Research article

A degree condition for fractional (g, f, n)-critical covered graphs

  • Received: 26 September 2019 Accepted: 26 December 2019 Published: 03 January 2020
  • MSC : 05C70, 90B99

  • A graph $G$ is called a fractional $(g, f)$-covered graph if for any $e\in E(G)$, $G$ admits a fractional $(g, f)$-factor covering $e$. A graph $G$ is called a fractional $(g, f, n)$-critical covered graph if for any $W\subseteq V(G)$ with $|W| = n$, $G-W$ is a fractional $(g, f)$-covered graph. In this paper, we demonstrate that a graph $G$ of order $p$ is a fractional $(g, f, n)$-critical covered graph if $p\geq\frac{(a+b)(a+b+n+1)-(b-m)n+2}{a+m}$, $\delta(G)\geq\frac{(b-m)(b+1)+2}{a+m}+n$ and for every pair of nonadjacent vertices $u$ and $v$ of $G$, $\max\{d_G(u), d_G(v)\}\geq\frac{(b-m)p+(a+m)n+2}{a+b}$, where $g$ and $f$ are integer-valued functions defined on $V(G)$ satisfying $a\leq g(x)\leq f(x)-m\leq b-m$ for every $x\in V(G)$.

    Citation: Xiangyang Lv. A degree condition for fractional (g, f, n)-critical covered graphs[J]. AIMS Mathematics, 2020, 5(2): 872-878. doi: 10.3934/math.2020059

    Related Papers:

  • A graph $G$ is called a fractional $(g, f)$-covered graph if for any $e\in E(G)$, $G$ admits a fractional $(g, f)$-factor covering $e$. A graph $G$ is called a fractional $(g, f, n)$-critical covered graph if for any $W\subseteq V(G)$ with $|W| = n$, $G-W$ is a fractional $(g, f)$-covered graph. In this paper, we demonstrate that a graph $G$ of order $p$ is a fractional $(g, f, n)$-critical covered graph if $p\geq\frac{(a+b)(a+b+n+1)-(b-m)n+2}{a+m}$, $\delta(G)\geq\frac{(b-m)(b+1)+2}{a+m}+n$ and for every pair of nonadjacent vertices $u$ and $v$ of $G$, $\max\{d_G(u), d_G(v)\}\geq\frac{(b-m)p+(a+m)n+2}{a+b}$, where $g$ and $f$ are integer-valued functions defined on $V(G)$ satisfying $a\leq g(x)\leq f(x)-m\leq b-m$ for every $x\in V(G)$.


    加载中


    [1] J. Correa, M. Matamala, Some results about factors of graphs, J. Graph Theory, 57 (2008), 265-274. doi: 10.1002/jgt.20284
    [2] J. Li, A new degree condition for graphs to have [a, b]-factor, Discrete Mathematics, 290 (2005), 99-103. doi: 10.1016/j.disc.2004.09.010
    [3] S. Zhou, Z. Sun, Z. Xu, A result on r-orthogonal factorizations in digraphs, Eur. J. Combinatorics, 65 (2017), 15-23. doi: 10.1016/j.ejc.2017.05.001
    [4] S. Akbari, M. Kano, {k, r - k}-factors of r-regular graphs, Graphs and Combinatorics, 30 (2014), 821-826. doi: 10.1007/s00373-013-1324-x
    [5] Y. Li, M. Cai, A degree condition for a graph to have [a, b]-factors, J. Graph Theory, 27 (1998), 1-6. doi: 10.1002/(SICI)1097-0118(199801)27:1<1::AID-JGT1>3.0.CO;2-U
    [6] S. Zhou, Some results about component factors in graphs, RAIRO-Operations Research, 53 (2019), 723-730. doi: 10.1051/ro/2017045
    [7] S. Zhou, Z. Sun, Binding number conditions for P≥2-factor and P≥3-factor uniform graphs, Discrete Mathematics, 343 (2020), Article 111715, DOI: 10.1016/j.disc.2019.111715.
    [8] S. Zhou, Z. Sun, H. Liu, Sun toughness and P≥3-factors in graphs, Contributions to Discrete Mathematics, 14 (2019), 167-174.
    [9] S. Zhou, Z. Sun, Some existence theorems on path factors with given properties in graphs, Acta Mathematica Sinica, English Series, DOI: 10.1007/s10114-020-9224-5.
    [10] S. Zhou, T. Zhang, Z. Xu, Subgraphs with orthogonal factorizations in graphs, Discrete Applied Mathematics, DOI: 10.1016/j.dam.2019.12.011.
    [11] S. Zhou, T. Zhang, L. Xu, A sufficient condition for graphs to have ID-Hamiltonian [a, b]-factors, Utilitas Mathematica, 111 (2019), 261-269.
    [12] Y. Egawa, M. Kano, Sufficient conditions for graphs to have (g, f)-factors, Discrete Mathematics, 151 (1996), 87-90. doi: 10.1016/0012-365X(94)00085-W
    [13] K. Ota, T. Tokuda, A degree condition for the existence of regular factors in K1,n-free graphs, J. Graph Theory, 22 (1996), 59-64. doi: 10.1002/(SICI)1097-0118(199605)22:1<59::AID-JGT8>3.0.CO;2-K
    [14] G. Liu, L. Zhang, Toughness and the existence of fractional k-factors of graphs, Discrete Mathematics, 308 (2008), 1741-1748. doi: 10.1016/j.disc.2006.09.048
    [15] J. Jiang, A sufficient condition for all fractional [a, b]-factors in graphs, Proceedings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science, 19 (2018), 315-319.
    [16] J. Jiang, Independence number and fractional (g, f)-factors with inclusion and exclusion properties, Utilitas Mathematica, 111 (2019), 27-33.
    [17] S. Zhou, Z. Sun, Neighborhood conditions for fractional ID-k-factor-critical graphs, Acta Mathematicae Applicatae Sinica, English Series, 34 (2018), 636-644. doi: 10.1007/s10255-018-0773-7
    [18] S. Zhou, Z. Sun, H. Ye, A toughness condition for fractional (k, m)-deleted graphs, Information Processing Letters, 113 (2013), 255-259. doi: 10.1016/j.ipl.2013.01.021
    [19] S. Zhou, L. Xu, Z. Xu, Remarks on fractional ID-k-factor-critical graphs, Acta Mathematicae Applicatae Sinica, English Series, 35 (2019), 458-464. doi: 10.1007/s10255-019-0818-6
    [20] S. Zhou, T. Zhang, Some existence theorems on all fractional (g, f)-factors with prescribed properties, Acta Mathematicae Applicatae Sinica, English Series, 34 (2018), 344-350. doi: 10.1007/s10255-018-0753-y
    [21] Y. Yuan, R. Hao, A degree condition for fractional [a, b]-covered graphs, Information Processing Letters, 143 (2019), 20-23. doi: 10.1016/j.ipl.2018.11.002
    [22] S. Zhou, Y. Xu, Z. Sun, Degree conditions for fractional (a, b, k)-critical covered graphs, Information Processing Letters, 152 (2019), Article 105838, DOI: 10.1016/j.ipl.2019.105838.
    [23] Z. Li, G. Yan, X. Zhang, On fractional (g, f)-covered graphs, OR Transactions (China), 6 (2002), 65-68.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3488) PDF downloads(516) Cited by(15)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog