Mathematics
http://www.aimspress.com/journal/Math

Research article

A degree condition for fractional (g, f, n)-critical covered graphs

Xiangyang Lv*

School of Economics and management, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China

* Correspondence: Email: xiangyanglv@yeah.net; Tel: +8613952892158; Fax: +8651184448789.

Abstract

A graph G is called a fractional (g, f)-covered graph if for any $e \in E(G), G$ admits a fractional (g, f)-factor covering e. A graph G is called a fractional (g, f, n)-critical covered graph if for any $W \subseteq V(G)$ with $|W|=n, G-W$ is a fractional (g, f)-covered graph. In this paper, we demonstrate that a graph G of order p is a fractional (g, f, n)-critical covered graph if $p \geq \frac{(a+b)(a+b+n+1)-(b-m) n+2}{a+m}$, $\delta(G) \geq \frac{(b-m)(b+1)+2}{a+m}+n$ and for every pair of nonadjacent vertices u and v of $G, \max \left\{d_{G}(u), d_{G}(v)\right\} \geq$ $\frac{(b-m) p+(a+m) n+2}{a+b}$, where g and f are integer-valued functions defined on $V(G)$ satisfying $a \leq g(x) \leq$ $f(x)-m \leq b-m$ for every $x \in V(G)$.

Keywords: graph; degree condition; fractional (g, f)-factor; fractional (g, f)-covered graph; fractional (g, f, n)-critical covered graph
Mathematics Subject Classification: 05C70, 90B99

1. Introduction

All graphs considered here are finite, undirected and simple. Let G be a graph. The vertex set and the edge set of G are denoted by $V(G)$ and $E(G)$, respectively. Let $d_{G}(x)$ denote the degree of a vertex x in G, and $N_{G}(x)$ denote the neighborhood of a vertex x in G. Set $N_{G}[x]=N_{G}(x) \cup\{x\}$. Let X be a vertex subset of G. We use $G[X]$ to denote the subgraph of G induced by X, and write $G-X=G[V(G) \backslash X]$. If no two vertices in X are adjacent, then we call X an independent set of G.

For two integer-valued functions g and f with $f(x) \geq g(x) \geq 0$ for any $x \in V(G)$, a (g, f)-factor of G is defined as a spanning subgraph F of G such that $g(x) \leq d_{F}(x) \leq f(x)$ for any $x \in V(G)$. Let $E_{x}=\{e: e=x y \in E(G)\}$. A fractional (g, f)-indicator function is a function h that assigns each edge of G to a number in $[0,1]$ so that $g(x) \leq \sum_{e \in E_{x}} h(e) \leq f(x)$ for every $x \in V(G)$. Let h be a fractional (g, f)-indicator function of G. Write $E_{h}=\{e: e \in E(G), h(e) \neq 0\}$. If G_{h} is a spanning subgraph of G with $E\left(G_{h}\right)=E_{h}$, then G_{h} is called a fractional (g, f)-factor of G. If $h(e) \in\{0,1\}$ for any $e \in E(G)$, then G_{h} is just a (g, f)-factor of G. A graph G is said to be a fractional (g, f)-covered graph if for any
$e \in E(G)$, there exists a fractional (g, f)-factor G_{h} satisfying $h(e)=1$. If $g(x)=a$ and $f(x)=b$ for any $x \in V(G)$, then a fractional (g, f)-covered graph is called a fractional $[a, b]$-covered graph. A fractional [$k, k]$-covered graph is simply called a fractional k-covered graph. A graph G is said to be a fractional (g, f, n)-critical covered graph if $G-W$ is a fractional (g, f)-covered graph for any $W \subseteq V(G)$ with $|W|=n$. If $g(x)=a$ and $f(x)=b$ for any $x \in V(G)$, then a fractional (g, f, n)-critical covered graph is called a fractional (a, b, n)-critical covered graph. A fractional (k, k, n)-critical covered graph is simply called a fractional (k, n)-critical covered graph.

In recent years, the problems related to factors and fractional factors of graphs have raised attention in computer networks and graph theory. Correa and Matamala [1] gave some results about factors of graphs. Li [2] studied [a,b]-factors of $K_{1, t}$-free graphs. Zhou, Sun and Xu [3] obtained a result on the existence of edge-disjoint factors in digraphs. Akbari and Kano [4] discussed the existence of factors in r-regular graphs. Li and Cai [5] derived a degree condition for graphs to have [a,b]factors. Zhou et al [6-11] gained some results on factors of graphs. Egawa and Kano [12] posed some sufficient conditions for graphs to admit (g, f)-factors. Ota and Tokuda [13] considered the existence of regular factors in $K_{1, n}$-free graphs. Liu and Zhang [14] investigated the existence of fractional factors in graphs. Jiang [15, 16] discussed fractional factors of graphs. Zhou et al. [17-20] verified some results on fractional factors of graphs. Yuan and Hao [21] showed a degree condition for a graph to be a fractional $[a, b]$-covered graph. Zhou, Xu and Sun [22] improved and extended the result, and presented a degree condition for a graph to be a fractional (a, b, n)-critical covered graph.
Theorem 1 ([22]). Let a, b and n be integers with $n \geq 0, a \geq 1$ and $b \geq \max \{2, a\}$, and let G be a graph of order p with $p \geq \frac{(a+b)(a+b-1)+b n+3}{b}$. If $\delta(G) \geq a+n+1$ and

$$
\max \left\{d_{G}(u), d_{G}(v)\right\} \geq \frac{a p+b n+2}{a+b}
$$

for every pair of nonadjacent vertices u and v of G, then G is a fractional (a, b, n)-critical covered graph.
In this paper, we extend Theorem 1 to fractional (g, f, n)-critical covered graph, and derive the following result.
Theorem 2. Let a, b, m and n be integers satisfying $m \geq 0, n \geq 0, a \geq 1$ and $b \geq a+m$, let G be a graph of order p with $p \geq \frac{(a+b)(a+b+n+1)-(b-m) n+2}{a+m}$, and let g and f be integer-valued functions defined on $V(G)$ satisfying $a \leq g(x) \leq f(x)-m \leq b-m$ for every $x \in V(G)$. If $\delta(G) \geq \frac{(b-m)(b+1)+2}{a+m}+n$ and for every pair of nonadjacent vertices u and v of G,

$$
\max \left\{d_{G}(u), d_{G}(v)\right\} \geq \frac{(b-m) p+(a+m) n+2}{a+b},
$$

then G is a fractional (g, f, n)-critical covered graph.
The following result holds if setting $m=0$ in Theorem 2.
Corollary 1. Let a, b and n be integers satisfying $n \geq 0$ and $b \geq a \geq 1$, let G be a graph of order p with $p \geq \frac{(a+b)(a+b+n+1)-b n+2}{a}$, and let g and f be integer-valued functions defined on $V(G)$ satisfying $a \leq g(x) \leq f(x) \leq b$ for every $x \in V(G)$. If $\delta(G) \geq \frac{b(b+1)+2}{a}+n$ and for every pair of nonadjacent vertices u and v of G,

$$
\max \left\{d_{G}(u), d_{G}(v)\right\} \geq \frac{b p+a n+2}{a+b}
$$

then G is a fractional (g, f, n)-critical covered graph.
The following result holds if setting $n=0$ in Theorem 2 .
Corollary 2. Let a, b and m be integers satisfying $m \geq 0, a \geq 1$ and $b \geq a+m$, let G be a graph of order p with $p \geq \frac{(a+b)(a+b+1)+2}{a+m}$, and let g and f be integer-valued functions defined on $V(G)$ satisfying $a \leq g(x) \leq f(x)-m \leq b-m$ for every $x \in V(G)$. If $\delta(G) \geq \frac{(b-m)(b+1)+2}{a+m}$ and for every pair of nonadjacent vertices u and v of G,

$$
\max \left\{d_{G}(u), d_{G}(v)\right\} \geq \frac{(b-m) p+2}{a+b}
$$

then G is a fractional (g, f)-covered graph.

2. Proof of Theorem 2

The following theorem derived by Li , Yan and Zhang [23] is essential to the proof of Theorem 2.
Theorem 3 ([23]). Let G be a graph, and let g and f be integer-valued functions defined on $V(G)$ satisfying $0 \leq g(x) \leq f(x)$ for any $x \in V(G)$. Then G is a fractional (g, f)-covered graph if and only if

$$
\delta_{G}(S, T)=f(S)+d_{G-S}(T)-g(T) \geq \varepsilon(S)
$$

for each $S \subseteq V(G)$, where $T=\left\{x: x \in V(G) \backslash S, d_{G-S}(x) \leq g(x)\right\}$ and $\varepsilon(S)$ is defined by

$$
\varepsilon(S)= \begin{cases}2, & \text { if } S \text { is not independent, } \\ 1, & \text { if } S \text { is independent and there is an edge joining } \\ S \text { and } V(G) \backslash(S \cup T), \text { or there is an edge } e=u v \\ & \text { joining } S \text { and } T \text { such that } d_{G-S}(v)=g(v) \text { for } \\ v \in T, \\ 0, & \text { otherwise. }\end{cases}
$$

We now verify Theorem 2. Let $H=G-W$ for any $W \subseteq V(G)$ with $|W|=n$. In order to justify Theorem 2, it suffices to show that H is a fractional (g, f)-covered graph. Suppose that H is not a fractional (g, f)-covered graph. Then by Theorem 3, there exists some subset S of $V(H)$ such that

$$
\begin{equation*}
\delta_{H}(S, T)=f(S)+d_{H-S}(T)-g(T) \leq \varepsilon(S)-1, \tag{2.1}
\end{equation*}
$$

where $T=\left\{x: x \in V(H) \backslash S, d_{H-S}(x) \leq g(x)\right\}$.
If $T=\emptyset$, then using (2.1) and $\varepsilon(S) \leq|S|$ we derive $\varepsilon(S)-1 \geq \delta_{H}(S, T)=f(S) \geq(a+m)|S| \geq|S| \geq$ $\varepsilon(S)$, a contradiction. Therefore, we admit $T \neq \emptyset$. Next, we define

$$
d_{1}=\min \left\{d_{H-S}(x): x \in T\right\}
$$

and select $x_{1} \in T$ with $d_{H-S}\left(x_{1}\right)=d_{1}$. Note that $d_{1} \leq d_{H-S}(x) \leq g(x) \leq b-m$ holds for any $x \in T$. We shall discuss two cases.
Case 1. $T=N_{H[T]}\left[x_{1}\right]$.
It follows from $0 \leq d_{1} \leq b-m,|S|+d_{1}=|S|+d_{H-S}\left(x_{1}\right) \geq d_{H}\left(x_{1}\right)=d_{G-W}\left(x_{1}\right) \geq d_{G}\left(x_{1}\right)-|W| \geq$ $\delta(G)-n \geq \frac{(b-m)(b+1)+2}{a+m},|T|=\left|N_{H[T]}\left[x_{1}\right]\right| \leq d_{H-S}\left(x_{1}\right)+1=d_{1}+1 \leq b-m+1$ and $\varepsilon(S) \leq 2$ that

$$
\delta_{H}(S, T)=f(S)+d_{H-S}(T)-g(T)
$$

$$
\begin{aligned}
& \geq(a+m)|S|+d_{H-S}(T)-(b-m)|T| \\
& =(a+m)|S|+d_{1}|T|-(b-m)|T| \\
& \geq(a+m)\left(\frac{(b-m)(b+1)+2}{a+m}-d_{1}\right)-\left(b-m-d_{1}\right)(b-m+1) \\
& =\left(b-m-d_{1}\right) m+2+(b-a-m+1) d_{1} \\
& \geq 2 \geq \varepsilon(S),
\end{aligned}
$$

which contradicts (2.1).
Case 2. $T \neq N_{H[T]}\left[x_{1}\right]$.
Obviously, $T \backslash N_{H[T]}\left[x_{1}\right] \neq \emptyset$. We may define

$$
d_{2}=\min \left\{d_{H-S}(x): x \in T \backslash N_{H[T]}\left[x_{1}\right]\right\}
$$

and select $x_{2} \in T \backslash N_{H[T]}\left[x_{1}\right]$ with $d_{H-S}\left(x_{2}\right)=d_{2}$. It is clear that $0 \leq d_{1} \leq d_{2} \leq b-m$ holds.
Note that $x_{1} x_{2} \notin E(H)$. Thus, we easily see that $x_{1} x_{2} \notin E(G)$. According to the hypothesis of Theorem 2 and $H=G-W$, the following inequalities hold:

$$
\begin{aligned}
\frac{(b-m) p+(a+m) n+2}{a+b} & \leq \max \left\{d_{G}\left(x_{1}\right), d_{G}\left(x_{2}\right)\right\} \\
& =\max \left\{d_{H+W}\left(x_{1}\right), d_{H+W}\left(x_{2}\right)\right\} \\
& \leq \max \left\{d_{H}\left(x_{1}\right)+n, d_{H}\left(x_{2}\right)+n\right\} \\
& =\max \left\{d_{H}\left(x_{1}\right), d_{H}\left(x_{2}\right)\right\}+n \\
& \leq \max \left\{d_{H-S}\left(x_{1}\right)+|S|, d_{H-S}\left(x_{2}\right)+|S|\right\}+n \\
& =\max \left\{d_{H-S}\left(x_{1}\right), d_{H-S}\left(x_{2}\right)\right\}+|S|+n \\
& =\max \left\{d_{1}, d_{2}\right\}+|S|+n \\
& =d_{2}+|S|+n,
\end{aligned}
$$

namely,

$$
\begin{equation*}
|S| \geq \frac{(b-m) p-(b-m) n+2}{a+b}-d_{2} . \tag{2.2}
\end{equation*}
$$

Note that $p-n-|S|-|T| \geq 0$ and $b-m-d_{2} \geq 0$. Thus, we derive $(p-n-|S|-|T|)\left(b-m-d_{2}\right) \geq 0$. Combining this inequality with (2.1) and $\varepsilon(S) \leq 2$, we obtain

$$
\begin{aligned}
& (p-n-|S|-|T|)\left(b-m-d_{2}\right) \geq 0 \geq \varepsilon(S)-2 \geq \delta_{H}(S, T)-1 \\
= & f(S)+d_{H-S}(T)-g(T)-1 \\
\geq & (a+m)|S|+d_{1}\left|N_{H[T]}\left[x_{1}\right]\right|+d_{2}\left(|T|-\left|N_{H[T]}\left[x_{1}\right]\right|\right)-(b-m)|T|-1 \\
= & (a+m)|S|+\left(d_{1}-d_{2}\right)\left|N_{H[T]}\left[x_{1}\right]\right|-\left(b-m-d_{2}\right)|T|-1 \\
\geq & (a+m)|S|+\left(d_{1}-d_{2}\right)\left(d_{1}+1\right)-\left(b-m-d_{2}\right)|T|-1,
\end{aligned}
$$

where $|T| \geq\left|N_{H[T]}\left[x_{1}\right]\right|+1, d_{1}-d_{2} \leq 0$ and $\left|N_{H[T]}\left[x_{1}\right]\right| \leq d_{1}+1$. Then from the above inequality we get

$$
\begin{equation*}
-1 \leq(p-n)\left(b-m-d_{2}\right)-\left(a+b-d_{2}\right)|S|-\left(d_{1}-d_{2}\right)\left(d_{1}+1\right) \tag{2.3}
\end{equation*}
$$

It follows from (2.2), (2.3), $0 \leq d_{1} \leq d_{2} \leq b-m$ and $p \geq \frac{(a+b)(a+b+n+1)-(b-m) n+2}{a+m}$ that

$$
-1 \leq(p-n)\left(b-m-d_{2}\right)-\left(a+b-d_{2}\right)|S|-\left(d_{1}-d_{2}\right)\left(d_{1}+1\right)
$$

$$
\begin{aligned}
\leq & (p-n)\left(b-m-d_{2}\right)-\left(a+b-d_{2}\right)\left(\frac{(b-m) p-(b-m) n+2}{a+b}-d_{2}\right) \\
& -\left(d_{1}-d_{2}\right)\left(d_{1}+1\right) \\
= & -\frac{(a+m) p+(b-m) n-2}{a+b} d_{2}+(a+b+n+1) d_{2}-d_{1}\left(d_{1}+1\right) \\
& +d_{2}\left(d_{1}-d_{2}\right)-2 \\
\leq & -\frac{(a+m) p+(b-m) n-2}{a+b} d_{2}+(a+b+n+1) d_{2}-2 \\
\leq & -\frac{(a+b)(a+b+n+1)-(b-m) n+2+(b-m) n-2}{a+b} d_{2} \\
& +(a+b+n+1) d_{2}-2 \\
= & -2,
\end{aligned}
$$

which is a contradiction. Theorem 2 is proved.

3. Remark

Let us explain that $\max \left\{d_{G}(u), d_{G}(v)\right\} \geq \frac{(b-m) p+(a+m) n+2}{a+b}$ in Theorem 2 is best possible, namely, it can not be replaced by $\max \left\{d_{G}(u), d_{G}(v)\right\} \geq \frac{(b-m) p+(a+m) n+2}{a+b}-1$. Let $b=a+m, g(x) \equiv b-m$ and $f(x) \equiv a+m$. We construct a graph $G=K_{(b-m) t+n} \vee\left((a+m) t K_{1}\right)$ with order p, where \vee means "join". Then $p=(a+b) t+n$ and

$$
\begin{aligned}
\frac{(b-m) p+(a+m) n+2}{a+b}-1 & \leq \max \left\{d_{G}(u), d_{G}(v)\right\} \\
& =(b-m) t+n \\
& =\frac{(b-m) p+(a+m) n}{a+b} \\
& <\frac{(b-m) p+(a+m) n+2}{a+b}
\end{aligned}
$$

for every pair of nonadjacent vertices u and v of G. Let $W=V\left(K_{n}\right) \subseteq V\left(K_{(b-m) t+n}\right)$ and $H=G-W=$ $K_{(b-m) t} \vee\left((a+m) t K_{1}\right)$. Select $S=V\left(K_{(b-m) t}\right)$ and $T=V\left((a+m) t K_{1}\right)$, and $\varepsilon(S)=2$. Thus, we derive

$$
\begin{aligned}
\delta_{H}(S, T) & =f(S)+d_{H-S}(T)-g(T) \\
& =(a+m)|S|-(b-m)|T| \\
& =(a+m)(b-m) t-(b-m)(a+m) t \\
& =0<2=\varepsilon(S)
\end{aligned}
$$

In light of Theorem 3, H is not a fractional (g, f)-covered graph, and so G is not a fractional (g, f) critical covered graph.

4. Conclusions

In this paper, we investigate the relationship between degree conditions and the existence of fractional (g, f, n)-critical covered graphs. A sufficient condition for a graph being a fractional
(g, f, n)-critical covered graph is derived. Furthermore, the sharpness of the main result in this paper is illustrated by constructing a special graph class. In addition, some other graph parameter conditions for graphs being fractional (g, f, n)-critical covered graphs can be studied further.

Acknowledgments

The author would like to thank an anonymous referee for his or her valuable comments and suggestions on an earlier version of this paper.

Conflict of interest

The author declares no conflict of interest in this paper.

References

1. J. Correa, M. Matamala, Some results about factors of graphs, J. Graph Theory, 57 (2008), 265-274.
2. J. Li, A new degree condition for graphs to have $[a, b]$-factor, Discrete Mathematics, 290 (2005), 99-103.
3. S. Zhou, Z. Sun, Z. Xu, A result on r-orthogonal factorizations in digraphs, Eur. J. Combinatorics, 65 (2017), 15-23.
4. S. Akbari, M. Kano, $\{k, r-k\}$-factors of r-regular graphs, Graphs and Combinatorics, $\mathbf{3 0}$ (2014), 821-826.
5. Y. Li, M. Cai, A degree condition for a graph to have $[a, b]$-factors, J. Graph Theory, 27 (1998), 1-6.
6. S. Zhou, Some results about component factors in graphs, RAIRO-Operations Research, 53 (2019), 723-730.
7. S. Zhou, Z. Sun, Binding number conditions for $P_{\geq 2}$-factor and $P_{\geq 3}$-factor uniform graphs, Discrete Mathematics, 343 (2020), Article 111715, DOI: 10.1016/j.disc.2019.111715.
8. S. Zhou, Z. Sun, H. Liu, Sun toughness and $P_{\geq 3}$-factors in graphs, Contributions to Discrete Mathematics, 14 (2019), 167-174.
9. S. Zhou, Z. Sun, Some existence theorems on path factors with given properties in graphs, Acta Mathematica Sinica, English Series, DOI: 10.1007/s10114-020-9224-5.
10. S. Zhou, T. Zhang, Z. Xu, Subgraphs with orthogonal factorizations in graphs, Discrete Applied Mathematics, DOI: 10.1016/j.dam.2019.12.011.
11. S. Zhou, T. Zhang, L. Xu, A sufficient condition for graphs to have ID-Hamiltonian $[a, b]$-factors, Utilitas Mathematica, 111 (2019), 261-269.
12. Y. Egawa, M. Kano, Sufficient conditions for graphs to have (g, f)-factors, Discrete Mathematics, 151 (1996), 87-90.
13. K. Ota, T. Tokuda, A degree condition for the existence of regular factors in $K_{1, n}$-free graphs, J. Graph Theory, 22 (1996), 59-64.
14. G. Liu, L. Zhang, Toughness and the existence of fractional k-factors of graphs, Discrete Mathematics, 308 (2008), 1741-1748.
15. J. Jiang, A sufficient condition for all fractional $[a, b]$-factors in graphs, Proceedings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science, 19 (2018), 315-319.
16. J. Jiang, Independence number and fractional (g, f)-factors with inclusion and exclusion properties, Utilitas Mathematica, 111 (2019), 27-33.
17. S. Zhou, Z. Sun, Neighborhood conditions for fractional ID-k-factor-critical graphs, Acta Mathematicae Applicatae Sinica, English Series, 34 (2018), 636-644.
18. S. Zhou, Z. Sun, H. Ye, A toughness condition for fractional (k, m)-deleted graphs, Information Processing Letters, 113 (2013), 255-259.
19. S. Zhou, L. Xu, Z. Xu, Remarks on fractional ID-k-factor-critical graphs, Acta Mathematicae Applicatae Sinica, English Series, 35 (2019), 458-464.
20. S. Zhou, T. Zhang, Some existence theorems on all fractional (g, f)-factors with prescribed properties, Acta Mathematicae Applicatae Sinica, English Series, 34 (2018), 344-350.
21. Y. Yuan, R. Hao, A degree condition for fractional $[a, b]$-covered graphs, Information Processing Letters, 143 (2019), 20-23.
22. S. Zhou, Y. Xu, Z. Sun, Degree conditions for fractional (a, b, k)-critical covered graphs, Information Processing Letters, 152 (2019), Article 105838, DOI: 10.1016/j.ipl.2019.105838.
23. Z. Li, G. Yan, X. Zhang, On fractional (g, f)-covered graphs, OR Transactions (China), 6 (2002), 65-68.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
