Citation: Xiangyang Lv. A degree condition for fractional (g, f, n)-critical covered graphs[J]. AIMS Mathematics, 2020, 5(2): 872-878. doi: 10.3934/math.2020059
[1] | J. Correa, M. Matamala, Some results about factors of graphs, J. Graph Theory, 57 (2008), 265-274. doi: 10.1002/jgt.20284 |
[2] | J. Li, A new degree condition for graphs to have [a, b]-factor, Discrete Mathematics, 290 (2005), 99-103. doi: 10.1016/j.disc.2004.09.010 |
[3] | S. Zhou, Z. Sun, Z. Xu, A result on r-orthogonal factorizations in digraphs, Eur. J. Combinatorics, 65 (2017), 15-23. doi: 10.1016/j.ejc.2017.05.001 |
[4] | S. Akbari, M. Kano, {k, r - k}-factors of r-regular graphs, Graphs and Combinatorics, 30 (2014), 821-826. doi: 10.1007/s00373-013-1324-x |
[5] | Y. Li, M. Cai, A degree condition for a graph to have [a, b]-factors, J. Graph Theory, 27 (1998), 1-6. doi: 10.1002/(SICI)1097-0118(199801)27:1<1::AID-JGT1>3.0.CO;2-U |
[6] | S. Zhou, Some results about component factors in graphs, RAIRO-Operations Research, 53 (2019), 723-730. doi: 10.1051/ro/2017045 |
[7] | S. Zhou, Z. Sun, Binding number conditions for P≥2-factor and P≥3-factor uniform graphs, Discrete Mathematics, 343 (2020), Article 111715, DOI: 10.1016/j.disc.2019.111715. |
[8] | S. Zhou, Z. Sun, H. Liu, Sun toughness and P≥3-factors in graphs, Contributions to Discrete Mathematics, 14 (2019), 167-174. |
[9] | S. Zhou, Z. Sun, Some existence theorems on path factors with given properties in graphs, Acta Mathematica Sinica, English Series, DOI: 10.1007/s10114-020-9224-5. |
[10] | S. Zhou, T. Zhang, Z. Xu, Subgraphs with orthogonal factorizations in graphs, Discrete Applied Mathematics, DOI: 10.1016/j.dam.2019.12.011. |
[11] | S. Zhou, T. Zhang, L. Xu, A sufficient condition for graphs to have ID-Hamiltonian [a, b]-factors, Utilitas Mathematica, 111 (2019), 261-269. |
[12] | Y. Egawa, M. Kano, Sufficient conditions for graphs to have (g, f)-factors, Discrete Mathematics, 151 (1996), 87-90. doi: 10.1016/0012-365X(94)00085-W |
[13] | K. Ota, T. Tokuda, A degree condition for the existence of regular factors in K1,n-free graphs, J. Graph Theory, 22 (1996), 59-64. doi: 10.1002/(SICI)1097-0118(199605)22:1<59::AID-JGT8>3.0.CO;2-K |
[14] | G. Liu, L. Zhang, Toughness and the existence of fractional k-factors of graphs, Discrete Mathematics, 308 (2008), 1741-1748. doi: 10.1016/j.disc.2006.09.048 |
[15] | J. Jiang, A sufficient condition for all fractional [a, b]-factors in graphs, Proceedings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science, 19 (2018), 315-319. |
[16] | J. Jiang, Independence number and fractional (g, f)-factors with inclusion and exclusion properties, Utilitas Mathematica, 111 (2019), 27-33. |
[17] | S. Zhou, Z. Sun, Neighborhood conditions for fractional ID-k-factor-critical graphs, Acta Mathematicae Applicatae Sinica, English Series, 34 (2018), 636-644. doi: 10.1007/s10255-018-0773-7 |
[18] | S. Zhou, Z. Sun, H. Ye, A toughness condition for fractional (k, m)-deleted graphs, Information Processing Letters, 113 (2013), 255-259. doi: 10.1016/j.ipl.2013.01.021 |
[19] | S. Zhou, L. Xu, Z. Xu, Remarks on fractional ID-k-factor-critical graphs, Acta Mathematicae Applicatae Sinica, English Series, 35 (2019), 458-464. doi: 10.1007/s10255-019-0818-6 |
[20] | S. Zhou, T. Zhang, Some existence theorems on all fractional (g, f)-factors with prescribed properties, Acta Mathematicae Applicatae Sinica, English Series, 34 (2018), 344-350. doi: 10.1007/s10255-018-0753-y |
[21] | Y. Yuan, R. Hao, A degree condition for fractional [a, b]-covered graphs, Information Processing Letters, 143 (2019), 20-23. doi: 10.1016/j.ipl.2018.11.002 |
[22] | S. Zhou, Y. Xu, Z. Sun, Degree conditions for fractional (a, b, k)-critical covered graphs, Information Processing Letters, 152 (2019), Article 105838, DOI: 10.1016/j.ipl.2019.105838. |
[23] | Z. Li, G. Yan, X. Zhang, On fractional (g, f)-covered graphs, OR Transactions (China), 6 (2002), 65-68. |