Research article Special Issues

A posteriori grid method for a time-fractional Black-Scholes equation

  • Received: 26 July 2022 Revised: 10 December 2022 Accepted: 19 December 2022 Published: 27 December 2022
  • MSC : 65M06, 65M12, 65M15

  • In this paper, a posteriori grid method for solving a time-fractional Black-Scholes equation governing European options is studied. The possible singularity of the exact solution complicates the construction of the discretization scheme for the time-fractional Black-Scholes equation. The $ L1 $ method on an arbitrary grid is used to discretize the time-fractional derivative and the central difference method on a piecewise uniform grid is used to discretize the spatial derivatives. Stability properties and a posteriori error analysis for the discrete scheme are studied. Then, an adapted a posteriori grid is constructed by using a grid generation algorithm based on a posteriori error analysis. Numerical experiments show that the $ L1 $ method on an adapted a posteriori grid is more accurate than the method on the uniform grid.

    Citation: Zhongdi Cen, Jian Huang, Aimin Xu. A posteriori grid method for a time-fractional Black-Scholes equation[J]. AIMS Mathematics, 2022, 7(12): 20962-20978. doi: 10.3934/math.20221148

    Related Papers:

  • In this paper, a posteriori grid method for solving a time-fractional Black-Scholes equation governing European options is studied. The possible singularity of the exact solution complicates the construction of the discretization scheme for the time-fractional Black-Scholes equation. The $ L1 $ method on an arbitrary grid is used to discretize the time-fractional derivative and the central difference method on a piecewise uniform grid is used to discretize the spatial derivatives. Stability properties and a posteriori error analysis for the discrete scheme are studied. Then, an adapted a posteriori grid is constructed by using a grid generation algorithm based on a posteriori error analysis. Numerical experiments show that the $ L1 $ method on an adapted a posteriori grid is more accurate than the method on the uniform grid.



    加载中


    [1] N. Abdi, H. Aminikhah, A. H. R. Sheikhani, High-order compact finite difference schemes for the time-fractional Black-Scholes model governing European options, Chaos Soliton. Fract., 162 (2022), 112423. http://doi.org/10.1016/j.chaos.2022.112423 doi: 10.1016/j.chaos.2022.112423
    [2] X. An, F. Liu, M. Zheng, V. V. Anh, I. W. Turner, A space-time spectral method for time-fractional Black-Scholes equation, Appl. Numer. Math., 165 (2021), 152–166. http://doi.org/10.1016/j.apnum.2021.02.009 doi: 10.1016/j.apnum.2021.02.009
    [3] F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637–654. http://doi.org/10.1086/260062 doi: 10.1086/260062
    [4] A. Cartea, D. del-Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps, Physica A, 374 (2007), 749–763. http://doi.org/10.1016/j.physa.2006.08.071 doi: 10.1016/j.physa.2006.08.071
    [5] Z. Cen, J. Huang, A. Xu, A. Le, Numerical approximation of a time-fractional Black-Scholes equation, Comput. Math. Appl., 75 (2018), 2874–2887. http://doi.org/10.1016/j.camwa.2018.01.016 doi: 10.1016/j.camwa.2018.01.016
    [6] Z. Cen, A. Le, A robust and accurate finite difference method for a generalized Black-Scholes equation, J. Comput. Appl. Math., 235 (2011), 3728–2733. http://doi.org/10.1016/j.cam.2011.01.018 doi: 10.1016/j.cam.2011.01.018
    [7] C. Chen, Z. Wang, Y. Yang, A new operator splitting method for American options under fractional Black-Scholes models, Comput. Math. Appl., 77 (2019), 2130–2144. http://doi.org/10.1016/j.camwa.2018.12.007 doi: 10.1016/j.camwa.2018.12.007
    [8] W. Chen, X. Xu, S.-P. Zhu, Analytically pricing double barrier options based on a time-fractional Black-Scholes equation, Comput. Math. Appl., 69 (2015), 1407–1419. http://doi.org/10.1016/j.camwa.2015.03.025 doi: 10.1016/j.camwa.2015.03.025
    [9] P. Das, Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems, J. Comput. Appl. Math., 290 (2015), 16–25. http://doi.org/10.1016/j.cam.2015.04.034 doi: 10.1016/j.cam.2015.04.034
    [10] P. Das, S. Rana, J. Vigo-Aguiar, Higher order accurate approximations on equidistributed meshes for boundary layer originated mixed type reaction diffusion systems with multiple scale nature, Appl. Numer. Math., 148 (2020), 79–97. https://doi.org/10.1016/j.apnum.2019.08.028 doi: 10.1016/j.apnum.2019.08.028
    [11] A. Farhadi, M. Salehi, G. H. Erjaee, A new version of Black-Scholes equation presented by time-fractional derivative, Iran. J. Sci. Technol. Trans. Sci., 42 (2018), 2159–2166. https://doi.org/10.1007/s40995-017-0244-7 doi: 10.1007/s40995-017-0244-7
    [12] A. Golbabai, O. Nikan, A computational method based on the moving least-squares approach for pricing double barrier options in a time-fractional Black-Scholes model, Comput. Econ., 55 (2020), 119–141. https://doi.org/10.1007/s10614-019-09880-4 doi: 10.1007/s10614-019-09880-4
    [13] A. Golbabai, O. Nikan, T. Nikazad, Numerical analysis of time fractional Black-Scholes European option pricing model arising in financial market, Comput. Appl. Math., 38 (2019), 173. https://doi.org/10.1007/s40314-019-0957-7 doi: 10.1007/s40314-019-0957-7
    [14] S. Gowrisankar, S. Natesan, An efficient robust numerical method for singularly perturbed Burgers' equation, Appl. Math. Comput., 346 (2019), 385–394. https://doi.org/10.1016/j.amc.2018.10.049 doi: 10.1016/j.amc.2018.10.049
    [15] S. Haq, M. Hussain, Selection of shape parameter in radial basis functions for solution of time-fractional Black-Scholes models, Appl. Math. Comput., 335 (2018), 248–263. https://doi.org/10.1016/j.amc.2018.04.045 doi: 10.1016/j.amc.2018.04.045
    [16] J. Huang, Z. Cen, J. Zhao, An adaptive moving mesh method for a time-fractional Black-Scholes equation, Adv. Differ. Equ., 2019 (2019), 516. https://doi.org/10.1186/s13662-019-2453-1 doi: 10.1186/s13662-019-2453-1
    [17] G. Jumarie, Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time. Application to Merton's optimal portfolio, Comput. Math. Appl., 59 (2010), 1142–1164. https://doi.org/10.1016/j.camwa.2009.05.015 doi: 10.1016/j.camwa.2009.05.015
    [18] M. N. Koleva, L. G. Vulkov, Numerical solution of time-fractional Black-Scholes equation, Comput. Appl. Math., 36 (2017), 1699–1715. https://doi.org/10.1007/s40314-016-0330-z doi: 10.1007/s40314-016-0330-z
    [19] N. Kopteva, N. Madden, M. Stynes, Grid equidistribution for reaction-diffusion problems in one dimension, Numer. Algor., 40 (2005), 305–322. https://doi.org/10.1007/s11075-005-7079-6 doi: 10.1007/s11075-005-7079-6
    [20] L.-B. Liu, Y. Chen, Maximum norm a posteriori error estimates for a singularly perturbed differential difference equation with small delay, Appl. Math. Comput., 227 (2014), 801–810. https://doi.org/10.1016/j.amc.2013.10.085 doi: 10.1016/j.amc.2013.10.085
    [21] L.-B. Liu, Y. Chen, A-posteriori error estimation in maximum norm for a strongly coupled system of two singularly perturbed convection-diffusion problems, J. Comput. Appl. Math., 313 (2017), 152–167. https://doi.org/10.1016/j.cam.2016.08.020 doi: 10.1016/j.cam.2016.08.020
    [22] Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation, J. Math. Anal. Appl., 351 (2009), 218–223. https://doi.org/10.1016/j.jmaa.2008.10.018 doi: 10.1016/j.jmaa.2008.10.018
    [23] R. C. Merton, Theory of rational option pricing, Bell J. Econ. Manag. Sci., 4 (1973), 141–183. https://doi.org/10.2307/3003143 doi: 10.2307/3003143
    [24] S. M. Nuugulu, F. Gideon, K. C. Patidar, A robust numerical scheme for a time-fractional Black-Scholes partial differential equation describing stock exchange dynamics, Chaos Soliton. Fract., 145 (2021), 110753. https://doi.org/10.1016/j.chaos.2021.110753 doi: 10.1016/j.chaos.2021.110753
    [25] A. Pedas, E. Tamme, Piecewise polynomial collocation for linear boundary value problems of fractional differential equations, J. Comput. Appl. Math., 236 (2012), 3349–3359. https://doi.org/10.1016/j.cam.2012.03.002 doi: 10.1016/j.cam.2012.03.002
    [26] P. Roul, V. M. K. P. Goura, A compact finite difference scheme for fractional Black-Scholes option pricing model, Appl. Numer. Math., 166 (2021), 40–60. https://doi.org/10.1016/j.apnum.2021.03.017 doi: 10.1016/j.apnum.2021.03.017
    [27] M. She, L. Li, R. Tang, D. Li, A novel numerical scheme for a time fractional Black-Scholes equation, J. Appl. Math. Comput., 66 (2021), 853–870. https://doi.org/10.1007/s12190-020-01467-9 doi: 10.1007/s12190-020-01467-9
    [28] L. Song, W. Wang, Solution of the fractional Black-Scholes option pricing model by finite difference method, Abstr. Appl. Anal., 2013 (2013), 194286. https://doi.org/10.1155/2013/194286 doi: 10.1155/2013/194286
    [29] R. H. De Staelen, A. S. Hendy, Numerically pricing double barrier options in a time-fractional Black-Scholes model, Comput. Math. Appl., 74 (2017), 1166–1175. https://doi.org/10.1016/j.camwa.2017.06.005 doi: 10.1016/j.camwa.2017.06.005
    [30] M. Stynes, J. L. Gracia, A finite difference method for a two-point boundary value problem with a Caputo fractional derivative, IMA J. Numer. Anal., 35 (2015), 689–721. https://doi.org/10.1093/imanum/dru011 doi: 10.1093/imanum/dru011
    [31] M. Stynes, E. O'Riordan, J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057–1079. https://doi.org/10.1137/16M1082329 doi: 10.1137/16M1082329
    [32] Z. Tian, S. Zhai, H. Ji, Z. Weng, A compact quadratic spline collocation method for the time-fractional Black-Scholes model, J. Appl. Math. Comput., 66 (2021), 327–350. https://doi.org/10.1007/s12190-020-01439-z doi: 10.1007/s12190-020-01439-z
    [33] P. Wilmott, J. Dewynne, S. Howison, Option pricing: mathematical models and computation, Oxford, UK: Oxford Financial Press, 1993.
    [34] W. Wyss, The fractional Black-Scholes equations, Fract. Calc. Appl. Anal., 3 (2000), 51–61.
    [35] H. Zhang, F. Liu, I. Turner, S. Chen, The numerical simulation of the tempered fractional Black-Scholes equation for European double barrier option, Appl. Math. Model., 40 (2016), 5819–5834. https://doi.org/10.1016/j.apm.2016.01.027 doi: 10.1016/j.apm.2016.01.027
    [36] H. Zhang, F. Liu, I. Turner, Q. Yang, Numerical solution of the time fractional Black-Scholes model governing European options, Comput. Math. Appl., 71 (2016), 1772–1783. https://doi.org/10.1016/j.camwa.2016.02.007 doi: 10.1016/j.camwa.2016.02.007
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1099) PDF downloads(68) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog