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Abstract: In this paper, sufficient conditions are established for the oscillation of all solutions of
generalized proportional fractional differential equations of the form aDα,ρx(t) + ξ1(t, x(t)) = µ(t) + ξ2(t, x(t)), t > a ≥ 0,

limt→a+ aI j−α,ρx(t) = b j, j = 1, 2, . . . , n,

where n = dαe, aDα,ρ is the generalized proportional fractional derivative operator of order α ∈ C,
Re(α) ≥ 0, 0 < ρ ≤ 1 in the Riemann-Liouville setting and aIα,ρ is the generalized proportional
fractional integral operator. The results are also obtained for the generalized proportional fractional
differential equations in the Caputo setting. Numerical examples are provided to illustrate the
applicability of the main results.
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1. Introduction

Fractional calculus (FC), dealing with an arbitrary (non-integer) order differential and integral
operators, has played an important role in the development of many fields in science and engineering.
It has been realized that fractional differential equations (FDEs) can provide practical tools when they
are applied to mathematical models that describe natural real world problems. Due to their nonlocal
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character and dependence on history, FDEs have been involved in many topics in physics, biology,
electroanalytical chemistry, medical sciences and economy. For more details and explanations, we
refer the reader to the books [1–5] and references cited therein.

Recently, Jarad et al. [6] introduced a new type of fractional derivative so called generalized
proportional fractional (GPF) derivative generated by local derivatives [7, 8] which are considered as
modification of the conformable derivatives [9, 10]. The peculiarity of the new derivative is that it
involves two fractional order, preserves the semigroup property, possesses nonlocal character and
upon limiting cases it converges to the original function and its derivative. The GPF derivative is well
behaved and has a substantial advantageous over the classical derivatives in the sense that it
generalizes previously defined derivatives in the literature. We list here some recent results which
have been elaborated in frame of GPF derivative [11–13] and other related works (see [14–16]).

The oscillation theory for fractional differential and difference equations has been studied by some
works (see for examples [17–31]). In 2012, Grace et al. [17] first studied the oscillation theory of
solutions for fractional initial value problem of the form aDαx(t) + f1(t, x(t)) = v(t) + f2(t, x(t)), t > a,

limt→a+ aI1−αx(t) = b,
(1.1)

where aDα denotes the Riemann-Liouville fractional derivative starting at a point a, of order α with
α ∈ (0, 1] and aI1−α is the Riemann-Liouville fractional integral starting at a point a, of order 1 − α,
b ∈ R, fi ∈ C([a,∞) × R,R), (i = 1, 2) and v ∈ C([a,∞),R).

In 2013, Chen et al. [18] improved and extended some work in [17] by considering the forced
fractional differential equation with initial conditions of the form aDαx(t) + f1(t, x(t)) = v(t) + f2(t, x(t)), t > a ≥ 0,

aDα−kx(t) = bk, (k = 1, 2, . . . ,m − 1), limt→a+ aIm−αx(t) = bm,
(1.2)

where aDα is the Riemann-Liouville fractional derivative starting at a point a, of order α of x, α ∈
(m − 1,m], m ≥ 1 is an integer, aI1−α is the Riemann-Liouville fractional integral starting at a point a,
of order m − α of x, bk(k = 1, 2, . . . ,m − 1) are/is constants/constant, fi ∈ C([a,∞) × R,R), (i = 1, 2)
and v ∈ C([a,∞),R).

Recently, Abdalla [24] studied the oscillation of a conformable initial value problem of the form aDα,ρx(t) + f1(t, x(t)) = r(t) + f2(t, x(t)), t > a,

limt→a+ aI j−α,ρx(t) = b j, ( j = 1, 2, . . . ,m),
(1.3)

where m = dαe = min{m ∈ Z|m ≥ α}, aDα,ρ is the left conformable derivative of order α ∈ C, Re(α) ≥ 0
in Riemann-Liouville stting and aIα,ρ is the left conformable integral operator.

Motivated by the above papers, the objective of this paper is to establish several oscillation criteria
of solutions for the generalized proportional fractional differential equation with initial conditions of
the form  aDα,ρx(t) + ξ1(t, x(t)) = µ(t) + ξ2(t, x(t)), t > a ≥ 0,

limt→a+ aI j−α,ρx(t) = b j, j = 1, 2, . . . , n,
(1.4)

AIMS Mathematics Volume 5, Issue 2, 856–871.



858

where n = dαe, aDα,ρ denotes the proportional Riemann-Liouville fractional derivative of order α ∈ C
of x, Re(α) ≥ 0, ρ ∈ (0, 1] and aI j−α,ρ denotes the generalized proportional fractional integral of order
j − α ∈ C, b j ∈ R, j = 1, 2, . . . , n, ξi ∈ C([a,∞) × R,R) and µ ∈ C([a,∞),R).

Moreover, we study the oscillation theory of solutions for the generalized proportional fractional
differential equation with initial conditions in the Caputo setting of the form

C
a Dα,ρx(t) + ξ1(t, x(t)) = µ(t) + ξ2(t, x(t)), t > a ≥ 0,

(Dk,ρx)(a) = bk, k = 0, 1, . . . , n − 1,
(1.5)

where n = dαe, C
a Dα,ρ denotes the generalized proportional Caputo fractional derivative of order α ∈ C,

Re(α) ≥ 0, ρ ∈ (0, 1] and Dk,ρ = Dρ Dρ · · ·Dρ︸         ︷︷         ︸
k times

, and Dρ is the proportional derivative.

This paper is organized as follows: Section 2 devoted to providing essential preliminaries on the
GPF derivatives and integrals as well as stating some basic properties and fundamental lemmas that
will be used in the proofs of the main results. In Section 3, the main osillation results are presented.
Finally, numerical examples are provided in Section 4 to explain the applicability of the proven main
results.

2. Preliminaries and background materials

In this section, we introduce some standard definitions and essential lemmas that will be needed to
prove the main results in the remaining part of this paper. For their justifications and proofs, the reader
can consult [6, 33].

In control theory, a proportional derivative controller (PDC) for controller output x at time t with
two tuning parameters has the algorithm

x(t) = κpE(t) + κd
d
dt

E(t),

where κp and κd are the proportional control parameter and the derivative control parameter,
respectively. The function E is the input deviation or the error between the state variable and the
process variable. The recent examinations have represented that PDC has straightway incorporation in
the control of complex networks models; see [32].

For ρ ∈ [0, 1], let the functions κ0, κ1 : [0, 1] × R → [0,∞) be continuous such that for all t ∈ R we
have

lim
ρ→0+

κ1(ρ, t) = 1, lim
ρ→0+

κ0(ρ, t) = 0, lim
ρ→1−

κ1(ρ, t) = 0, lim
ρ→1−

κ0(ρ, t) = 1,

and κ1(ρ, t) , 0, ρ ∈ [0, 1), κ0(ρ, t) , 0, ρ ∈ (0, 1]. Then, Anderson et al. in [7] defined the proportional
derivative of order ρ by

Dρξ(t) = κ1(ρ, t)ξ(t) + κ0(ρ, t)ξ′(t). (2.1)

provided that the right-hand side exists at t ∈ R and ξ′ := d
dtξ(t). κ1 is a type of proportional gain κp,

κ0 is a type of derivative gain κd, ξ is the error and x = Dρξ is the controller output. The reader can
study the paper [8] for more information about the control theory of the proportional derivative and its
component functions. We shall restrict ourselves to the case when κ1(ρ, t) = 1 − ρ and κ0(ρ, t) = ρ.
Thus, (2.1) becomes

Dρξ(t) = (1 − ρ)ξ(t) + ρξ′(t). (2.2)
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It is easily to see that limρ→0+ Dρξ(t) = ξ(t) and limρ→1− Dρξ(t) = ξ′(t). Therefore, (2.2) is analyzed to
be more general than the conformable derivative which evidently does not tend to the original functions
as ρ tends to 0.

Firstly, we give the definition of GPF integral as the following.

Definition 2.1. [6] For ρ ∈ (0, 1], α ∈ C and Re(α) > 0, the GPF integral of ξ of order α is

aIα,ρξ(t) =
1

ραΓ(α)

∫ t

a
e
ρ−1
ρ (t−s)(t − s)α−1ξ(s)ds = ρ−αe

ρ−1
ρ t

aIα
(
e

1−ρ
ρ tξ(t)

)
, (2.3)

where aIα is Riemann–Liouville fractional integral.

We define the GPF derivatives of Riemann–Liouville and Caputo types as follows.

Definition 2.2. [6] For ρ ∈ (0, 1], α ∈ C with Re(α) ≥ 0 and n = [Re(α)] + 1, then the GPF derivative
of Riemann–Liouville type of ξ of order α is

aDα,ρξ(t) = Dn,ρ
aIn−α,ρξ(t) =

Dn,ρ
t

ρn−αΓ(n − α)

∫ t

a
e
ρ−1
ρ (t−s)(t − s)n−α−1ξ(s)ds, (2.4)

where [Re(α)] represents the integer part of the real number α.

Definition 2.3. [6] For ρ ∈ (0, 1], α ∈ C with Re(α) ≥ 0, the GPF derivative of Caputo type of ξ of
order α is

C
a Dα,ρ

ξ(t) =
1

ρn−αΓ(n − α)

∫ t

a
e
ρ−1
ρ (t−s)(t − s)n−α−1Dn,ρξ(s)ds, (2.5)

where n = [Re(α)] + 1 and [Re(α)] represents the integer part of the real number α.

Lemma 2.4. [6] Let Re(α) > 0, n = [Re(α)], ξ ∈ L1(a, b), aIα,ρ f (t) ∈ ACn[a, b] and ρ ∈ (0, 1]. Then

aIα,ρaDα,ρξ(t) = ξ(t) − e
ρ−1
ρ (t−a)

n∑
j=1

aI j−α,ρξ(a+)
ρα− jΓ(α + 1 − j)

(t − a)α− j. (2.6)

Lemma 2.5. [6] For ρ ∈ (0, 1] and n = [Re(α)] + 1, we have (C
a Dα,ρ

aIα,ρξ)(t) = ξ(t), and

aIα,ρ C
a Dα,ρξ(t) = ξ(t) −

n−1∑
k=0

(Dk,ρξ)(a)
ρkk!

(t − a)ke
ρ−1
ρ (t−a). (2.7)

Proposition 2.6. [6] Let α, β ∈ C be such that Re(α) ≥ 0 and Re(β) > 0. Then, for any ρ ∈ (0, 1] and
n = [Re(α)] + 1, we have

(i)
(

aIα,ρe
ρ−1
ρ t(t − a)β−1)(x) =

Γ(β)
Γ(β+α)ρα e

ρ−1
ρ x(x − a)β+α−1, Re(α) > 0.

(ii)
(C

a Dα,ρe
ρ−1
ρ t(t − a)β−1)(x) =

ραΓ(β)
Γ(β−α)e

ρ−1
ρ x(x − a)β−α−1, Re(α) > n.

(iii)
(C

a Dα,ρe
ρ−1
ρ t(t − a)k)(x) = 0, Re(α) > n, k = 0, 1, . . . , n − 1.

Lemma 2.7. [33] The inequality of Young.

(i) Let A, B ≥ 0, p > 1 and 1
p + 1

q = 1 then AB ≤ 1
p Ap + 1

q Bq, where the equality holds if and only if
B = Ap−1.
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(ii) Let A ≥ 0, B > 0, 0 < p < 1 and 1
p + 1

q = 1 then AB ≥ 1
p Ap + 1

q Bq, where the equality holds if and
only if B = Ap−1.

The solution x of the problem (1.4) (the problem (1.5)) is siad to be oscillatory if it has arbitrarily
large zeros on (0,∞); otherwise, it is called nonoscillatory. An equation is said to be oscillatory if all
of its solutions are oscillatory.

3. Oscillation criteria

To obtain oscillation criteria of the main results, we list the following assumptions to prove our
results:

(H1) xξi(t, x) > 0, i = 1, 2, x , 0, t > 0,
(H2) |ξ1(t, x)| ≥ σ1(t)|x|β and |ξ2(t, x)| ≤ σ2(t)|x|γ, x , 0, t ≥ 0,
(H3) |ξ1(t, x)| ≤ σ1(t)|x|β and |ξ2(t, x)| ≥ σ2(t)|x|γ, x , 0, t ≥ 0,

where σ1, σ2 ∈ C([0,∞), (0,∞)) and β, γ are positive real numbers.
For the sake of computational convenience, we define

φ(t) = Γ(α)e
ρ−1
ρ (t−a)

n∑
j=1

ρ j
aI j−α,ρx(a+)

Γ(α + 1 − j)
(t − a)α− j, (3.1)

ψ(t, τ1) =

∫ τ1

a
e
ρ−1
ρ (t−s)(t − s)α−1H(s, x(s))ds, (3.2)

λ(t) = ραΓ(α)e
ρ−1
ρ (t−a)

n−1∑
k=0

(Dk,ρ f )(a)
ρkk!

(t − a)k. (3.3)

3.1. Oscillation criterias of the GPF differential equations in Riemann type

In this section, we study the oscillation theory for the problem (1.4). By using Lemma 2.4, the
solution of the problem (1.4) can be represented by

x(t) = e
ρ−1
ρ (t−a)

n∑
j=1

aI j−α,ρx(a+)
ρα− jΓ(α + 1 − j)

(t − a)α− j + aIα,ρH(t, x(t)), (3.4)

where H(t, x(t)) = µ(t) − ξ1(t, x(t)) + ξ2(t, x(t)) and H(a, x(a)) = 0.

Theorem 3.1. Let ξ2 = 0 in the problem (1.4) and the assumption (H1) hold. If

lim inf
t→∞

t1−α
∫ t

τ

e
ρ−1
ρ (t−s)(t − s)α−1µ(s)ds = −∞, (3.5)

and

lim sup
t→∞

t1−α
∫ t

τ

e
ρ−1
ρ (t−s)(t − s)α−1µ(s)ds = ∞, (3.6)

for every sufficiently large τ, then every solution of the problem (1.4) is oscillatory.
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Proof. Let x(t) be a non-oscillatory solution of the problem (1.4) with ξ2 = 0. Assume that x(t) is an
eventually positive solution of the problem (1.4). Then there exists a point τ1 > a is large enough such
that x(t) > 0 for t ≥ τ1. Hence, the assumption (H1) implies that ξ1(t, x) > 0 for t ≥ τ1. From (3.4), we
have

ραΓ(α)x(t) ≤ Γ(α)e
ρ−1
ρ (t−a)

n∑
j=1

ρ j
aI j−α,ρx(a+)

Γ(α + 1 − j)
(t − a)α− j

+

∫ τ1

a
e
ρ−1
ρ (t−s)(t − s)α−1H(s, x(s))ds +

∫ t

τ1

e
ρ−1
ρ (t−s)(t − s)α−1µ(s)ds,

where H(t, x(t)) = µ(t) − ξ1(t, x(t)) + ξ2(t, x(t)). Using (3.1) and (3.2), we get

ραΓ(α)x(t) ≤ φ(t) + ψ(t, τ1) +

∫ t

τ1

e
ρ−1
ρ (t−s)(t − s)α−1µ(s)ds. (3.7)

Multiplying t1−α into both sides of (3.7), we obtain

0 < t1−αραΓ(α)x(t) ≤ t1−αφ(t) + t1−αψ(t, τ1) + t1−α
∫ t

τ1

e
ρ−1
ρ (t−s)(t − s)α−1µ(s)ds. (3.8)

Let τ2 > τ1. We divided the proof into two cases as follows:
Case I. Let 0 < α ≤ 1. Then n = 1 and t1−αφ(t) = ρb1e

ρ−1
ρ (t−a)

(
t−a

t

)α−1
. Since the function r1(t) =

e
ρ−1
ρ (t−a)

(
t−a

t

)α−1
is decreasing for 0 < ρ, α ≤ 1, we observe that for t ≥ τ2,

∣∣∣t1−αφ(t)
∣∣∣ =

∣∣∣∣∣ρb1e
ρ−1
ρ (t−a)

( t − a
t

)α−1∣∣∣∣∣ ≤ ρ|b1|e
ρ−1
ρ (τ2−a)

(
τ2 − a
τ2

)α−1

:= ω1(τ2). (3.9)

The function r2(t) = e
ρ−1
ρ (t−s)

(
t−a

t

)α−1
is decreasing for 0 < ρ, α ≤ 1, we get, for t ≥ τ2,

∣∣∣t1−αψ(t, τ1)
∣∣∣ =

∣∣∣∣∣t1−α
∫ τ1

a
e
ρ−1
ρ (t−s)(t − s)α−1[µ(s) − ξ1(s, x(s)) + ξ2(s, x(s))]ds

∣∣∣∣∣
≤

∫ τ1

a
e
ρ−1
ρ (t−s)

( t − s
t

)α−1
|µ(s) − ξ1(s, x(s)) + ξ2(s, x(s))|ds

≤

∫ τ1

a
e
ρ−1
ρ (τ2−s)

(
τ2 − s
τ2

)α−1

|µ(s) − ξ1(s, x(s)) + ξ2(s, x(s))|ds

:= ω2(τ1, τ2). (3.10)

From (3.8), (3.9) and (3.10), we get, for t ≥ τ2,

t1−α
∫ t

τ1

e
ρ−1
ρ (t−s)(t − s)α−1µ(s)ds ≥ −[ω1(τ2) + ω2(τ1, τ2)].

Since, the right hand side of the above inequality is a negative constant, we conclude that

lim inf
t→∞

t1−α
∫ t

T ∗
e
ρ−1
ρ (t−s)(t − s)α−1µ(s)ds ≥ −[ω1(τ2) + ω2(τ1, τ2)] > −∞,
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which leads to a contradiction with the assumption (3.5).
Case II. Let α > 1. Then n ≥ 2. Also e

ρ−1
ρ (t−a)

(
t−a

t

)α−1
≤ 1 for α > 1 and 0 < ρ ≤ 1. The function

r3(t) = (t − a)1− j is decreasing for j > 1. Thus, for t ≥ τ2, we get

∣∣∣t1−αφ(t)
∣∣∣ =

∣∣∣∣∣∣∣t1−αΓ(α)e
ρ−1
ρ (t−a)

n∑
j=1

ρ j
aI j−α,ρx(a+)

Γ(α + 1 − j)
(t − a)α− j

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣e ρ−1
ρ (t−a)

( t − a
t

)α−1
Γ(α)

n∑
j=1

ρ jb j(t − a)1− j

Γ(α + 1 − j)

∣∣∣∣∣∣∣
≤ Γ(α)

n∑
j=1

ρ j|b j|(t − a)1− j

Γ(α + 1 − j)

≤ Γ(α)
n∑

j=1

ρ j|b j|(τ2 − a)1− j

Γ(α + 1 − j)
:= ω3(τ2). (3.11)

Since e
ρ−1
ρ (t−a)

(
t−a

t

)α−1
≤ 1 for α > 1 and 0 < ρ ≤ 1, we also have

∣∣∣t1−αψ(t, τ1)
∣∣∣ =

∣∣∣∣∣∫ τ1

a
e
ρ−1
ρ (t−s)

( t − s
t

)α−1
[µ(s) − ξ1(s, x(s)) + ξ2(s, x(s))]ds

∣∣∣∣∣
≤

∫ τ1

a
|µ(s) − ξ1(s, x(s)) + ξ2(s, x(s))|ds := ω4(τ1). (3.12)

From (3.8), (3.11) and (3.12), we have, for t ≥ τ2,

t1−α
∫ t

τ1

e
ρ−1
ρ (t−s)(t − s)α−1µ(s)ds ≥ −[ω3(τ2) + ω4(τ1)],

Since, the right hand side of the above inequality is a negative constant, we conclude that

lim inf
t→∞

t1−α
∫ t

τ1

e
ρ−1
ρ (t−s)(t − s)α−1µ(s)ds ≥ −[ω3(τ2) + ω4(τ1)] > −∞,

which contradicts the assumption (3.5).
Hence, we can conclude that the solution x(t) is oscillatory. In case x(t) is an eventually negative

solution of the problem (1.4), similar arguments may by applied to a contradiction with the assumption
(3.6). �

Theorem 3.2. Let the assumptions (H1) and (H2) hold with β > γ. If

lim inf
t→∞

t1−α
∫ t

τ

e
ρ−1
ρ (t−s)(t − s)α−1[µ(s) + K(s)]ds = −∞, (3.13)

and

lim sup
t→∞

t1−α
∫ t

τ

e
ρ−1
ρ (t−s)(t − s)α−1[µ(s) − K(s)]ds = ∞, (3.14)
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for every sufficiently large τ, where

K(t) =
β − γ

γ
[σ1(t)]

γ
γ−β

[
γσ2(t)
β

] β
β−γ

, (3.15)

then every solution of the problem (1.4) is oscillatory.

Proof. we prove by contradiction process. Let x(t) be a non-oscillatory solution of the problem (1.4)
with x(t) > 0 for t ≥ τ1 > a. Using the assumptions (H2) and (H3), we have

ξ2(s, x) − ξ1(s, x) ≤ σ2(s)xγ(s) − σ1(s)xβ(s).

Let A = xγ(s) and B =
γσ2(s)
βσ1(s) , p =

β

γ
and q =

β

β−γ
, then from the part (i) of Lemma 2.7 we get

σ2(s)xγ(s) − σ1(s)xβ(s) =
βσ1(s)
γ

[
xγ(s)

γσ2(s)
βσ1(s)

−
γ

β
(xγ(s))

β
γ

]
=

βσ1(s)
γ

[
AB −

1
p

Ap

]
≤

βσ1(s)
γ
·

1
q

Bq

=
β − γ

γ
[σ1(s)]

γ
γ−β

[
γσ2(s)
β

] β
β−γ

:= K(s), (3.16)

where K is defined by (3.15). Then from the Eq. (3.4), we obtain

ραΓ(α)x(t) = φ(t) + ψ(t, τ1) +

∫ t

τ1

e
ρ−1
ρ (t−s)(t − s)α−1[µ(s) − ξ1(s, x(s)) + ξ2(s, x(s))]ds

≤ φ(t) + ψ(t, τ1) +

∫ t

τ1

e
ρ−1
ρ (t−s)(t − s)α−1

[
µ(s) + σ2(s)xγ(s) − σ1(s)xβ(s)

]
ds

≤ φ(t) + ψ(t, τ1) +

∫ t

τ1

e
ρ−1
ρ (t−s)(t − s)α−1 [

µ(s) + K(s)
]
ds. (3.17)

The remaining part of the proof is the same as that of Theorem 3.1 and hence is omitted. �

Theorem 3.3. Let α ≥ 1 and suppose that the assumptions (H1) and (H3) hold with β < γ. If

lim sup
t→∞

t1−α
∫ t

τ

e
ρ−1
ρ (t−s)(t − s)α−1[µ(s) + K(s)]ds = −∞, (3.18)

and

lim inf
t→∞

t1−α
∫ t

τ

e
ρ−1
ρ (t−s)(t − s)α−1[µ(s) − K(s)]ds = ∞, (3.19)

for every sufficiently large τ, where K is defined by (3.15), then every bounded solution of the problem
(1.4) is oscillatory.
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Proof. Let x(t) be a bounded non-oscillatory solution of the problem (1.4). Then there exist positive
constants m and M such that

m ≤ x(t) ≤ M, and t ≥ a. (3.20)

Assume that x(t) is a bounded eventually positive solution of the problem (1.4). Then there exists τ1 > a
such that x(t) > 0 for t ≥ τ1 > a. Using the assumptions (H1) and (H3), we get ξ2(s, x) − ξ1(s, x) ≥
σ2(s)xγ(s) − σ1(s)xβ(s). Applying Lemma 2.7 (ii) and similar to the proof of (3.16), we find that

σ2(s)xγ(t) − σ1(s)xβ(s) ≥ K(s), s ≥ τ1.

From (3.4) and similar to (3.17), we obtain

ραΓ(α)x(t) ≥ φ(t) + ψ(t, τ1) +

∫ t

τ1

e
ρ−1
ρ (t−s)(t − s)α−1 [

µ(s) + K(s)
]
ds.

Multiplying by t1−α, we get

t1−αραΓ(α)x(t) ≥ t1−αφ(t) + t1−αψ(t, τ1) + t1−α
∫ t

τ1

e
ρ−1
ρ (t−s)(t − s)α−1 [

µ(s) + K(s)
]
ds. (3.21)

Take τ2 > τ1. We consider two cases as follows.
Case I. Let 0 < α ≤ 1. Then (3.9) and (3.10) are still correct. Thus, from (3.21) and using (3.20),

we compute that

MραΓ(α) ≥ t1−αραΓ(α)x(t)

≥ −ω1(τ2) − ω2(τ1, τ2) + t1−α
∫ t

τ1

e
ρ−1
ρ (t−s)(t − s)α−1 [

µ(s) + K(s)
]
ds

for t ≥ τ2. Then, we get

lim sup
t→∞

t1−α
∫ t

τ1

e
ρ−1
ρ (t−s)(t − s)α−1 [

µ(s) + K(s)
]
ds ≤ ω1(τ2) + ω2(τ1, τ2) + MραΓ(α) < ∞,

which leads to a contradiction with the assumption (3.18).
Case II. Let α > 1. Then (3.11) and (3.12) are still correct. Hence, from (3.21) and using (3.20), we

calculate that

MραΓ(α)t1−α ≥ −ω3(τ2) − ω4(τ1) + t1−α
∫ t

τ1

e
ρ−1
ρ (t−s)(t − s)α−1 [

µ(s) + K(s)
]
ds,

for t ≥ τ2. Since limt→∞ t1−α = 0 for α > 1, hence, we conclude that

lim sup
t→∞

t1−α
∫ t

τ1

e
ρ−1
ρ (t−s)(t − s)α−1 [

µ(s) + K(s)
]
ds ≤ +ω3(τ2) + ω4(τ1) < ∞,

which gives a contradiction with the assumption (3.18). Therefore, we conclude that x(t) is
oscillatory. In case x(t) is eventually bounded negative, similar arguments lead to a contradiction with
the assumption (3.19). �
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3.2. Oscillation criterias of the GPF differential equations in Caputo type

In this section, we study the oscillation theory for the problem (1.5). By using Lemma 2.5, the
solution of the problem (1.5) can be written as

x(t) = e
ρ−1
ρ (t−a)

n−1∑
k=0

(Dk,ρx)(a)
ρkk!

(t − a)k + aIα,ρH(t, x(t)), (3.22)

where H(t, x(t)) = µ(t) − ξ1(t, x(t)) + ξ2(t, x(t)) and H(a, x(a)) = 0.

Theorem 3.4. Let ξ2 = 0 in (1.5) and the assumption (H1) hold. If

lim inf
t→∞

t1−n
∫ t

τ

e
ρ−1
ρ (t−s)(t − s)α−1µ(s)ds = −∞, (3.23)

and

lim sup
t→∞

t1−n
∫ t

τ

e
ρ−1
ρ (t−s)(t − s)α−1µ(s)ds = ∞, (3.24)

for every sufficiently large τ, then every solution of the problem (1.5) is oscillatory.

Proof. Let x(t) be a non-oscillatory solution of the problem (1.5). Assume that x(t) is an eventually
positive solution of the problem (1.5). Then there exists a point τ1 > a such that x(t) > 0 for t ≥ τ1.
Hence, the assumption (H1) implies that ξ1(t, x(t)) > 0 for t ≥ τ1. From (3.22), we have

ραΓ(α)x(t) ≤ ραΓ(α)e
ρ−1
ρ (t−a)

n−1∑
k=0

(Dk,ρx)(a)
ρkk!

(t − a)k

+

∫ τ1

a
e
ρ−1
ρ (t−s)(t − s)α−1H(s, x(s))ds +

∫ t

τ1

e
ρ−1
ρ (t−s)(t − s)α−1µ(s)ds,

where H(t, x(t)) = µ(t) − ξ1(t, x(t)) + ξ2(t, x(t)). Using (3.2) and (3.3), we get that

ραΓ(α)x(t) ≤ λ(t) + ψ(t, τ1) +

∫ t

τ1

e
ρ−1
ρ (t−s)(t − s)α−1µ(s)ds, (3.25)

where ψ and λ are defined by (3.2) and (3.3), respectively.
Multiplying t1−n into both sides of (3.25), we obtain

0 < t1−nραΓ(α)x(t) ≤ t1−nλ(t) + t1−nψ(t, τ1) + t1−n
∫ t

τ1

e
ρ−1
ρ (t−s)(t − s)α−1µ(s)ds. (3.26)

Let τ2 > τ1. We divided the proof into two cases as follows:
Case I. Let 0 < α ≤ 1. Then n = 1 and t1−nλ(t) = b0ρ

αΓ(α)e
ρ−1
ρ (t−a). Since the function q1(t) =

e
ρ−1
ρ (t−a) is decreasing for 0 < ρ ≤ 1, we observe that, for t ≥ τ2 > s,∣∣∣t1−nλ(t)

∣∣∣ =
∣∣∣∣b0ρ

αΓ(α)e
ρ−1
ρ (t−a)

∣∣∣∣ ≤ |b0|ρ
αe

ρ−1
ρ (τ2−a) := θ1(τ2). (3.27)
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The function q2(t) = e
ρ−1
ρ (t−s)(t − s)α−1 is decreasing for 0 < ρ ≤ 1 and 0 < α ≤ 1, we get, for

t ≥ τ2 > s, ∣∣∣t1−nψ(t, τ1)
∣∣∣ =

∣∣∣∣∣t1−n
∫ τ1

a
e
ρ−1
ρ (t−s)(t − s)α−1[µ(s) − ξ1(s, x(s)) + ξ2(s, x(s))]ds

∣∣∣∣∣
≤

∫ τ1

a
e
ρ−1
ρ (t−s)(t − s)α−1|µ(s) − ξ1(s, x(s)) + ξ2(s, x(s))|ds

≤

∫ τ1

a
e
ρ−1
ρ (τ2−s)(τ2 − s)α−1|µ(s) − ξ1(s, x(s)) + ξ2(s, x(s))|ds

:= θ2(τ1, τ2). (3.28)

From (3.26), (3.27) and (3.28), we get, for t ≥ τ2,

t1−n
∫ t

τ1

e
ρ−1
ρ (t−s)(t − s)α−1µ(s)ds ≥ −[θ1(τ2) + θ2(τ1, τ2)],

then,

lim inf
t→∞

t1−n
∫ t

τ1

e
ρ−1
ρ (t−s)(t − s)α−1µ(s)ds ≥ −[θ1(τ2) + θ2(τ1, τ2)] > −∞,

which leads to a contradiction with the assumption (3.23).
Case II. Let α > 1. Then n ≥ 2. Also e

ρ−1
ρ (t−a)

(
t−a

t

)n−1
≤ 1 for α > 1 and 0 < ρ ≤ 1. The function

q3(t) = (t − a)k−n+1 is decreasing for k > n − 1 and 0 < ρ ≤ 1. Thus, for t ≥ τ2, we have

∣∣∣t1−nλ(t)
∣∣∣ =

∣∣∣∣∣∣∣t1−nραΓ(α)e
ρ−1
ρ (t−a)

n−1∑
k=0

(Dk,ρx)(a)
ρkk!

(t − a)k

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣ραΓ(α)e
ρ−1
ρ (t−a)

( t − a
t

)n−1 n−1∑
k=0

(Dk,ρx)(a)
ρkk!

(t − a)k−n+1

∣∣∣∣∣∣∣
≤ ραΓ(α)

n−1∑
k=0

∣∣∣(Dk,ρx)(a)
∣∣∣

ρkk!
(t − a)k−n+1

≤ ραΓ(α)
n−1∑
k=0

∣∣∣(Dk,ρx)(a)
∣∣∣

ρkk!
(τ2 − a)k−n+1

:= θ3(τ2). (3.29)

Also, since e
ρ−1
ρ (t−a)

(
t−a

t

)α−1
≤ 1 for α > 1 and 0 < ρ ≤ 1, we get∣∣∣t1−nψ(t, τ1)

∣∣∣ ≤ ω4(τ1).

From (3.26) and (3.29), we get a contradiction the assumption (3.23). Therefore, we can conclude
that the solution x(t) is oscillatory. In case x(t) is an eventually negative solution of the problem (1.5),
similar arguments may by applied to achieve a contradiction with the assumption (3.24). �

By employing similar arguments to proofs of Theorem 3.5 and Theorem 3.6, we can prove the
following results. Hence, we stated the following two theorems without proofs.
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Theorem 3.5. Let the assumptions (H1) and (H2) hold with β > γ. If

lim inf
t→∞

t1−n
∫ t

τ

e
ρ−1
ρ (t−s)(t − s)α−1[µ(s) + K(s)]ds = −∞, (3.30)

and

lim sup
t→∞

t1−n
∫ t

τ

e
ρ−1
ρ (t−s)(t − s)α−1[µ(s) − K(s)]ds = ∞, (3.31)

for every sufficiently large τ, where K is defined by (3.15), then every solution of the problem (1.5) is
oscillatory.

Theorem 3.6. Let α ≥ 1 and suppose that the assumptions (H1) and (H3) hold with β < γ. If

lim sup
t→∞

t1−n
∫ t

τ

e
ρ−1
ρ (t−s)(t − s)α−1[µ(s) + K(s)]ds = −∞, (3.32)

and

lim inf
t→∞

t1−n
∫ t

τ

e
ρ−1
ρ (t−s)(t − s)α−1[µ(s) − K(s)]ds = ∞, (3.33)

for every sufficiently large τ, where K is defined by (3.15), then every bounded solution of the problem
(1.5) is oscillatory.

4. Numerical examples

In this section, we build three numerical examples for the sake of understanding the applicability of
our theoretical results.

Example 4.1. Consider the following GPF differential equation in the Riemann–Liouville setting aDα,ρx(t) + x5(t) = ρα sin t,

limt→a+ aI1−α,ρx(t) = 0, 0 < α < 1, ρ > 0,
(4.1)

where ξ1(t, x) = x5(t), ξ2(t, x) = 0 and µ(t) = ρα sin t. Then the assumption (H1) holds. Moreover, it is
easily to check that

lim inf
t→∞

t1−αρα
∫ t

τ

e
ρ−1
ρ (t−s)(t − s)α−1 sin(s)ds = −∞,

and

lim sup
t→∞

t1−αρα
∫ t

τ

e
ρ−1
ρ (t−s)(t − s)α−1 sin(s)ds = ∞,

This shows that the conditions (3.13) and (3.14) of Theorem 3.1 hold. Therefore, we can conclude that
every solution of the problem (4.1) is oscillatory.
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Example 4.2. Consider the following GPF differential equation in the Riemann–Liouville setting
aDα,ρx(t) + x3(t)e

ρ−1
3ρ t ln(t + e) =

2ραe
ρ−1
ρ t(t−a)2−α

Γ(3−α)

+
[
(t − a)6 − (t − a)0.5

]
ln(t + e) + x0.25(t)e

4(ρ−1)
ρ t ln(t + e),

limt→a+ aI1−α,ρx(t) = b1,

(4.2)

where n = 1, ξ1(t, x) = x3(t)e
ρ−1
3ρ t ln(t + e), ξ2(t, x) = x0.25(t)e

4(ρ−1)
ρ t ln(t + e) and µ(t) = 2ραe

ρ−1
ρ t(t −

a)2−α/Γ(3 − α) + [(t − a)6 − (t − a)0.5] ln(t + e). It is easy to verify that the assumptions (H1) and (H2)
are satisfied for β = 3, γ = 0.25 and σ1(t) = σ2(t) = ln(t + e). However, we show in the following that
assumption (3.18) does not hold. For every sufficiently large τ ≥ 1 and all t ≥ τ, we have µ(t) > 0.
Calculating K(t) is defined by (3.15), we find that K(t) = (11)(12)−

12
11 ln(t + e) ≥ 0.74. Then, using

Proposition 2.6 (i) with b = 1, we get

lim inf
t→∞

t1−α
∫ t

τ

e
ρ−1
ρ (t−s)(t − s)α−1[µ(s) + K(s)]ds

≥ lim inf
t→∞

t1−α
∫ t

τ

e
ρ−1
ρ (t−s)(t − s)α−1K(s)ds

≥ lim inf
t→∞

0.74 t1−α
∫ t

τ

e
ρ−1
ρ (t−s)(t − s)α−1e

ρ−1
ρ t(s − τ)0ds

= lim inf
t→∞

0.74 t1−αραΓ(α)
(

T ∗ Iα,ρe
ρ−1
ρ s(s − τ)0)(t)

= lim inf
t→∞

0.74 t
α

e
ρ−1
ρ t

( t − τ
t

)α
= ∞.

However, using Proposition 2.6 (i) with β = 1, one can easily verify that x(t) = e
ρ−1
ρ t(t − a)2 is a

nonoscillatiory solution of (4.2). The initial condition is also satisfied bacause

(
aI1−α,ρe

ρ−1
ρ s(s − a)2)(t) =

2ρα−1e
ρ−1
ρ t(t − a)3−α

Γ(4 − α)

and (
aDα,ρe

ρ−1
ρ s(s − a)2)(t) =

2ραe
ρ−1
ρ t(t − a)2−α

Γ(3 − α)
.

Example 4.3. Consider the following GPF differential equation in the Caputo setting
C
a Dα,ρx(t) +

√
2etx5(t) =

3
√
πραe

ρ−1
ρ t(t−a)

3
2 −α

4Γ( 5
2−α)

+
√

2etx3(t)(t − a)15,

x(a) = 0, 0 < α < 1, ρ > 0,
(4.3)

where ξ1(t, x) =
√

2etx5(t), ξ2(t, x) =
√

2etx3(t)(t − a)15 and µ(t) =
3
√
πραe

ρ−1
ρ t(t−a)

3
2 −α

4Γ( 5
2−α)

. The assumption
(H1) is satisfied. However, the condition (3.23) does not hold since

lim inf
t→∞

t1−n
∫ t

τ

e
ρ−1
ρ (t−s)(t − s)α−1µ(s)ds ≥ lim inf

t→∞

∫ t

τ

e
ρ−1
ρ (t−s)(t − s)α−1(s − τ)0ds
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= lim inf
t→∞

ραΓ(α)e
ρ−1
ρ t(t − τ)α

= ∞.

Using Proposition 2.6 (ii) with β = 5
2 , and the fact that

C
a Dα,ρx(t) =

3
√
πραe

ρ−1
ρ t(t − a)

3
2−α

4Γ( 5
2 − α)

,

one can eaily check that x(t) = e
ρ−1
ρ t(t − a)

3
2 is a nonoscillatory solution of (4.3).

5. Conclusion

In this paper, some oscillation criteria for a type of fractional differential equations have been
established. The main results are obtained in frame of the new defined GPF derivative and within the
Riemann and Caputo type settings. The GPF derivative has many advantages over the existing
derivatives in the literature and thus it operates as an extension and a complement to previously
defined fractional derivatives. Numerical examples are presented to demonstrate the effectiveness of
theoretical findings. Moreover, counter examples are constructed to show the existence of a
nonoscillatory solution in case the proposed assumptions do not hold. It would be of great interest to
investigate in future the oscillation of GPF differential equations within Hadamard type derivative or
other types of new fractional derivatives.
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