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Abstract: In this paper, a posteriori grid method for solving a time-fractional Black-Scholes equation
governing European options is studied. The possible singularity of the exact solution complicates
the construction of the discretization scheme for the time-fractional Black-Scholes equation. The L1
method on an arbitrary grid is used to discretize the time-fractional derivative and the central difference
method on a piecewise uniform grid is used to discretize the spatial derivatives. Stability properties
and a posteriori error analysis for the discrete scheme are studied. Then, an adapted a posteriori grid
is constructed by using a grid generation algorithm based on a posteriori error analysis. Numerical
experiments show that the L1 method on an adapted a posteriori grid is more accurate than the method
on the uniform grid.
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1. Introduction

The classical Black-Scholes model was widely used in pricing options [3, 23]. However, the
classical Black-Scholes model is established under ideal assumptions which are not entirely consistent
with the real stock movement. Along with the discovery of the fractional structure of the stochastic
processes, fractional option pricing models have attracted more and more attention from academia
and the securities industry. Various types of fractional option pricing models have been derived,
see [4,8,11,17,24,32,34] for example. The following time-fractional Black-Schole equation (TFBSE)
developed by Wyss [34] is one of the most commonly used models:

∂αu
∂tα −

1
2σ

2x2 ∂2u
∂x2 − (r − q) x ∂u

∂x + ru = 0, (x, t) ∈ R+ × (0,T ],
u(x, 0) = max (x − E, 0) , x > 0,
u(0, t) = 0, t ∈ [0,T ],

(1.1)
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where u(x, t) is the European option price at asset price x and time T − t, T is the maturity time, σ is
the volatility of the asset price, r is the risk-free interest rate, q is the continuous dividend rate, E is the
exercise price, ∂αu

∂tα is the α-order Caputo fractional derivative defined as

∂αu
∂tα

=
1

Γ(1 − α)

∫ t

0
(t − s)−α

∂u
∂t

(x, s)ds, 0 < α < 1.

Compared to the classical Black-Scholes model, the time-fractional Black-Scholes model can better
grasp both major jumps over small time periods and long-range dependencies in markets [27].

The fractional differential equations often need to be solved numerically due to the unavailability
of analytical solutions. Some literatures have studied the numerical solutions of TFBSEs. The
implicit finite difference methods for the TFBSE have been developed by Song and Wang [28] and
Zhang et al. [35, 36]. A weighted finite difference scheme for the FEBSE of Jumarie type has been
proposed by Koleva and Vulkov [18]. A compact finite difference method is described by Roul and
Goura [26] for solving the FEBSE. Higher order convergence schemes have been derived by De Staelen
and Hendy [29] and Abdi et al. [1]. A finite difference method along with a radial basis functions
method and the moving least-squares approach also have been described by Golbabai et al. [12,13] for
solving the FEBSEs. The residual power series method along with the mesh-free collocation method
has been used to solve the FEBSEs by Haq and Hussain [15]. A compact quadratic spline collocation
method for the TFBSE is derived by Tian et al. [32]. An operator splitting method is used to solve the
American-type FEBSE by Chen et al. [7]. A numerical method based on the extension of a Crank-
Nicolson method is also applied to the FEBSE by Nuugulu et al. [24]. A space-time spectral method is
proposed by An et al. [2] for solving the FEBSE. However, the above literatures imply the assumption
that the exact solutions of the FEBSEs are sufficiently smooth.

In fact, the exact solutions of the fractional differential equations often have singularities, see [25,30,
31] and the references therein. The adapted grid method is often used to deal with the singular behavior
of the exact solutions. There are two types of adapted grids: a priori grids and a posteriori grids. The
construction of a priori grids needs a priori information about the exact solutions. She et al. [27]
showed the solution of the FEBSE has an initial layer and used a modified L1 time discretization based
on a change of variable to solve it. Cen et al. [5] developed a discrete scheme on a priori grid for the
FEBSE by using a priori information about the exact solution. Huang et al. [16] also presented an
adaptive moving grid based on a priori error analysis for the FEBSE. However, a priori information of
the exact solution is often not easy to obtain, while the construction of a posteriori grid does not need
to know a priori information of the exact solution, so a posteriori grid method has a wider application
(see, e.g., [9, 20, 21]).

In this paper an adapted a posteriori grid method for solving the TFBSE (1.1) is considered. We
discretize the time-fractional derivative by using the L1 approximation method on an arbitrary grid and
discretize the spatial derivatives by using the central difference method on a piecewise uniform grid. We
give a proof of the stability of the spatial semi-discrete operator and derive a posteriori error analysis
for the discrete scheme. Then, we construct an adapted a posteriori grid for the time discretization by
equidistributing a modified arc-length monitor function based on a posteriori error analysis. Finally,
it can be seen from the numerical experiments that a posteriori-adapted grid fits the singularity of the
exact solution well and the L1 method with a posteriori-adapted grid is more accurate than the method
on the uniform grid. The contribution of this paper is to apply a posteriori grid method to solve the
FEBSEs for the first time, which does not need a priori information of the exact solution.
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The structure of the rest of the paper is as follows. The discretization method is introduced
in Section 2. A posteriori error analysis for the scheme is derived in Section 3. A posteriori
solution-adapted algorithm is established in Section 4. Numerical results are presented in Section 5.
Conclusions and discussion are given in the last section.

Notation. In this paper, C is a positive constant independent of the grid, and C can denote different
values in different places. For any function ϕ defined on the defined domain, let’s make ϕ j

i = ϕ(xi, t j)
to simplify the notation. The (pointwise) maximum norm on the defined domain is defined by ‖·‖.

2. Discretization

For numerical calculation, the infinite domain R+×(0,T ] should be truncated into Ω = (0, X)×(0,T ]
with X = 4E, where we have used the estimate of Willmott et al. [33]. Then, the right boundary
condition can be obtained u(X, t) = X − Ee−rt according to the properties of the European option.
Generally, the error caused by the truncation of the infinite domain can be ignored. Hence, the pricing
model (1.1) can be reduced to the following fractional differential equation:

Lu(x, t) ≡ ∂αu
∂tα −

1
2σ

2x2 ∂2u
∂x2 − (r − q) x ∂u

∂x + ru = 0, (x, t) ∈ Ω,

u(x, 0) = max (x − E, 0) , x ∈ [0, X],
u(0, t) = 0, u(x, t) = X − Ee−rt, t ∈ [0,T ].

(2.1)

First we give the spatial discretization scheme for problem (2.1). We employ a uniform grid

ΩN = {xi = ih | 0 ≤ i ≤ N, h = X/N}

on [0, X] with N grid elements when σ2 ≥ |r − q|. When σ2 < |r − q| the fractional Black-Scholes
differential operator L is convection-dominated near x = 0. Therefore, in order to ensure the stability
of the discrete scheme by using the central difference method for discretizing the spatial derivatives,
we construct the following piecewise uniform grid

Ω̄N = {xi | 0 ≤ i ≤ N}

when σ2 < |r − q| as that in [6] with

xi =

 ih, i = 0, 1,
h
[
1 + σ2

|r−q| (i − 1)
]
, i = 2, 3, · · · ,N,

(2.2)

where

h =
X

1 + σ2

|r−q| (N − 1)
.

Moreover, hi = xi − xi−1 for 1 ≤ i ≤ N denote the spatial grid widths.
Thus, for each t we employ a central difference scheme on ΩN to discrete the spatial derivatives:

∂αUi

∂tα
−

σ2x2
i

hi + hi+1

(
Ui+1(t) − Ui(t)

hi+1
−

Ui(t) − Ui−1(t)
hi

)
AIMS Mathematics Volume 7, Issue 12, 20962–20978.
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− (r − q) xi
Ui+1(t) − Ui−1(t)

hi + hi+1
+ rUi(t) = 0, 1 ≤ i < N,

U0(t) = 0, UN(t) = X − Ee−rt.

This discretization leads to an initial value problem of the form{
LNU(t) ≡ ∂αU

∂tα + A(t)U(t) = f(t),
U(0) = g, (2.3)

where U(t) = (U1(t), . . . ,UN−1(t))T , A(t) is a (N − 1) × (N − 1) matrix given by

A(t) =



b1 c1 · · · 0

a2 b2 c2 · · ·
...

... a3 b3 c3 · · ·
...

...
...

...
...

· · · aN−2 bN−2 cN−2

0 · · · aN−1 bN−1


with

ai = −
σ2x2

i

(hi + hi+1)hi
+

(r − q) xi

hi + hi+1
, bi =

σ2x2
i

hihi+1
+ r,

ci = −
σ2x2

i

(hi + hi+1)hi+1
−

(r − q) xi

hi + hi+1
for i = 1, · · · ,N − 1.

The vectors f(t) and g are the corresponding boundary and initial conditions:

f(t) =



−a1U0(t)
0
...

0
−cN−1UN(t)


, g =


max (x1 − E, 0)
max (x2 − E, 0)

...

max (xN−1 − E, 0)

 .

It is easy to know that the matrix A(t) is strictly diagonally dominant by simple calculation, which will
be used in proving the semi-discrete maximum principle.

Next, on the time domain [0,T ] we introduce an arbitrary grid ΩK ≡ {0 = t0 < t1 < · · · < tK = T },
where the time grid width is denoted by ∆t j = t j − t j−1 for 1 ≤ j ≤ K. We use the L1 approximation
method [31] to discrete the time-fractional derivative

∂αUi

∂tα
(t j) =

1
Γ(1 − α)

j∑
k=1

∫ tk

tk−1

(
t j − s

)−α
U′i (s) ds

≈
1

Γ(1 − α)

j∑
k=1

∫ tk

tk−1

(
t j − s

)−α
D−t Uk

i ds,

AIMS Mathematics Volume 7, Issue 12, 20962–20978.
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where D−t Uk
i =

Uk
i −Uk−1

i
∆tk

. Thus, combining the spatial discretization scheme and the time discretization
scheme, we get the following fully discretization scheme for problem (2.1)

1
Γ(2 − α)

j∑
k=1

[(
t j − tk−1

)1−α
−

(
t j − tk

)1−α
]

D−t Uk + A(t j)U j = f j,

U0 = g,
(2.4)

where U j =
(
U j

1, . . . ,U
j
N−1

)T
and f j =

(
f j
1 , . . . , f j

N−1

)T
.

3. A posteriori error analysis

In order to carry out a posteriori error analysis, we present a stability result for the fractional
differential operator LN . First we introduce a function space W1 ((0,T ]), which represents the space of
functions p(t) ∈ C1 ((0,T ]) so that p′(t) has Lebesgue integrability in (0,T ]. Then we further introduce
the following result for the Caputo derivative as Theorem 1 of [22].
Lemma 3.1. Suppose w(t) ∈ W1 ((0,T ]) ∩ C([0,T ]) reaches its minimum at the point t∗ ∈ (0,T ], then
dαw
dtα (t∗) ≤ 0 for 0 < α < 1.

Thus the following semi-discrete maximum principle for LN can be proved by using Lemma 3.1.
Lemma 3.2. (Semi-discrete maximum principle) Let z(t) = (z1(t), . . . , zN−1(t))T and zi(t) ∈
W1 ((0,T ]) ∩ C([0,T ]) for 1 ≤ i < N. If LNz(t) ≥ 0 for t ∈ (0,T ) with z(0) ≥ 0, then z(t) ≥ 0
for all t ∈ [0,T ].

Proof. We give the proof by contradiction. Assume that there exist i∗, t∗ such that zi∗(t∗) = min
i,t

zi(t) < 0.

From the hypotheses of the lemma, we have t∗ , 0. Thus, by applying Lemma 3.1 and the results
ai ≤ 0, ci ≤ 0 and ai + bi + ci > 0 we can get

LNzi∗ (t∗) =
dαzi∗

dtα
(t∗) + ai∗zi∗−1 (t∗) + bi∗zi∗ (t∗) + ci∗zi∗+1 (t∗)

≤
dαzi∗

dtα
(t∗) + (ai∗ + bi∗ + ci∗) zi∗ (t∗) < 0,

which contradicts the hypotheses of the lemma. Therefore, the original assumption is false and the
minimum of z is non-negative. �

Then the following semi-discrete stability result for LN can be obtained by using the semi-discrete
maximum principle in Lemma 3.2.
Lemma 3.3. (Semi-discrete stability result) For any function vector z(t) ∈ W1 ((0,T ]) ∩ C([0,T ]) we
have the following estimate

‖z (t)‖[0,T ] ≤ max
{
‖z(0)‖ , max

1≤i≤N−2

∥∥∥LNzi(t)
∥∥∥

[0,T ]
,

4h2
N

σ2x2
N−1

∥∥∥LNzN−1(t)
∥∥∥

[0,T ]

}
with sufficiently large N.

Applying the above semi-discrete stability result and the truncation error estimates of the spatial
discrete scheme, we have the following error estimates.

AIMS Mathematics Volume 7, Issue 12, 20962–20978.



20967

Theorem 3.4. Let u(x, t) and U (t) be the solutions of problems (2.1) and (2.3) respectively. Then,
under the assumptions [5, 16] ∣∣∣∣∣∣x2∂

4u
∂x4

∣∣∣∣∣∣ ≤ C,

∣∣∣∣∣∣x∂3u
∂x3

∣∣∣∣∣∣ ≤ C, (3.1)

the following error estimates

‖u(xi, t) − Ui(t)‖[0,T ] ≤ CN−2 (3.2)

for 0 ≤ i ≤ N hold true, where C is a positive constant independent of the grid.

Proof. The following truncation error estimates can be obtained by using Taylor expansions about
x = xi ∣∣∣LN (u(xi, t) − Ui(t))

∣∣∣ ≤ C (hi + hi+1)
∫ xi+1

xi−1

[
x2

i

∣∣∣∣∣∣∂4u
∂x4 (x, t)

∣∣∣∣∣∣ + xi

∣∣∣∣∣∣∂3u
∂x3 (x, t)

∣∣∣∣∣∣
]

dx

≤ CN−2

for 1 ≤ i < N, where the spatial grid widths and the assumptions (3.1) have been used. Furthermore,
it is easy to see that u(xi, t) ∈ W1 ((0,T ]) ∩ C([0,T ]) for each i. Thus, the desired results of the lemma
can be get by applying Lemma 3.3. �

Next, a posteriori error analysis for the numerical method (2.4) will be derived. Suppose ŪK
i (t)

is a piecewise linear interpolant function of the numerical solution
{
U j

i

}K

j=0
for each i, then ŪK

i (t) is
continuous on [0,T ], linear on each [t j−1, t j] and

ŪK
i (t j) = U j

i , 0 ≤ j ≤ K. (3.3)

Furthermore, suppose ŪK(t) =
(
ŪK

1 (t), ŪK
2 (t), . . . , ŪK

N−1(t)
)T

denotes a piecewise linear interpolant
function vector.
Theorem 3.5. Let U(t) be the solution vector of the semi-discrete problem (2.3),

{
U j

}K

j=0
be the

numerical solution vector of the fully discrete problem (2.4) and ŪK(t) be its piecewise linear
interpolant function vector. Then the following estimate∥∥∥ŪK(t) − U(t)

∥∥∥
[0,T ]
≤ C max

1≤i≤N,1≤ j≤K

{(
4t j

)2
+

(
4t j

)1−α ∣∣∣D−t U j
i

∣∣∣} (3.4)

holds true.

Proof. By the definition of ŪK(t) we know

ŪK(t) = U j +
(
t − t j

)
D−t U j and

dŪK

dt
= D−t U j for t ∈ (t j−1, t j). (3.5)

For t ∈ (t j−1, t j) we have the following derivation

LN
(
ŪK

i (t) − Ui(t)
)

=
1

Γ(1 − α)

j−1∑
k=1

∫ tk

tk−1

(t − s)−α
dŪK

i (s)
ds

ds

AIMS Mathematics Volume 7, Issue 12, 20962–20978.
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+
1

Γ(1 − α)

∫ t

t j−1

(t − s)−α
dŪK

i (s)
ds

ds + aiŪK
i−1(t) + biŪK

i (t) + ciŪK
i+1(t) − fi(t)

=
1

Γ(1 − α)

j−1∑
k=1

∫ tk

tk−1

(t − s)−α D−t Uk
i ds +

1
Γ(1 − α)

∫ t

t j−1

(t − s)−α D−t U j
i ds

+aiŪK
i−1(t) + biŪK

i (t) + ciŪK
i+1(t) − f̄i(t) +

(
f̄i(t) − fi(t)

)
=

1
Γ(2 − α)

j−1∑
k=1

[
(t − tk−1)1−α

− (t − tk)1−α
]

D−t Uk
i +

(
t − t j−1

)1−α

Γ(2 − α)
D−t U j

i

+ai

[
U j

i−1 +
(
t − t j

)
D−t U j

i−1

]
+ bi

[
U j

i +
(
t − t j

)
D−t U j

i

]
+ci

[
U j

i+1 +
(
t − t j

)
D−t U j

i+1

]
−

[
f j
i +

(
t − t j

)
D−t f j

i

]
+

(
f̄i(t) − fi(t)

)
=

1
Γ(2 − α)

j−1∑
k=1

[
(t − tk−1)1−α

− (t − tk)1−α
]

D−t Uk
i +

(
t − t j−1

)1−α

Γ(2 − α)
D−t U j

i

−
1

Γ(2 − α)

j∑
k=1

[(
t j − tk−1

)1−α
−

(
t j − tk

)1−α
]

D−t Uk
i +

(
f̄i(t) − fi(t)

)
+

(
t − t j

) (
aiD−t U j

i−1 + biD−t U j
i + ciD−t U j

i+1 − D−t f j
i

)
, (3.6)

where (2.4), (3.5) and f̄i(t) = f j
i +

(
t − t j

)
D−t f j

i for t ∈ (t j−1, t j) have been used.
By using the mean value theorem we have∣∣∣∣∣∣∣ 1

Γ(2 − α)

j−1∑
k=1

[
(t − tk−1)1−α

− (t − tk)1−α
]

D−t Uk
i +

1
Γ(2 − α)

(
t − t j−1

)1−α
D−t U j

i

−
1

Γ(2 − α)

j∑
k=1

[(
t j − tk−1

)1−α
−

(
t j − tk

)1−α
]

D−t Uk
i

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣ 1
Γ(2 − α)

j−1∑
k=1

{[
(t − tk−1)1−α

− (t − tk)1−α
]
−

[(
t j − tk−1

)1−α
−

(
t j − tk

)1−α
]}

D−t Uk
i

∣∣∣∣∣∣∣
+

∣∣∣∣∣ 1
Γ(2 − α)

[(
t − t j−1

)1−α
−

(
t j − t j−1

)1−α
]

D−t U j
i

∣∣∣∣∣
≤

1
Γ(1 − α)

∣∣∣∣∣∣∣
j−1∑
k=1

[(
ξ j − tk−1

)−α
−

(
ξ j − tk

)−α]
(t j − t)D−t Uk

i

∣∣∣∣∣∣∣ +

(
4t j

)1−α

Γ(2 − α)

∣∣∣D−t U j
i

∣∣∣
≤

α

Γ(1 − α)

∣∣∣∣∣∣∣
j−1∑
k=1

(
ξ j − νk

)−α−1
(t j − t)4tkD−t Uk

i

∣∣∣∣∣∣∣ +

(
4t j

)1−α

Γ(2 − α)

∣∣∣D−t U j
i

∣∣∣
≤ C max

1≤k≤ j
(4tk)1−α

∣∣∣D−t Uk
i

∣∣∣ , (3.7)

where ξ j ∈ (t, t j) and νk ∈ (tk−1, tk). By using the discrete equation (2.4) and the mean value theorem
we also can obtain∣∣∣∣(t − t j

) (
aiD−t U j

i−1 + biD−t U j
i + ciD−t U j

i+1 − D−t f j
i

)∣∣∣∣
AIMS Mathematics Volume 7, Issue 12, 20962–20978.
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=
∣∣∣∣(t − t j

)
D−t

(
aiU

j
i−1 + biU

j
i + ciU

j
i+1 − f j

i

)∣∣∣∣
≤

t j − t
Γ(2 − α)4t j

∣∣∣∣∣∣∣
j−1∑
k=1

{[(
t j − tk−1

)1−α
−

(
t j − tk

)1−α
]

−

[(
t j−1 − tk−1

)1−α
−

(
t j−1 − tk

)1−α
]}

D−t Uk
i

∣∣∣∣∣ +
t j − t

Γ(2 − α)
(
4t j

)α ∣∣∣D−t U j
i

∣∣∣
≤

1
Γ(1 − α)

∣∣∣∣∣∣∣
j−1∑
k=1

[(
η j − tk−1

)−α
−

(
η j − tk

)−α] (
t j − t

)
D−t Uk

i

∣∣∣∣∣∣∣ +

(
4t j

)1−α

Γ(2 − α)

∣∣∣D−t U j
i

∣∣∣
≤

α

Γ(1 − α)

∣∣∣∣∣∣∣
j−1∑
k=1

(
η j − ϑk

)−α−1 (
t j − t

)
4tkD−t Uk

i

∣∣∣∣∣∣∣ +

(
4t j

)1−α

Γ(2 − α)

∣∣∣D−t U j
i

∣∣∣
≤ C max

1≤k≤ j
(4tk)1−α

∣∣∣D−t Uk
i

∣∣∣ , (3.8)

where η j ∈ (t j−1, t j) and ϑk ∈ (tk−1, tk). Moreover, we have

∥∥∥ f̄i(t) − fi(t)
∥∥∥

[t j−1,t j]
≤

(
4t j

)2

2
sup

(t j−1,t j)

∣∣∣ f ′′i (t)
∣∣∣

≤

 0, 1 ≤ i ≤ N − 2,

C (4t j)2

h2 , i = N − 1.
(3.9)

Therefore, combining (3.6) with (3.7)–(3.9) we have∥∥∥∥LN
(
ŪK

i (t) − Ui(t)
)∥∥∥∥

[0,T ]

≤


C max

1≤ j≤K

(
4t j

)1−α ∣∣∣D−t U j
i

∣∣∣, 1 ≤ i ≤ N − 2,

C max
1≤ j≤K

(
4t j

)1−α ∣∣∣D−t U j
i

∣∣∣ + C max
1≤ j≤K

(
4t j

)2

h2 , i = N − 1.
(3.10)

Then, the required result of the lemma follows from the semi-discrete stability result (Lemma 3.3) and
the inequality (3.10). �

Then the following error estimates for the fully discrete scheme (2.4) can be obtained from
Theorems 3.4 and 3.5.
Theorem 3.6. Let U(t) be the solution vector of the semi-discrete problem (2.3),

{
U j

}K

j=0
be the

numerical solution vector of the fully discrete problem (2.4) and ŪK
i (t) be the piecewise linear

interpolant function of the numerical solution
{
U j

i

}K

j=0
for each i. Then, under the assumption (3.1),

the following error estimates∥∥∥u(xi, t) − ŪK
i (t)

∥∥∥
[0,T ]
≤ C max

1≤ j≤K

{
N−2 +

(
4t j

)2
+

(
4t j

)1−α ∣∣∣D−t U j
i

∣∣∣}
for 0 ≤ i ≤ N hold true, where C is a positive constant independent of the grid.
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4. Adapted grid generation

Now, by making use of a posteriori estimates obtained in the above section, we develop an adapted
grid for the time discretization. For generating adapted grids a frequently used method is the grid
equidistribution method [10, 14, 19]. An adapted grid ΩK ≡ {0 = t0 < t1 < · · · < tK = T } can be
obtained by using the following grid equidistribution principle [10, 14, 19]∫ t j

t j−1

M(s)ds =
1
K

∫ T

0
M(s)ds, j = 1, 2, . . . ,K,

where M(t) is called the monitor function. Based on a posteriori estimates in Theorem 3.6 we choose
the following modified arc-length function

M̄(t) =

√
1 + max

1≤i<N

[(
ŪK

i (t)
)′]2

.

as our monitor function. Then we design the following iteration algorithm to generate adapted grids
for the time discretization and compute the numerical solutions.

Step 1. Initialize grid: Choose the grid ΩN × ΩK,(0) as the initial grid, where ΩK,(0) ={
t(0)

j | t
(0)
j = jT/K , 0 ≤ j ≤ K}.

Step 2. Calculate the discrete solution: Solve the fully discrete problem (2.4) on the grid ΩN×ΩK,(k)

for U j,(k)
i , where ΩK,(k) =

{
t(k)
0 , t

(k)
1 , . . . , t

(k)
K

}
. Moreover, let

l(k)
j = ∆t(k)

j

√
1 + max

1≤i<N

(
D−t U j,(k)

i

)2
, I(k) =

K∑
j=1

l(k)
j .

Step 3. Test grid: If

max
1≤ j≤K

{
l(k)

j

}
≤ C0I(k)/K,

holds true for a user-chosen constant C0 > 1, then terminate the iteration and go to Step 5. Otherwise,
continuous to Step 4.

Step 4. Make new grid: Generate a new grid ΩK,(k+1) such that∫ t(k+1)
j

t(k+1)
j−1

√
1 + max

1≤i<N

[(
ŪK,(k)

i (t)
)′]2

= I(k)/K, j = 1, 2, · · · ,K.

Set k = k + 1 and go back to step 2.
Step 5. Set ΩK,∗ = ΩK,(k) and

{
U j,∗

i

}K

j=0
=

{
U j,(k)

i

}K

j=0
, then stop.

5. Numerical experiments

Two examples are given to indicate experimentally the efficiency and accuracy of the discretization
scheme. The comparisons of numerical results on the adapted a posteriori grid and the uniform grid
are also given.
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Example 5.1. We first consider the following fractional differential equation with a known exact
solution as given in [16]:

∂αu
∂tα
−

1
2
σ2x2∂

2u
∂x2 − (r − q) x

∂u
∂x

+ ru = f (x, t), (x, t) ∈ (0, 1) × (0, 1],

u(x, 0) = ex + x + 1, x ∈ (0, 1),
u(0, t) = tα + 2, u(1, t) = tα + e + 2, t ∈ (0, 1],

where σ = 0.1, r = 0.06, q = 0, 0 < α < 1 and f (x, t) is a function that makes the exact solution
satisfying u(x, t) = tα + ex + x + 1.

Figure 1 shows how a posteriori grid for the time discretization generates by successive iterations
of the solution-adapted algorithm for Example 5.1 with α = 0.2. The final time grid with α = 0.2
is demonstrated in Figure 2. Figures 1 and 2 show that the solution-adapted algorithm automatically
refines the grid in a local domain where the exact solution has singular behavior.
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Figure 1. Generation process of the time grid for Example 5.1 with α = 0.2.
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Figure 2. Final time grid for Example 5.1 with α = 0.2.
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The error in the pointwise maximum norm

eN,K = max
1≤i≤N,1≤ j≤K

|u j
i − U j

i |

and the corresponding convergence rate

rN = log2(eN,K/e2N,2K)

are calculated. The errors and convergence rates on a posteriori adapted grid for Example 5.1 are listed
in Table 1.

Table 1. Errors in the maximum norm and convergence rates for Example 5.1.

α grid Number of grid points N = K
64 128 256 512 1024

0.2 adapted 4.3606E-3 2.1601E-3 1.1055E-3 5.4408E-4 2.7733E-4
1.013 0.966 1.023 0.972 -

uniform 6.2643E-2 5.4541E-2 4.7512E-2 4.1391E-2 3.6056E-2
0.200 0.199 0.199 0.199 -

0.4 adapted 5.8042E-3 2.7651E-3 1.4079E-3 7.1722E-4 3.6549E-4
1.070 0.974 0.973 0.973 -

uniform 3.9175E-2 2.9693E-2 2.2512E-2 1.7067E-2 1.2938E-2
0.400 0.399 0.399 0.400 -

0.6 adapted 5.1043E-3 2.6002E-3 1.3237E-3 6.7368E-4 3.4284E-4
0.973 0.974 0.974 0.975 -

uniform 1.7082E-2 1.1268E-2 7.4347E-3 4.9058E-3 3.2370E-3
0.600 0.600 0.600 0.600 -

0.8 adapted 4.0806E-3 2.1091E-3 1.0888E-3 5.5982E-4 2.7601E-4
0.952 0.954 0.960 1.020 -

uniform 5.8127E-3 3.3318E-3 1.9131E-3 1.0989E-3 6.3119E-4
0.803 0.800 0.800 0.800 -

Example 5.2. We now consider the following TFBSE without a known exact solution:

∂αu
∂tα
−

1
2
σ2x2∂

2u
∂x2 − (r − q) x

∂u
∂x

+ ru = 0, (x, t) ∈ (0, X) × (0,T ],

u(x, 0) = max (x − E, 0) , x ∈ (0, X),
u(0, t) = 0, u(X, t) = X − Ee−rt, t ∈ (0,T ]

with σ = 0.3, r = 0.06, q = 0.02, E = 10,T = 1, X = 40 and 0 < α < 1.
The generation of an adapted a posteriori grid for the time discretization and the final time grid

for the TFBSE with α = 0.2 are depicted in Figures 3 and 4, respectively. They also show that the
solution-adapted algorithm automatically refines the grid in a local domain where the exact solution
has singular behavior.
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Figure 3. Generation process of the time grid for Example 5.2 with α = 0.2.
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Figure 4. Final time grid for Example 5.2 with α = 0.2.
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The errors in the pointwise maximum norm and the corresponding experiment convergence rates
will be measured based on the double grid principle as follows

eN,K = max
1≤i≤N,1≤ j≤K

|ŪN,K(xi, t j) − Ū2N,2K(xi, t j)|

and

rN = log2(eN,K/e2N,2K)

respectively, where ŪN,K(x, t) is a linear interpolation of the numerical solution
{
U j

i

}
with spatial

discretization parameter N and time discretization parameter K. The errors and convergence rates
on a posteriori-adapted grid for Example 5.2 are listed in Table 2.

Table 2. Errors in the maximum norm and convergence rates for Example 5.2.

α grid Number of grid points N = K
6 128 256 512 1024

0.2 adapted 2.4717E-2 1.2288E-2 6.1275E-3 3.0615E-3 1.5314E-3
1.008 1.004 1.001 0.999 -

uniform 5.2159E-2 4.1726E-2 3.6868E-2 3.3806E-2 3.1233E-2
0.179 0.125 0.114 -

0.4 dapted 2.6537E-2 1.3233E-2 6.6050E-3 3.3000E-3 1.6492E-3
1.004 1.003 1.001 1.001 -

uniform 5.4159E-2 3.8341E-2 3.0429E-2 2.5483E-2 2.1785E-2
0.498 0.333 0.256 0.226 -

0.6 adapted 2.9538E-2 1.4700E-2 7.3761E-3 3.6681E-3 1.8370E-3
1.007 0.995 1.008 0.998 -

uniform 4.6999E-2 2.8831E-2 1.9786E-2 1.4805E-2 1.1589E-2
0.705 0.543 0.418 0.353 -

0.8 adapted 3.1679E-2 1.5729E-2 7.8529E-3 3.9272E-3 1.9572E-3
1.010 1.002 1.000 1.005 -

uniform 3.8895E-2 2.1932E-2 1.2798E-2 8.1445E-3 5.6042E-3
0.827 0.777 0.652 0.539 -

The numerical results in Tables 1 and 2 indicate that the numerical solutions on a posteriori-
adapted grids converge to the exact solutions with first-order accuracy in the pointwise maximum
error, although the global errors derived in Theorem 3.6 don’t reach first-order accuracy. Since the
higher-order convergence schemes given in the literature [1, 24] are not suitable for solving the above
examples with singular exact solutions, we only give the numerical results of the L1 method on the
uniform grid as used in [26,28,29,35], which are also presented in Tables 1 and 2. From these results,
we verify that our method on an adapted a posteriori grid is more accurate than the method on the
uniform grid. Moreover, a posteriori grid scheme can be applied to a broad range of the problems
since the generation of adapted grid does not need a priori information of the exact solution, although a
posteriori grid scheme proposed in this paper is slightly less accurate than the adapted grid scheme [16]
and the variable transformation method [27] based on a priori information of the exact solution.
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6. Conclusions and discussion

In this paper, an adapted a posteriori grid method is used to overcome the difficulties caused by
the singularity of the exact solution in (1.1). First, the spatial derivatives are discretized by using
the central difference method on a piecewise uniform grid. Secondly, the time-fractional derivative is
discretized by using the L1 approximation method on an arbitrary grid. Thirdly, the stability properties
and a posteriori error analysis of the spatial semi-discrete operator are derived. Next, an adapted
a posteriori grid for the time discretization is constructed by equidistributing a modified arc-length
monitor function based on a posteriori error analysis. Finally, numerical results are given to show
that a posteriori-adapted grid fits the singularity of the exact solution well and the L1 method with
a posteriori-adapted grid is more accurate than the method on the uniform grid. The contribution of
this paper is to apply a posteriori grid method to solve the FEBSEs for the first time, which does not
need a priori information of the exact solution. In future, we will extend this method to the spatial-
fractional Black-Scholes equations and high dimensional fractional Black-Scholes equations whose
exact solutions may have singularities.
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