Citation: Weerawat Sudsutad, Jehad Alzabut, Chutarat Tearnbucha, Chatthai Thaiprayoon. On the oscillation of differential equations in frame of generalized proportional fractional derivatives[J]. AIMS Mathematics, 2020, 5(2): 856-871. doi: 10.3934/math.2020058
[1] | K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations, Wiley, New York, 1993. |
[2] | I. Podlubny, Fractional Differential Equations, Acedemic Press, San Diego, 1999. |
[3] | R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. |
[4] | A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006. |
[5] | V. Lakshmikanthan, S. Leela, J. V. Devi, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009. |
[6] | F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457-3471. doi: 10.1140/epjst/e2018-00021-7 |
[7] | D. R. Anderson, D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl. 10 (2015), 109-137. |
[8] | D. R. Anderson, Second-order self-adjoint differential equations using a proportional-derivative controller, Commun. Appl. Nonlinear Anal., 24 (2017), 17-48. |
[9] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2013), 57-66. |
[10] | R. Khalil, M. Al Horani, A.Yousef, et al. A new Definition Of Fractional Derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002 |
[11] | J. Alzabut, T. Abdeljawad, F. Jarad, et al. A Gronwall inequality via the generalized proportional fractional derivative with applications, J. Inequal. Appl., 2019 (2019), 101. |
[12] | T. Abdeljawad, F. Jarad, S. Mallak, et al. Lyapunov type inequalities via fractional proportional derivatives and application on the free zero disc of Kilbas-Saigo generalized Mittag-Leffler functions, Eur. Phys. J. Plus, 134 (2019), 247. |
[13] | J. Alzabut, W. Sudsutad, Z. Kayar, et al. A new Gronwall-Bellman inequality in a frame of generalized proportional fractional proportional derivative, Mathematics, 7 (2019), 747. |
[14] | N. Sene, J. F. Gómez Aguilar, Fractional mass-spring-damper system described by generalized fractional order derivatives, Fractal Fract., 3 (2019), 39. |
[15] | A. Fleitas, J. F. Gómez Aguilar, J. E. Nápoles Valdés, et al. Analysis of the local Drude model involving the generalized fractional derivative, Optik, 193 (2019), 163008. |
[16] | N. Sene, J. F. Gómez Aguilar, Analytical solutions of electrical circuits considering certain generalized fractional derivatives, Eur. Phys. J. Plus, 134 (2019), 260. |
[17] | S. R. Grace, R. P. Agarwal, P. J. Y. Wong, et al. On the oscillation of fractional differential equations, Fract. Calc. Appl. Anal., 15 (2012), 222-231. |
[18] | D. X. Chen, P. X. Qu, Y. H. Lan, Forced oscillation of certain fractional differential equations, Adv. Differ. Equ., 2013 (2013), 125. |
[19] | J. Alzabut, T. Abdeljawad, Sufficient conditions for the oscillation of nonlinear fractional difference equations, J. Fract. Calc. Appl., 5 (2014), 177-178. |
[20] | B. Abdalla, K. Abodayeh, T. Abdeljawad, et al. New oscillation criteria for forced nonlinear fractional difference equations, Vietnam J. Math., 45 (2017), 609-618. doi: 10.1007/s10013-016-0230-y |
[21] | J. Yang, A. Liu, T. Liu, Forced oscillation of nonlinear fractional differential equations with damping term, Adv. Differ. Equ., 2015 (2015), 1. |
[22] | E. Tunc, O. Tunc, On the oscillation of a class of damped fractional difference equations, Miskolc Math. Notes, 17 (2016), 647-656. doi: 10.18514/MMN.2016.1791 |
[23] | B. Abdalla, On the oscillation of q-fractional differential equations, Adv. Differ. Equ., 2017 (2017), 254. |
[24] | B. Abdalla, Oscillation of differential equations in the frame of nonlocal fractional derivatives generated by conformable derivatives, Adv. Differ. Equ., 2018 (2018), 107. |
[25] | B. Abdalla, J. Alzabut, T. Abdeljawad, On the oscillation of higher order fractional difference equations with mixed nonlinearities, Hacettepe J. Math. Stat., 47 (2018), 207-217. |
[26] | J. Alzabut, T. Abdeljawad, H. Aleabaiah, Oscillation criteria for forced and damped nable fractional difference equations, J. Comput. Anal. Appl., 24 (2018), 1387-1394. |
[27] | S. L. Marian, M. R. Sagayaraj, A. G. M. Selvam, et al. Oscillation of caputo like discrete fractional equations, Int. J. Pure Appl. Math., 89 (2013), 667-677. |
[28] | A. Kilicman, V. Sadhasivamy, M. Deepaz, et al. Oscillatory behavior of three dimensional α-fractional delay differential systems, Symmetry, 10 (2018), 769. |
[29] | J. Shao, Z. Zheng, F. Meng, Oscillation criteria for fractional differential equations with mixed nonlinearlities, Adv. Differ. Equ., 2013 (2013), 323. |
[30] | Q. H. Feng, F. W. Meng, Oscillation of solutions to nonlinear forced fractional differential equations, Electron. J. Differ. Equ., 2013 (2013), 169. |
[31] | Z. I. Han, Y. G. Zhao, Y. Sun, et al. Oscillation for a class of fractional differential equation, Discrete Dyn. Nat. Soc., 2013 (2013), 390282. |
[32] | D. Dawei, Z. Xiaoyun, C. Jinde, et al. Bifurcation control of complex networks model via PD controller, Neurocomputing, 175 (2016), 1-9. doi: 10.1016/j.neucom.2015.09.094 |
[33] | G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, 2 Eds., Cambridge University Press, Cambridge, 1988. |