Citation: Azadeh Ghanadian, Taher Lotfi. Approximate solution of nonlinear Black–Scholes equation via a fully discretized fourth-order method[J]. AIMS Mathematics, 2020, 5(2): 879-893. doi: 10.3934/math.2020060
[1] | Y. Adam, Highly accurate compact implicit methods and boundary conditions, J. Comput. Phys., 24 (1977), 10-22. doi: 10.1016/0021-9991(77)90106-1 |
[2] | A. Akgül, F. Soleymani, How to construct a fourth-order scheme for Heston-Hull-White equation?, AIP Conference Proceedings, 2116 (2019), 240002. |
[3] | Z. Al-Zhour, M. Barfeie, F. Soleymani, et al. A computational method to price with transaction costs under the nonlinear Black-Scholes model, Chaos Soliton. Fract., 127 (2019), 291-301. doi: 10.1016/j.chaos.2019.06.033 |
[4] | J. Ankudinova, M. Ehrhardt, On the numerical solution of nonlinear Black-Scholes equations, Comput. Math. Appl., 56 (2008), 799-812. doi: 10.1016/j.camwa.2008.02.005 |
[5] | A. Babucke, M. J. Kloker, Accuracy analysis of the fundamental finite-difference methods on non-uniform grids, Internal report, Stuttgart University, 2009. |
[6] | L. V. Ballestra, C. Sgarra, The evaluation of American options in a stochastic volatility model with jumps: An efficient finite element approach, Comput. Math. Appl., 60 (2010), 1571-1590. doi: 10.1016/j.camwa.2010.06.040 |
[7] | G. Barles, H. M. Soner, Option pricing with transaction costs and a nonlinear Black-Scholes equation, Financ. Stoch., 2 (1998), 369-397. doi: 10.1007/s007800050046 |
[8] | F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637-654. doi: 10.1086/260062 |
[9] | R. Company, L. Jódar, J. R. Pintos, A numerical method for European option pricing with transaction costs nonlinear equation, Math. Comput. Model., 50 (2009), 910-920. doi: 10.1016/j.mcm.2009.05.019 |
[10] | M. Cummins, F. Murphy, J. J. H. Miller, Topics in Numerical Methods for Finance, Springer, New York, 2012. |
[11] | B. Düring, M. Fournié, A. Jüngel, High order compact finite difference schemes for a nonlinear Black-Scholes equation, Int. J. Theor. Appl. Financ., 6 (2003), 767-789. doi: 10.1142/S0219024903002183 |
[12] | B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge University Press, UK, 1996. |
[13] | E. Hairer, G. Wanner, Solving Ordinary Differential Equations II, Springer-Verlag, Berlin Heidelberg, 1996. |
[14] | D. J. Higham, An Introduction to Financial Option Valuation, Cambridge University Press, UK, 2004. |
[15] | M. Jandačka, D. Ševčovič, On the risk adjusted pricing methodology based valuation of vanilla options and explanation of the volatility smile, J. Appl. Math., 2005 (2005), 235-258. doi: 10.1155/JAM.2005.235 |
[16] | M. K. Kadalbajoo, A. Kumar, L. P. Tripathi, An efficient numerical method for pricing option under jump diffusion model, Int. J. Adv. Eng. Sci. Appl. Math., 7 (2015), 114-123. doi: 10.1007/s12572-015-0136-z |
[17] | R. Knapp, A method of lines framework in mathematica, J. Numer. Anal. Indust. Appl. Math., 3 (2008), 43-59. |
[18] | N. Krejić, M. Kumaresan, A. Rožnjik, VaR optimal portfolio with transaction costs, Appl. Math. Comput., 218 (2011), 4626-4637. |
[19] | G. H. Meyer, The Time-Discrete Method of Lines for Options and Bonds: A PDE Approach, World Scientific Publishing, USA, 2015. |
[20] | S. Milovanović, L. von Sydow, Radial basis function generated finite differences for option pricing problems, Comput. Math. Appl., 75 (2018), 1462-1481. doi: 10.1016/j.camwa.2017.11.015 |
[21] | R. Mohammadi, Quintic B-spline collocation approach for solving generalized Black-Scholes equation governing option pricing, Comput. Math. Appl., 69 (2015), 777-797. doi: 10.1016/j.camwa.2015.02.018 |
[22] | M. Monoyios, Option pricing with transaction costs using a Markov chain approximation, J. Econ. Dyn. Control, 28 (2004), 889-913. doi: 10.1016/S0165-1889(03)00059-9 |
[23] | A. Parás, M. Avellaneda, Dynamic hedging portfolios for derivative securities in the presence of large transaction costs, Appl. Math. Financ., 1 (1994), 165-193. doi: 10.1080/13504869400000010 |
[24] | P. Roul, A high accuracy numerical method and its convergence for time-fractional Black-Scholes equation governing European options, Appl. Numer. Math., (2020), DOI: https://doi.org/10.1016/j.apnum.2019.11.004. |
[25] | P. Roul, V. M. K. P. Goura, A new higher order compact finite difference method for generalised Black-Scholes partial differential equation: European call option, J. Comput. Appl. Math., 363 (2020), 464-484. doi: 10.1016/j.cam.2019.06.015 |
[26] | T. Sauer, Numerical Analysis, 2 Eds., Pearson Publication, USA, 2012. |
[27] | D. Ševčovič, M. Žitnanská, Analysis of the nonlinear option pricing model under variable transaction costs, Asia-Pac. Financ. Mark., 23 (2016), 153-174. doi: 10.1007/s10690-016-9213-y |
[28] | R. U. Seydel, Tools for Computational Finance, 6 Eds, Springer, United Kingdom, 2017. |
[29] | A. R. Soheili, F. Soleymani, Construction of some accelerated methods for solving scalar stochastic differential equations, Int. J. Comput. Sci. Math., 7 (2016), 537-547. doi: 10.1504/IJCSM.2016.081680 |
[30] | A. R. Soheili, F. Soleymani, A new solution method for stochastic differential equations via collocation approach, Int. J. Comput. Math., 93 (2016), 2079-2091. doi: 10.1080/00207160.2015.1085029 |
[31] | M. Sofroniou, R. Knapp, Advanced Numerical Differential Equation Solving in Mathematica, Wolfram Mathematica, Tutorial Collection, USA, 2008. |
[32] | F. Soleymani, Pricing multi-asset option problems: A Chebyshev pseudo-spectral method, BIT, 59 (2019), 243-270. doi: 10.1007/s10543-018-0722-0 |
[33] | F. Soleymani, A. Akgül, Improved numerical solution of multi-asset option pricing problem: A localized RBF-FD approach, Chaos Soliton. Fract.,119 (2019), 298-309. doi: 10.1016/j.chaos.2019.01.003 |
[34] | D. Tavella, C. Randall, Pricing Financial Instruments - The Finite Difference Method, John Wiley & Sons Inc., New York, 2000. |
[35] | M. Trott, The Mathematica GuideBook for Numerics, Springer, NY, USA, 2006. |
[36] | P. Ursone, How to Calculate Options Prices and their Greeks, Wiely, UK, 2015. |
[37] | P. R. Wellin, R. J. Gaylord, S. N. Kamin, An Introduction to Programming with Mathematica, Cambridge University Press, UK, 2005. |