric differential equation by using the nabla fractional calculus operator, Entropy, 18 (2010), 49. |
[23] | R. Yilmazer, O. Ozturk, On nabla discrete fractional calculus operator for a modified Bessel equation, Therm. Sci., 22 (2018), S203-S209. |
[24] | O. Ozturk, R. Yilmazer, Solutions of the radial Schrödinger equation in hypergeometric and discrete fractional forms, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68 (2019), 833-839. |
[25] | R. Yilmazer, N. S. Demirel, Discrete fractional solutions of a Gauss equation, AIP Conference Proceedings, 2037 (2018), 020029. |
[26] | R. Yilmazer, Discrete fractional solution of a non-homogeneous non-fuchsian differential equations, Therm. Sci., 23 (2019), S121-S127. |
[27] | R. Yilmazer, S. Karabulut, Solutions of the generalized Laguerre differential equation by fractional differ integral, AIP Conference Proceedings, 2037 (2018), 020030. |
[28] | J. B. Diaz, T. J. Osler, Differences of fractional order, Math. Comput., 28 (1974), 185-202. doi: 10.1090/S0025-5718-1974-0346352-5 |
[29] | F. M. Atıcı, P. W. Eloe. Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theo., 3 (2009), 1-12. |
[30] | N. Acar, F. M. Atıcı, Exponential functions of discrete fractional calculus, Appl. Anal. Discrete Math., 7 (2013), 343-353. doi: 10.2298/AADM130828020A |
[31] | F. M. Atıcı, P. W. Eloe, Gronwall's inequality on discrete fractional calculus, Comput. Math. Appl., 64 (2012), 3193-3200. doi: 10.1016/j.camwa.2011.11.029 |
[32] | C. W. Granger, R. Joyeux, An introduction to long-memory time series models and fractional differencing, J. Time Ser. Anal., 1 (1980), 15-29. doi: 10.1111/j.1467-9892.1980.tb00297.x |
[33] | J. R. M. Hosking, Fractional differencing, Biometrika, 68 (1981), 165-176. doi: 10.1093/biomet/68.1.165 |
[34] | H. L. Gray, N. Zhang, On a New definition of the fractional difference, Math. Comput., 50 (1988), 513-529. doi: 10.1090/S0025-5718-1988-0929549-2 |
[35] | C. Tezcan, R. Sever. O. Yesiltas, A new approach to the exact solutions of the effective mass Schrödinger equation, Int. J. Theor. Phys., 47 (2008), 1713-1721. doi: 10.1007/s10773-007-9613-x |