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Abstract: A graph G is called a fractional (g, f )-covered graph if for any e ∈ E(G), G admits a
fractional (g, f )-factor covering e. A graph G is called a fractional (g, f , n)-critical covered graph if for
any W ⊆ V(G) with |W | = n, G −W is a fractional (g, f )-covered graph. In this paper, we demonstrate
that a graph G of order p is a fractional (g, f , n)-critical covered graph if p ≥ (a+b)(a+b+n+1)−(b−m)n+2

a+m ,
δ(G) ≥ (b−m)(b+1)+2

a+m + n and for every pair of nonadjacent vertices u and v of G, max{dG(u), dG(v)} ≥
(b−m)p+(a+m)n+2

a+b , where g and f are integer-valued functions defined on V(G) satisfying a ≤ g(x) ≤
f (x) − m ≤ b − m for every x ∈ V(G).
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1. Introduction

All graphs considered here are finite, undirected and simple. Let G be a graph. The vertex set and
the edge set of G are denoted by V(G) and E(G), respectively. Let dG(x) denote the degree of a vertex x
in G, and NG(x) denote the neighborhood of a vertex x in G. Set NG[x] = NG(x)∪{x}. Let X be a vertex
subset of G. We use G[X] to denote the subgraph of G induced by X, and write G − X = G[V(G) \ X].
If no two vertices in X are adjacent, then we call X an independent set of G.

For two integer-valued functions g and f with f (x) ≥ g(x) ≥ 0 for any x ∈ V(G), a (g, f )-factor
of G is defined as a spanning subgraph F of G such that g(x) ≤ dF(x) ≤ f (x) for any x ∈ V(G). Let
Ex = {e : e = xy ∈ E(G)}. A fractional (g, f )-indicator function is a function h that assigns each edge
of G to a number in [0, 1] so that g(x) ≤

∑
e∈Ex

h(e) ≤ f (x) for every x ∈ V(G). Let h be a fractional

(g, f )-indicator function of G. Write Eh = {e : e ∈ E(G), h(e) , 0}. If Gh is a spanning subgraph of
G with E(Gh) = Eh, then Gh is called a fractional (g, f )-factor of G. If h(e) ∈ {0, 1} for any e ∈ E(G),
then Gh is just a (g, f )-factor of G. A graph G is said to be a fractional (g, f )-covered graph if for any
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e ∈ E(G), there exists a fractional (g, f )-factor Gh satisfying h(e) = 1. If g(x) = a and f (x) = b for any
x ∈ V(G), then a fractional (g, f )-covered graph is called a fractional [a, b]-covered graph. A fractional
[k, k]-covered graph is simply called a fractional k-covered graph. A graph G is said to be a fractional
(g, f , n)-critical covered graph if G − W is a fractional (g, f )-covered graph for any W ⊆ V(G) with
|W | = n. If g(x) = a and f (x) = b for any x ∈ V(G), then a fractional (g, f , n)-critical covered graph is
called a fractional (a, b, n)-critical covered graph. A fractional (k, k, n)-critical covered graph is simply
called a fractional (k, n)-critical covered graph.

In recent years, the problems related to factors and fractional factors of graphs have raised attention
in computer networks and graph theory. Correa and Matamala [1] gave some results about factors
of graphs. Li [2] studied [a, b]-factors of K1,t-free graphs. Zhou, Sun and Xu [3] obtained a result
on the existence of edge-disjoint factors in digraphs. Akbari and Kano [4] discussed the existence
of factors in r-regular graphs. Li and Cai [5] derived a degree condition for graphs to have [a, b]-
factors. Zhou et al [6–11] gained some results on factors of graphs. Egawa and Kano [12] posed some
sufficient conditions for graphs to admit (g, f )-factors. Ota and Tokuda [13] considered the existence of
regular factors in K1,n-free graphs. Liu and Zhang [14] investigated the existence of fractional factors
in graphs. Jiang [15, 16] discussed fractional factors of graphs. Zhou et al. [17–20] verified some
results on fractional factors of graphs. Yuan and Hao [21] showed a degree condition for a graph to
be a fractional [a, b]-covered graph. Zhou, Xu and Sun [22] improved and extended the result, and
presented a degree condition for a graph to be a fractional (a, b, n)-critical covered graph.

Theorem 1 ( [22]). Let a, b and n be integers with n ≥ 0, a ≥ 1 and b ≥ max{2, a}, and let G be a graph
of order p with p ≥ (a+b)(a+b−1)+bn+3

b . If δ(G) ≥ a + n + 1 and

max{dG(u), dG(v)} ≥
ap + bn + 2

a + b

for every pair of nonadjacent vertices u and v of G, then G is a fractional (a, b, n)-critical covered graph.

In this paper, we extend Theorem 1 to fractional (g, f , n)-critical covered graph, and derive the
following result.

Theorem 2. Let a, b,m and n be integers satisfying m ≥ 0, n ≥ 0, a ≥ 1 and b ≥ a + m, let G be a graph
of order p with p ≥ (a+b)(a+b+n+1)−(b−m)n+2

a+m , and let g and f be integer-valued functions defined on V(G)
satisfying a ≤ g(x) ≤ f (x)−m ≤ b−m for every x ∈ V(G). If δ(G) ≥ (b−m)(b+1)+2

a+m + n and for every pair
of nonadjacent vertices u and v of G,

max{dG(u), dG(v)} ≥
(b − m)p + (a + m)n + 2

a + b
,

then G is a fractional (g, f , n)-critical covered graph.

The following result holds if setting m = 0 in Theorem 2.

Corollary 1. Let a, b and n be integers satisfying n ≥ 0 and b ≥ a ≥ 1, let G be a graph of order
p with p ≥ (a+b)(a+b+n+1)−bn+2

a , and let g and f be integer-valued functions defined on V(G) satisfying
a ≤ g(x) ≤ f (x) ≤ b for every x ∈ V(G). If δ(G) ≥ b(b+1)+2

a + n and for every pair of nonadjacent
vertices u and v of G,

max{dG(u), dG(v)} ≥
bp + an + 2

a + b
,
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then G is a fractional (g, f , n)-critical covered graph.

The following result holds if setting n = 0 in Theorem 2.

Corollary 2. Let a, b and m be integers satisfying m ≥ 0, a ≥ 1 and b ≥ a + m, let G be a graph of
order p with p ≥ (a+b)(a+b+1)+2

a+m , and let g and f be integer-valued functions defined on V(G) satisfying
a ≤ g(x) ≤ f (x)−m ≤ b−m for every x ∈ V(G). If δ(G) ≥ (b−m)(b+1)+2

a+m and for every pair of nonadjacent
vertices u and v of G,

max{dG(u), dG(v)} ≥
(b − m)p + 2

a + b
,

then G is a fractional (g, f )-covered graph.

2. Proof of Theorem 2

The following theorem derived by Li, Yan and Zhang [23] is essential to the proof of Theorem 2.

Theorem 3 ( [23]). Let G be a graph, and let g and f be integer-valued functions defined on V(G)
satisfying 0 ≤ g(x) ≤ f (x) for any x ∈ V(G). Then G is a fractional (g, f )-covered graph if and only if

δG(S ,T ) = f (S ) + dG−S (T ) − g(T ) ≥ ε(S )

for each S ⊆ V(G), where T = {x : x ∈ V(G) \ S , dG−S (x) ≤ g(x)} and ε(S ) is defined by

ε(S ) =



2, i f S is not independent,
1, i f S is independent and there is an edge joining

S and V(G) \ (S ∪ T ), or there is an edge e = uv
joining S and T such that dG−S (v) = g(v) f or
v ∈ T,

0, otherwise.

We now verify Theorem 2. Let H = G − W for any W ⊆ V(G) with |W | = n. In order to justify
Theorem 2, it suffices to show that H is a fractional (g, f )-covered graph. Suppose that H is not a
fractional (g, f )-covered graph. Then by Theorem 3, there exists some subset S of V(H) such that

δH(S ,T ) = f (S ) + dH−S (T ) − g(T ) ≤ ε(S ) − 1, (2.1)

where T = {x : x ∈ V(H) \ S , dH−S (x) ≤ g(x)}.
If T = ∅, then using (2.1) and ε(S ) ≤ |S | we derive ε(S )− 1 ≥ δH(S ,T ) = f (S ) ≥ (a + m)|S | ≥ |S | ≥

ε(S ), a contradiction. Therefore, we admit T , ∅. Next, we define

d1 = min{dH−S (x) : x ∈ T }

and select x1 ∈ T with dH−S (x1) = d1. Note that d1 ≤ dH−S (x) ≤ g(x) ≤ b − m holds for any x ∈ T . We
shall discuss two cases.
Case 1. T = NH[T ][x1].

It follows from 0 ≤ d1 ≤ b − m, |S | + d1 = |S | + dH−S (x1) ≥ dH(x1) = dG−W(x1) ≥ dG(x1) − |W | ≥
δ(G) − n ≥ (b−m)(b+1)+2

a+m , |T | = |NH[T ][x1]| ≤ dH−S (x1) + 1 = d1 + 1 ≤ b − m + 1 and ε(S ) ≤ 2 that

δH(S ,T ) = f (S ) + dH−S (T ) − g(T )
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≥ (a + m)|S | + dH−S (T ) − (b − m)|T |
= (a + m)|S | + d1|T | − (b − m)|T |

≥ (a + m)
( (b − m)(b + 1) + 2

a + m
− d1

)
− (b − m − d1)(b − m + 1)

= (b − m − d1)m + 2 + (b − a − m + 1)d1

≥ 2 ≥ ε(S ),

which contradicts (2.1).
Case 2. T , NH[T ][x1].

Obviously, T \ NH[T ][x1] , ∅. We may define

d2 = min{dH−S (x) : x ∈ T \ NH[T ][x1]}

and select x2 ∈ T \ NH[T ][x1] with dH−S (x2) = d2. It is clear that 0 ≤ d1 ≤ d2 ≤ b − m holds.
Note that x1x2 < E(H). Thus, we easily see that x1x2 < E(G). According to the hypothesis of

Theorem 2 and H = G −W, the following inequalities hold:

(b − m)p + (a + m)n + 2
a + b

≤ max{dG(x1), dG(x2)}

= max{dH+W(x1), dH+W(x2)}
≤ max{dH(x1) + n, dH(x2) + n}

= max{dH(x1), dH(x2)} + n

≤ max{dH−S (x1) + |S |, dH−S (x2) + |S |} + n

= max{dH−S (x1), dH−S (x2)} + |S | + n

= max{d1, d2} + |S | + n

= d2 + |S | + n,

namely,

|S | ≥
(b − m)p − (b − m)n + 2

a + b
− d2. (2.2)

Note that p−n− |S | − |T | ≥ 0 and b−m−d2 ≥ 0. Thus, we derive (p−n− |S | − |T |)(b−m−d2) ≥ 0.
Combining this inequality with (2.1) and ε(S ) ≤ 2, we obtain

(p − n − |S | − |T |)(b − m − d2) ≥ 0 ≥ ε(S ) − 2 ≥ δH(S ,T ) − 1
= f (S ) + dH−S (T ) − g(T ) − 1
≥ (a + m)|S | + d1|NH[T ][x1]| + d2(|T | − |NH[T ][x1]|) − (b − m)|T | − 1
= (a + m)|S | + (d1 − d2)|NH[T ][x1]| − (b − m − d2)|T | − 1
≥ (a + m)|S | + (d1 − d2)(d1 + 1) − (b − m − d2)|T | − 1,

where |T | ≥ |NH[T ][x1]|+ 1, d1 − d2 ≤ 0 and |NH[T ][x1]| ≤ d1 + 1. Then from the above inequality we get

− 1 ≤ (p − n)(b − m − d2) − (a + b − d2)|S | − (d1 − d2)(d1 + 1). (2.3)

It follows from (2.2), (2.3), 0 ≤ d1 ≤ d2 ≤ b − m and p ≥ (a+b)(a+b+n+1)−(b−m)n+2
a+m that

−1 ≤ (p − n)(b − m − d2) − (a + b − d2)|S | − (d1 − d2)(d1 + 1)
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≤ (p − n)(b − m − d2) − (a + b − d2)
( (b − m)p − (b − m)n + 2

a + b
− d2

)
−(d1 − d2)(d1 + 1)

= −
(a + m)p + (b − m)n − 2

a + b
d2 + (a + b + n + 1)d2 − d1(d1 + 1)

+d2(d1 − d2) − 2

≤ −
(a + m)p + (b − m)n − 2

a + b
d2 + (a + b + n + 1)d2 − 2

≤ −
(a + b)(a + b + n + 1) − (b − m)n + 2 + (b − m)n − 2

a + b
d2

+(a + b + n + 1)d2 − 2
= −2,

which is a contradiction. Theorem 2 is proved. �

3. Remark

Let us explain that max{dG(u), dG(v)} ≥ (b−m)p+(a+m)n+2
a+b in Theorem 2 is best possible, namely, it

can not be replaced by max{dG(u), dG(v)} ≥ (b−m)p+(a+m)n+2
a+b − 1. Let b = a + m, g(x) ≡ b − m and

f (x) ≡ a + m. We construct a graph G = K(b−m)t+n ∨ ((a + m)tK1) with order p, where ∨ means “join”.
Then p = (a + b)t + n and

(b − m)p + (a + m)n + 2
a + b

− 1 ≤ max{dG(u), dG(v)}

= (b − m)t + n

=
(b − m)p + (a + m)n

a + b

<
(b − m)p + (a + m)n + 2

a + b

for every pair of nonadjacent vertices u and v of G. Let W = V(Kn) ⊆ V(K(b−m)t+n) and H = G −W =

K(b−m)t ∨ ((a + m)tK1). Select S = V(K(b−m)t) and T = V((a + m)tK1), and ε(S ) = 2. Thus, we derive

δH(S ,T ) = f (S ) + dH−S (T ) − g(T )
= (a + m)|S | − (b − m)|T |
= (a + m)(b − m)t − (b − m)(a + m)t
= 0 < 2 = ε(S ).

In light of Theorem 3, H is not a fractional (g, f )-covered graph, and so G is not a fractional (g, f )-
critical covered graph.

4. Conclusions

In this paper, we investigate the relationship between degree conditions and the existence of
fractional (g, f , n)-critical covered graphs. A sufficient condition for a graph being a fractional

AIMS Mathematics Volume 5, Issue 2, 872–878.



877

(g, f , n)-critical covered graph is derived. Furthermore, the sharpness of the main result in this paper
is illustrated by constructing a special graph class. In addition, some other graph parameter conditions
for graphs being fractional (g, f , n)-critical covered graphs can be studied further.
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